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Normalizing Economic L oss from
Natural Disasters. A Global Analysis

Abstract

Climate change is likely to lead to an increasehim frequency and/or intensity of
certain types of natural hazards, if not globalhgn at least in certain regions. All
other things equal, this should lead to an increéagbe economic toll from natural
disasters over time. Yet, all other things are emal since affected areas become
wealthier over time and rational individuals andvgmments undertake defensive
mitigation measures, which requires normalizingneecoic losses if one wishes to
analyze trends in economic loss from natural desagor detecting a potential climate
change signal. In this article, we argue that tl@ventional methodology for
normalizing economic loss is problematic sincedtmalizes for changes in wealth
over time, but fails to normalize for differenceswealth across space at any given
point of time. We introduce an alternative methodgl that overcomes this problem
in theory, but faces many more problems in its eitgdi application. Applying,
therefore, both methods to the most comprehensisgtirey global dataset of natural
disaster loss, in general we find no significantvap trends in normalized disaster
damage over the period 1980 to 2009 globally, reajlyg, for specific disasters or for
specific disasters in specific regions. Due to mability to control for defensive
mitigation measures, one cannot infer from our ysigalthat there have definitely not
been more frequent and/or more intensive weatHatec natural hazards over the
study period already. Moreover, it may still be tiao early to detect a trend if human-

induced climate change has only just started afidyain momentum over time.



1 Introduction

Has economic damage from natural disasters inaleaser time? This is a question
of high policy relevance for mainly two reasongsgiif it has then this could require
a policy response in terms of disaster risk manap¢nand disaster damage
mitigation and prevention. Second, an increasimndr of damage from natural
disasters could point in the direction that climathanges may be the driving force,
which would have implications for the debate onuadg greenhouse gas emissions
(Bouwer 2009; Schmidt, Kemfert and Hoppe 2009his question has recently
attracted some broader media attention when criicsused both the Inter-
governmental Panel on Climate Change (IPCC) andSteen (2007) Review of
allegedly reporting selected pieces of evidencujpport of such a trerfd.

A potential climate change signal is not easilyedetd from data of economic
loss from natural disasters, however. One canmoplgi look at inflation-adjusted
damages from natural disasters and test for a tmevad therein. While such an
analysis would be interesting for other reasong,teand found may simply be due to
the fact that areas affected by natural disastave become wealthier over time. For
example, people often move to disaster-prone aseels as floodplanes and coastal
areas because other characteristics of these atteas them, which provide a higher
expected benefit than the expected cost followmroghfdamage in the uncertain event
of natural disaster. Even in the absence of migmatxisting populations in affected
areas are bound to increase over time, while ptppatues are bound to rise. Hence,
any increase in natural disaster damage may beelgdiue to an increase in what can

potentially be destroyed, i.e. an increase in eggagealth, rather than because of an

For example, IPCC (2001: 13) claims that ‘parthaf observed upward trend in disaster losses
over the past 50 years is linked to socioeconommitofs (...), and part is linked to climatic
factors, such as the observed changes in predjpitand flooding events’.

2 See, for example, Pielke (2007).



increase in the frequency and/or intensity (pos&tndiestructive power) of natural
hazards.Even then, a policy response may be required wfseo- for example, in the
form of discouraging people from migrating to disagrone areas and undertaking
measures to protect the lives and property of ieggieople in such areas.

The question that has attraced more scholarly tadterhowever, is whether
even after adjusting for changes in wealth, therstill an increasing trend in natural
disaster damage over time. Certainly, if one i®rgdgted in analyzing whether
climatic change plays a role in increasing disadéanage, then this is the question to
address. Existing scholarship seemingly providegxdmustive negative answer to
this question already, but there is a large amainterra incognita in terms of
adequate regional- and hazard-specific loss arglysetly because of unavailability
of data. Existing scholarship comes to the conclushat while natural variability in
weather patterns can explain some of the varighiitdisaster losses (Pielke and
Landsea 1998; Katz 2002; Pielke et al. 2008; Schnidmfert and Hoppe 2009),
there is no evidence for a rising long-term trendso-called “normalized” disaster
damage, which is the damage after adjustments éativ changes over time. To be
sure, even if a trend was detected, one needsaarbéul in attributing such a trend to
anthropogenic climate change, i.e. climate chargesed by man-made greenhouse
gas emissions, since natural climate variabilityuldo provide an alternative
explanation. For example, some studies find an upwand in normalized damage
from hurricanes in the US since the 1970s (e.dwntdt, Kemfert and Hoppe 2009) —
a trend, which may well be explained by naturalakality in hurricane landfall.

There are three reasons why the topic of natusdstier loss normalization

needs to be studied further. First, the vast mgjaf existing studies have either

3 Hazards are events triggered by natural forcheywill turn into natural disasters if people

are exposed to the hazard and are not resiliéntlyoabsorbing the impact without damage to
life or property (Schwab, Eschelbach and Brower7200



analyzed losses in the United States (Pielke amdlldea 1998; Brooks and Doswell
2001; Nordhaus 2006; Pielke et al. 2008; VranesRietke 2009; Schmidt, Kemfert
and Hoppe 2009) or other countries (Raghavan andeRa&003; Crompton and
McAeneney 2008) or a region (Pielke et al. 2003;r&o 2009Y. It remains to be
seen whether what holds true for these individwaintries or regions will hold for
other countries, other regions and the world afi@lev Second, the one study that has
looked at disaster damage on a global scale (\efleal. 2008) suffers from the fact
that it had to resort to assembling loss estimfabes a plethora of sources, which will
use very different criteria and which will produdata of very varied quality. Third,
the normalization methodology used by practicallyeaisting studies is, we argue
here, incomplete in that it normalizes for changesr time, but fails to normalize for
differences in spatial location at any point of éinThis article addresses all three
shortcomings by analyzing a global sample in additd region-specific samples, by
using a comprehensive high-quality database andnbgloying, in addition to the
conventional method, a methodology that normalizeth for changes over time and
differences over space. In other words, this @&trobkes both a contribution to the
substance and the methodology of the literaturéystg economic loss from natural
disasters.

Despite these differences in research design, weedo similar conclusions
as existing studies: whilst we find massive incesas non-normalized inflation-
adjusted natural disaster damage, there is no toage evidence for an increasing
trend once each natural disaster event has beamfiped. It is premature to interpret
these findings as evidence that climatic factorsehaot led to an increase in

normalized disaster damage. This is because de&nsiitigating measures

Bouwer (2009) provides a comprehensive literataview.



undertaken by rational individuals and governmeantsesponse to more frequent
and/or more intensive natural hazards may haveceztinatural disaster losses such
that these measures would mask any increasing inendrmalized disaster damage.
Unfortunately, it is impossible to adequately agtoior measures such as improved
early warning systems, better building qualitiesightened flood defences etc. It is
therefore impossible to say whether one would sem@easing trend in normalized
natural disaster damages in the absence of suctunesa

This article is structured as follows: Section 2tlioes the conventional
approach to normalise disaster losses, while Se@&idiscusses its limitations. Our
alternative method is presented in Section 4. Resfl a global analysis and for
various regions and disaster types are shown itiddes, using both normalization
approaches. Section 6 concludes with an emphadiseocaveats and limitations that
necessarily accompany our analysis. In particul@r stress that our inability to take
into account defensive mitigating measures implie one cannot infer from our
analysis that there has been no actual increasieeifirequency and/or intensity of
weather-related natural hazards. Our analysis filvereannot be used to undermine
the case for reducing greenhouse gas emissionsed loam the precautionary principle
and justified in part by a desire to prevent oruea potentially increasing trend in

economic loss from natural disasters in the future.

2. The conventional approach to normalizing natural disaster loss

The conventional approach to normalizing naturalastier loss can be credited to
Roger Pielke Jr. and co-authors (see Pielke andldesn 1998, Pielke et al. 1999,
2003, 2008; Vraines and Pielke 2009). The typicplation to compute normalized

damage according to this approach is as follows:



DPdeflatoy DPopuIatiopD Wealth per capit 1

Normalized Damage= Damage , .
GDPdeflator Population Wealth per capit

wheres s the (chosen) year one wishes to normalizeéitthe year in which damage
occurred, the Gross Domestic Product (GDP) deflaidjusts for inflation (i.e.,
change in producer prices), while the remaining weorection factors adjust for
changes inpopulation and wealth per capita. In theory, tlopytation and wealth
changes should be based on data from the exad affeated by the natural disaster
in question. However, in practice it is often impibée to determine the exact areas or
information on these areas is difficult or impo$sitn get, so scholars typically resort
to using data from the country or, if they cannireub-country administrative units
known to be affected (e.g., counties or state)di8s differ with respect to how
wealth per capita is measured. Some use data omalhe of capital stocks (e.g.,
Pielke and Landsea 1998; Brooks and Doswell 200ign& and Pielke 2009;
Schmidt, Kemfert and Ho6ppe 2009) or the value ofellimgs (Crompton and
McAneney 2008; Pielke et al. 2008), others, oftenlack of data, simply GDP per
capita (e.g., Raghavan and Rajseh 2003; Pielke 20@3; Nordhaus 2006; Miller et
al. 2008; Barredo 2009). With more than one disgste year, the measure of disaster
loss per year is the sum of normalized damages &ach disaster as per equation (1).
Pielke et al. (2008) justify the conventional noletion approach to disaster
losses by saying that it provides “longitudinalgnsistent estimates of the economic
damage” that past disasters would have caused fuodetemporary levels of
population and development”. Normalization thusoaeds for the fact that, even
after adjusting for inflation, actual damage fromadters in the past, when affected

areas were less populous and less wealthy, isalpiemaller in absolute terms than



actual damage from contemporaneous disasters.eteftire adjusts past disaster
damage for wealth and population changes to ma&m tbomparable to absolute
contemporaneous disaster damage. In other words dmasters would have caused
higher damage had they hit the same areas as Ihaclhbwadays and normalization
accounts for the fact that most places have becoore populous and wealthier over

time.

3. Problems with the conventional normalization approach
The problem with conventional normalization is thtats incomplete. It adjusts for
changes in wealth and population over time, bus feo adjust for differences in
wealth and population across space at any givemtpof time. Conventional
normalization correctly posits that a disaster ltke 1926 Great Miami hurricane
would have caused far more damage if it hit Miamivadays since the value of what
can potentially become destroyed has increasecdetréausly over this time period
(Pielke et al. 1999). At the same time, howevenugicane that hits Miami in any
year will cause a much larger damage than a hueitiaat hits in the same year rural
parts of Florida with much lower population dens#igyd concentration of wealth.
Conventional normalization accounts for the forraffect, but not for the latter. It
makes Miami in 1926 comparable to Miami in 2010t fails to make Miami in
whatever year comparable to rural Florida or otheyas affected by a particular
natural disaster in that same year.

The incompleteness of conventional normalizatioramsethat it is not a fully
valid measure of disaster loss for the purposestéading a trend in disaster loss over
time. In order to be a valid measure for this psga normalization method must

fulfil the following two conditions:



a. Ceteris paribus, normalized loss in period 1 tmhes higher than

normalized loss in period O if more disasters efshme intensity strike in

period 1: higher frequency leads to higher loss.

b. Ceteris paribus, normalized loss in period 1 tmues higher than

normalized loss in period O if the same number ishsters strike in

period 1 with higher intensity: higher intensityds to higher loss.
Conventional normalization is not guaranteed tdilfudither condition. If more
disasters of the same intensity or the same nuwibéisasters with higher intensity
strike less wealthy areas in period 1 than in gerp then the conventionally
normalized loss from period 0 may well be highertithe loss in period 1, even in
the absence of any growth in wealth between peficahd 1 (the ceteris paribus
assumption). By measuring absolute loss rather riblative loss (relative to what can
potentially be destroyed), conventional normalaatiails to provide a valid measure
of disaster loss.

Will the failure to account for relative loss (@ to what can potentially be
destroyed) represent a problem for conventionahatization in detecting a trend? In
its defence, one could argue that contrary to temlpohanges in wealth and
population for which one is bound to observe moealth and population in later
compared to earlier periods due to population acwhemic growth, there is no
reason why one would expect that disastgrstematicallyhit more populous or
wealthier areas relatively more than less populousess wealthy areas in either
earlier or later periods. Invoking the law of langembers, one could therefore argue
that normalization does not need to account fdiegifices in spatial location since
with a very large number of disasters such diffeesnin spatial location will cancel

each other out in an analysis of trends in the eggged sum of disaster loss over



time: disasters will sometimes hit poor and low ylapon density areas and
sometimes hit wealthy and high population areas$,vith a very large number of
disasters the expected damage, normalized accaalicmnventional methodology, is
the same in early as in later parts of the studioge- much the same as with many
throws of a dice or many tosses of a coin the eegeaverage dice count will be 3.5,
while the expected probability of heads will be 50%owever, depending on what
type of disaster (low or high frequency), what wfilaggregation (sub-country units,
country, region, global) and what length of stu@yipd one looks at, there may well
be too few relevant disasters to invoke the lawlanfjie numbers. Also, if one is
interested in disaster loss more generally, i.enggbeyond mere trend analysis over
time, then one needs to account for differencessacspatial location to make a
meaningful comparison of relative disaster lossfdf example, one wants to know
whether natural disasters cause relatively moreadanin one part of a country,
region or the world than in another, then convergionormalization is obviously

unsuitable.

4, An alternative nor malization method

The upshot of the discussion in the previous sedsothat if one wants to make
disaster losses that occur in different spatiahtions and different time periods
comparable, then one needs to normalize for diffsge in both space and time. In
order to do so, we have developed another nornti@izapproach that does exactly

this. Our normalization equation is specified dbfos:

Damage

Normalized Damage=
Wealth

(2)



In way of explanation, first note that the popudaticorrection factor of the
conventional methodology is in fact redundant ieomere to use in equation (1) a
correction factor for wealth rather than wealth papita, since the sum of the change
in population and the change in wealth per capjteaks the change in wealth. Hence,
by using wealth rather than wealth per capita ina¢éign (2), we do not need to
account for population. Second, by dividing damageeart by wealth in yeat

o : Wealth :
rather than multiplying it with a correction facte———= as per conventional

Wealth

methodology, our normalization method does not radiza absolute damage values.
Rather, it expresses damages from any time pesaelative damages, namely as a
relative loss of total wealth in affected areasiolwhs theoretically bounded below by
zero (no damage) and above by one (total loss lofvaalth). Equation (2) can
therefore be interpreted as an actual-to-poteldssd-(APLR) ratio. With more than
one disaster per year, our aggregate measure astelisloss per year is the sum of
APLRs of any given year. As argued below, this pdes a valid measure of disaster
loss, where validity is defined as per the previsestion.

Because equation (2) measures relative rather dbaalute loss, we do not
need to scale up or down absolute damages fromréiff points of time to arrive at
normalized absolute damages as per conventiondloaetiogy. For the same reason,
we do not need to adjust for inflation, since daenagative to wealth is a ratio, which
IS not subject to inflation distortion, as longa®e divides either nominal damage by
nominal wealth in year or damage expressed in constant prices of a giean by

wealth in prices of the same year. Lastly, noté¢ thktive damage normalization as
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per equation (2) does not require the choice oaselyeass to which damages are
normalized to as per conventional method of eqogti)>

It should be clear why, contrary to conventionakimeology, our competing
normalization equation adjusts for differences ssrgpatial location: by dividing
actual damage by the wealth in affected areasdéwatpotentially be destroyed we
adjust for the fact that the same natural disastkmnecessarily create more absolute
damage if it strikes a wealthier area than ifibls¢ a poorer area where there is less
potential wealth to be destroyed. But what aboyusiohg for differences over time?
By expressing normalized damage as damage in aelat wealth, no further
adjustment for differences in wealth over time eeeded as relative damage is time-
invariant and therefore directly comparable acras®. An example may advance
understanding of this crucial point. The 1926 Gregami hurricane would have
created a much larger absolute damage than théutdbsamage recorded at the time
were this hurricane to hit Miami in, say, 2010 ezt and, following conventional
methodology, the absolute damage therefore neeoks $oaled up in order to make it
comparable to absolute damages in 2010. Our narat@ln approach instead
normalizes each damage by the wealth that could patentially been destroyed at
the time and by expressing each damage in the garagant unit (the APLR, i.e.
ratio of actual to potential loss), no scaling uppeoevious disaster damages are
required. Absolute damages are not comparable twee and therefore need
adjustment along the lines of conventional methogipl but relative damages are
directly comparable over time and need no furtlggusiment.

Our proposed alternative normalization method isothtically superior to

conventional normalization because it fulfils battnditions for a valid measure of

° This is not an advantage of our methodology @egventional methodology since the choice

of a normalization ‘base’ year has no substantimplication. We merely mention it to
facilitate understanding.
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natural disaster loss, as defined in section 3. ura of APLRs will be higher in
period 1 than in period O if, ceteris paribus, maisasters of the same intensity strike
in period 1 or if, ceteris paribus, the same numtfedisasters strike with higher
intensity in period 1. The first contingency wou&hd to more APLRs of the same
size to be added up to the aggregate sum of APifR®od 1, while the second
contingency would lead to the same number of APIdRs of larger size, to be added

up to the aggregate sum of APLRs of period 1.

5. Empirical analysis of trendsin disaster losses
5.1  The Research Design
Our period of study covers the years 1980 to 200frinciple, estimates of loss from
natural disasters exist before 1980, but it is osigce 1980 that these are
systematically, comprehensively and consistentbluithed in Munich Re’s NatCat
database (Munich Re, personal communication). Tis&ddantage of not being able
to use data from further back in time is that, getparibus, the shorter the time series
of annual loss data the less likely any trend balldetected as statistically significant
(the smallerN, the number of observations, the higher the staha@aror of the
estimate). Also, the IPCC (2007a: 942) defines a&lemin a narrow sense “as the
average weather, or more rigorously, as the gtaistescription in terms of the mean
and variability of relevant quantities” over a petiof 20 to 30 years, so our time
period of 30 years may be too short to identifynges in climate.

The NatCat database provides high quality dataitbsitof course not perfect.
Economic damage is always estimated. Smaller éisashay be somewhat under-
reported in the early periods relative to lateriqgus. This would slightly bias the

analysis toward finding a significant upward tranddisaster loss, which we do not
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find in our empirical analysis below. At MunchReveral members of staff scan
daily international and regional sources to compifermation about disaster events.
Data on economic loss and victims are collectethfeovariety of sources including
government representatives, relief organisatiort ra@search facilities. Information
on economic losses, however, is also based onaneserclaims to MunichRe’s
customers, which provide the best approximatiothéoactual damage. Initial reports
on fatalities and losses, which are usually avilab the immediate aftermath of a
disaster, are often highly unreliable. Therefomadn the NatCat database is updated
continuously as more accurate information becomvedadble, which might be even
years after the disaster event. Economic loss stsngredominantly of damage to
buildings and the physical infrastructure, but atdgroduction losses if economic
operations are interrupted as a result of the tisag&ven price increases as a
consequence of demand surges in the wake of lasgstdrs are included.

For two reasons, we employ both conventional ndeagbn methodology
and our proposed alternative. First, we wish to gpama the results of the two
methodologies. Second, and more importantly, wiwéecontend that our proposed
alternative methodology is theoretically superiordonventional normalization, it
faces many more problems in its empirical operatiaation than conventional
normalization, particularly if applied at the glohbevel.

The empirical problems with the theoretically cotreneasure of natural
disasters loss from equation (2) all have to ddaitcurately measuring the wealth
that can potentially be destroyed by a naturalstiesai.e. with the denominator in
equation (2). The first problem is that there tgtlic are no good measures of wealth
available, particularly for a global analysis. Wheerefore need to use a proxy for

wealth, which in our case is gross domestic prodG&P). GDP has the advantage

13



that it captures well potential economic loss doethte interruption of economic
operations as a result of a natural disaster, thist & relatively poor proxy for the
physical wealth stock potentially destroyable byadiers. Whereas economic wealth
is a stock, GDP is a flow of economic activity. femrately, despite GDP consisting in
part of intangible components such as services saémt correspondence to the value
of the physical wealth stock, on the whole GDPighly correlated with it. But GDP
can only function as a proxy for wealth and typicainderstates it. Economists
estimate the ratio of the value of the physical fmade or manufactured capital stock
to GDP to lie somewhere in between 2 and 4 formpac&y macro-economy (D’Adda
and Scorcu 2003). But this ratio will differ fromountry to country and, more
importantly, is a national macro-economic averagach can differ more drastically
across sub-country unitst also only captures the value of the physicalite stock
used for the production of consumption goods amdaes, but not the value of other
wealth held in the form of, for example, resideinpiperty. Moreover, the increasing
share of GDP consisting of intangible componenth & services, which is observed
in many, but not all, countries implies that thewth rate of GDP possibly over-
estimates the growth rate of the physical wealttkst This will bias the results
against finding a positive trend since disasteosnfipast periods are scaled up too
strongly as a result of normalization.

The second problem stems from defining the areanpially affected by a
natural disaster, which determines the boundariegealth (or GDP) to be included
in the denominator of equation (2). Few naturaaslisrs affect an entire country such

that the country’s total GDP could be taken asptaxy for potential wealth to be

6 It has also changed over time (see D'Adda andcbc@003), but Krugman (1992: 54f.)
concludes that “there is a remarkable constancth@fcapital-output ratio across countries;
there is also a fairly stable capital-output raticadvanced nations. These constancies have
been well known for a long time and were in facthat heart of the famous Solow conclusion
that technological change, not capital accumulai®the source of most growth.”
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destroyed. Disasters are more likely to affect alenarea. The problem is that it is
very difficult to know the exact affected area éarch natural disaster. In our analysis,
we resort to the extreme simplifying assumptiort #ech disaster affects an equally
sized area of 100 x 100 kilometres, i.e. 10,000asgkilometres arranged equally
around the reported centre of the disaster. THr®dnces some measurement error
and, potentially, some biddn future research, we will tackle this issue avelwill
attempt to measure the affected area more adeyguatetingent on specific natural
disasters and/or specific countries or regionséododt.

Readers will wonder why these empirical problemsnid equally affect
conventional normalization methodology. The answerthat they do affect
conventional methodology, but differently and atgyaless so. Conventional
normalization also suffers from, depending on th#& af analysis and the quality of
available data, having to resort to proxy measwfesealth and not knowing the
exact affected areas. But since conventional nazatadn only adjusts fochanges in
wealth over time, rather thdevels ofwealth across time and space, it suffers less
from these problems. The assumption that growtBDfP is a good approximation for
growth in wealth in all areas affected by natunalbdters is less restrictive than the
assumption that the GDP to wealth ratio is the semadl affected areas. Similarly, if

conventional normalization does not capture the tffected area, but takes some

The measurement error could be non-random gistematically under- or overestimating the
true affected area relatively more in earlier ¢edgeriods), but is more likely to be random. It
could be non-random if, for example, one is willitig make the assumption that climate
change leads to larger areas being affected awer such that our approximation would tend
to under-estimate the affected area relatively nnodater compared to earlier periods. Since
this would lead us to over-estimate normalized dgeria later periods and we mostly fail to

find significant upward trends in normalized damage are not much concerned about this
specific type of non-random measurement error. Ramdneasurement error will lead to

attenuation bias of the estimated coefficient talnsero and thus will make it less likely that

we will find a statistically significant trend. Aimsilar problem plagues the conventional

normalization method, however. Its failure to aadofor spatial heterogeneity introduces a
kind of measurement error. Even when this is randmasurement error, the analysis will be
somewhat biased against finding a significant trarids caveat should be kept in mind when
interpreting the findings of this and previous $tsd
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proxy thereof, then the error this introduces desitrom the fact that the change in
wealth in the truly affected area can be diffefeotn the change in wealth in the area
assumed to be affected. The bias in growth ratkkely to be much smaller than the

bias in absolute levels of wealth, which is theevaht bias for our proposed

alternative normalization approach.

In sum, while normalization according to equati@hié theoretically superior
to normalization according to equation (1), ourgweed alternative faces many more
problems in empirical operationalization. We therefregard it as complementary to
conventional normalization, definitely not as a sftbite. If both normalization
methods lead to similar results, then we can beeronfident in the results.

In the remainder of this section, we describe anpidcal research design in
more detail. For the results generated with owra#ttive method, the starting point is
GDP data taken from the G-Econ project (G-Econ 204Mich provides worldwide
information on GDP in purchasing power parity, oare degree latitude/one degree
longitude resolution. GDP data in purchasing powarity is preferable to GDP
estimates at exchange rates known to under-state @poorer countries. Data is
available for 1990, 1995, 2000, and 2005. The eataeveloped by Nordhaus et al.
(2006) builds on previously established data fer ghidded population of the world
and contains a cell-level equivalent to GDP. Daimes from various sources at
different levels of spatial disaggregation, suchieagonal GDP information, regional
income and employment by industry, or regional orlzad rural population or
employment along with sectoral data on agricultarad non-agricultural incomes. If
regional data is not available, as is the casenfany of the lowest-income countries

particularly in Africa, spatial distribution of pafation is taken to impute a spatial
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GDP distribution (Nordhaus et al. 2006). To cregidded data, information is then
spatially rescaled from political boundaries to g@gsical boundaries.

In a first step, we filled the gaps in time by &volation assuming a constant
growth rate. We then extrapolated the values baaksvia 1980 and forward to 2009,
based on country growth rates, adjusted for diffees in cell-level growth rates to
account for the fact that some regions, for ingtaudan centers, grow at a faster
pace than others. For backward extrapolation, veea@e annual country growth rates
with the cell growth rate between 1990 and 1995]|enflor forward extrapolation we
average annual country growth rates with the gelvth rate between 2000 and 2005.
As a consequence, cells that grew faster thandbatry average between 1990 and
1995 are also assumed to have grown faster thacothry as a whole between 1980
and 1989, while cells that grew faster than thentguaverage between 2000 and
2005 are also assumed to grow faster than aveftaye2805 to 2009.

With increasing distance from the equator, the stfea one degree
longitude/one degree latitude cell decreases. Tecbfor this, all cells are rescaled
to a cell size of 100 x 100 kilometres, i.e. 10,6@fuare kilometres, leaving the
proportion of land mass in each cell unchangeds Thiequivalent to modelling a
quadrangular world. Under the assumption of an ledigé&ribution of GDP within a
cell, we then divided each cell into nine subcelishe same size. For the largest
number of events, the NatCat database provide®-aejerence of the centre of the
disaster. The affected area of an event is takéave the size of nine subcells, which
is equal to the original size of one ceHow the subcells are chosen depends on
where the centre of the disaster lies with respethe gridded GDP-cells. Figure 1a

illustrates an example on the Northern hemisphasé @& the zero meridian, in which

8 While we have tested for the effect of assumiifgi@nt sizes of affected areas and found

results to be robust, in future research, we vdjust the size of the assumed affected area,
making it contingent on the type of natural disaatealyzed.
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the centre of the disaster is in the North-Eassettocell of a one degree latitude/one
degree longitude cell. We calculated the affectes @as the sum of four subcells in
the cell in which the disaster took place, plus subcells of the cell adjacent in the
North, one subcell of the cell in the North-Eastd awo subcells of the cell in the
East. In 11.7 percent of the cases the geo-referees on the intersection of one
degree latitude and one degree longitude, whichhtrbg due to data inaccuracy. As
illustrated in Figure 1b, in these cases the adfiéerea is simply the sum of the four
adjacent cells divided by four. Consequently, argueof the affected area comes
from each of the four adjacent cells in these cases

Since GDP data provided by G-Econ (2010) is in @mis1995 international
dollar we deflated the disaster losses to year h@86es, which are expressed in
nominal USD in NatCat, using the US GDP deflatdre hormalized damage is then
calculated by dividing the deflated losses by th&P®f the affected area. This gives
the APLR for each disaster. Note that these APLi@sat bound from above by one
because GDP is only a proxy of wealth, which ofteihbe several times larger than
GDP. Out of 19,360 disasters for which we have ABLR04 are above one.
However, in a very few cases we arrive at impldydiligh APLRs where the loss in
relation to the assumed affected area is far tapelto be plausible. In these cases, the
centre of disaster is usually located in a verysgg populated area or on a small
island. This might indicate a coding error in theogeferencing. In addition, wide-
ranging disasters such as droughts and wildfirescaer-represented in the list of
disasters with top APLRs. For such disasters, Iitaigl to identify the centre and the
assumed affected area might be much smaller tleatiuly affected area. We decided

to drop 20 (out of 19,360) disasters with an APLWero50. While this choice is
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somewhat arbitrary, our results are not affected¢hmnosing a lower thresholdThey
also remain valid if we do not exclude these evéots the analysis.

To arrive at the annual aggregatehe sum of APLRs of disasters happening
in one year is takeh. To test for the existence of a trend, the timeardarsum of
APLRs from each year is regressed on a linearwe@gble and an intercept:

[Annual sum of APLRS] = ap + Byyear, + & (3)

A trend is statistically significant if the null pgthesis thap, is equal to zero can be
rejected at the ten percent level or lower. Fromstatistical point of view, this
approach is potentially problematic, but we fourt tresults to be robust to
alternative approachés.

For the conventional normalization approach, wenmatised disaster losses to
2009 values by multiplying the original disastemdaye, which is expressed in
nominal USD in NatCat, with three multipliers eaabcounting for the change in
producer price levels (using the US GDP deflatag,well as the changes in the
country’s population and GDP per capita in puramggbower parity, respectively.

We use country level data for population and GD#PnfWorld Bank (2010). To test

We tested various cut-off levels down to an ARifRnore than 1.5.

Scholars so far have typically aggregated darfiggees to annual aggregates. However, it is
not clear that annual aggregates are necessarilse rappropriate than, say, monthly
aggregates. We repeated our analysis using moatfgyegates and generally found no more
evidence for increasing trends than with the anaggtegates.

We took the onset of a disaster as the relevdatration for the year of occurrence. Most
disasters are short-lived.

To understand why from a statistical point of wighe approach taken is potentially
problematic, note that the APLRs consist of theraf two rather random variables, the loss
and the associated gross cell product (GCP) valué,the distribution of the annual sum of
APLRs is likely to have a so-called “fat tail”. lour context, these fat tails appear, for
example, if a disaster hits a very sparsely popdlarea with a very low GCP in the
denominator. A consequence of fat tail distribuath series is that the trend detection power
of common statistical tests might be low becauseak trend signal could be drowned out by
the highly volatile fat tail data. As an alterna&tito our method, one can compensate for very
large and very small APLR-outliers by summing tbial disaster losses and the total affected
GCP per year before calculating the ratio. Thisralitive measure mitigates the problem of
heavy tails but comes at the cost of being a potensity measure as it neglects disaster
frequency. We found no more evidence for signifideends in normalized disaster loss using
this alternative to our preferred method, but wé tackle in more detail the question of the
trend detecting power of different normalizationthogls in future research.

10
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for the existence of a trend, the annual sum omatired disaster losses from each

year is regressed on a linear year variable andtarcept:
[Annual sum of damagé]® = oo + Bayear, + & (4)

As before, a trend is statistically significantliie null hypothesis thdt; is equal to
zero can be rejected at the ten percent level werloRobust standard errors are

employed in all estimations.

5.2 Results

We start by showingon-normalizedhatural disaster loss at the global level, where
loss is merely adjusted for inflation (see figude Phere is a clear and statistically
significant upward trentf The question is: does this finding uphold if disasoss is
normalized?

Figure 3 shows loss from all natural disasters het ¢lobal level once
normalized according to the conventional method @mce normalized according to
the alternative method. Whereas figure 2 coversalral disasters, we lose some
disasters (roughly 6 per cent) when normalizing ldse to lack of dat4.To ensure
comparability when contrasting results, the samenpéa is used for both
normalization approaches. The graphs look somediffatent, as one would expect
given the differences in underlying methodology. riNalized according to

conventional method, there is no statistically Bigant trend, whereas there is a

13 The coefficient and t-value @f in equation (3) and the corresponding p-valuedisplayed

at the bottom of each figure. Due to the devagiatinrricane Katrina, which hit densely

populated and wealthy areas on the South East obdabe USA in August 2005, this year

shows extraordinarily high inflation-adjusted lossBince this outlier is toward the end of the
observed period, it could pivot the trend line updgaand inflate the significance of the trend.
However, if we drop the year 2005, then the cofficdrops to 2.79, but the trend remains
statistically significant at the five percent leyptvalue: 0.012).

Figure 2 looks similar and the significantly go& trend remains if we restrict the sample of
disasters to the ones for which we undertake nazatain.
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downward trend, significant at the 10 per cent lleaecording to the alternative
method.

For the purpose of detecting a climate change kighanakes no sense to
include loss from all natural disasters since sahsaster types will be practically
unaffected by climate change. In figure 4, we tfogee have taken out geophysical
disasters (earthquakes, land slides, rock fallbsidence, volcanic eruptions, and
tsunamis) and only include the following disastgpets: blizzards, hail storms,
lightning, local windstorms, sandstorms, tropicgtlones, severe storms, tornados,
winter storms, avalanches, flash floods, genemd$, storm surges, cold and heat
waves, droughts, winter damages, and wildfireshBoethods lead to the same result
as for all disasters: no significant trend overetiatcording to conventional method, a
marginally significant downward trend accordingthe alternative method. If the
very small number of disasters with very large ABL&bove 50 are kept in the
sample, the negative trend loses its significapeea(ue of 0.115).

Climate change will not affect all regions or caieg at different stages of
development equally and in the same way. In figlg@go 5f we therefore look at
developed vis-a-vis developing countries as welataspecific regions of the world,
employing the same list of weather-related disastes in figure 4. Looking at
developed nations first (figure 5a), no significeneind is found with the conventional
approach, but a relatively strong negative trenugclvis statistically significant at the
one percent level, is found using the alternativethomd™® In contrast, the analysis
yields no significant trends using either methoddeveloping countries (figure 5b).

This could possibly indicate a stronger capabityricher nations to fund defensive

15 Interestingly, while hurricane Katrina is the mrajeason for conventionally normalized loss

in 2005 to represent the largest loss in develameohtries over the period 1980 to 2009, the
sum of APLRs for 2005 is not even in the top thoger this period. The reason is that while
Katrina caused a very large economic loss, it dlgoa relatively wealthy part of the
developed world.
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mitigating measures, which decrease vulnerabibtyatural disasters over time. As
shown in figure 5c, the negative and significaehtr is prevalent when normalizing
with the alternative method for the US and Candzor all other selected regions,
namely Western Europe (figure 5d), Latin Americd #me Caribbean (figure 5e), as
well as South and East Asia and Pacific countriggure 5f), no statistically
significant trend is found under either approach.

Climate change also need not affect all climatatesl disasters equally and in
the same way. In figures 6a to 6d we therefore labkpecific disaster types at the
global level. For convective events (figure 6aattis, damages from flash floods, hail
storms, tempest storms, tornados, and lightningreths no statistically significant
trend, according to either normalization approachdse same result is found for
storm events (figure 6b) and for tropical cyclo(fggure 6c). For precipitation-related
events (figure 6d), we find no trend with the comu@nal approach, but a negative
trend with the alternative method, which is sigrafit at the ten percent level.

There is concern about specific climate-relatechsteys affecting specific
regions, which is not sufficiently addressed by ahyhe analysis reported above. In
figures 7a to 7d, we therefore look at specifiadisr events in specific regions or
countries. To begin with, Figure 7a displays dsakisses from convective events in
the US. For the United States, data quality inNl&Cat dataset is high also for earlier
years back to 1970. We therefore are able to cé@grears in this analysis. If losses
are normalized according to the conventional metreogositive and statistically
significant trend can be established. With the ra#teve method, however, the
positive trend is marginally insignificant (p-valwé 0.129). For the same disaster

type in Europe, on the other hand, no significargnd is discernible after

16 The trend remains statistically significant a flve percent level if the large value in the year

1984 is excluded.
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normalization with either approach (figure 7b). &iter losses caused by hurricanes
in the US and in the Central American and Caribbesion have been subject to
various focussed studies (Pielke and Landsea 1Pifke et al. 2003, Nordhaus
2006, Pielke et al. 2008).We do not find a significant trend either in theitdd
States (figure 7c) or in Central America and thelilean (figure 7d), independent of
the normalisation approach applied. At face vathe, result for the US contradicts
studies, which have found an upward trend in USitame losses since the 1970s
(e.q,, Schmidt, Kemfert and Hoppe 2009). Note, harethat the trend with the
conventional normalization approach is not too ffam statistical significance (p-

value of 0.16612

6. Defensive mitigating measur es

One of the problems with normalizing damage frorturad disasters, independently
of the method chosen, is our inability to take irocount defensive mitigating
measures, which rational individuals would undestak response to an increasing
frequency and/or intensity of natural hazards. Aarease in such measures could
prevent an increasing trend in natural disastes tbat would otherwise occur in the
absence of such measures and could thus prevesttidat of a potential climate
change signal in the data. For example, flood defeneasures in Western Europe
have dramatically reduced the risk of flood damdga® winter storms (e.g., Lavery
and Donovan (2005) on the River Thames tidal deferar Ronde et al. (2003) on
flood defence development in the Netherlands), avliskricter building codes

introduced in parts of coastal Florida from the th890s onwards have significantly

1 Nordhaus (2006) finds a positive and signifidaahd in normalised tropical cyclone losses in

the United States.

Moreover, if we restrict our analysis to the éxsa@me time period as Schmidt, Kemfert and
Héppe (2009) and regress, as they do, the log ohalized loss (rather than loss itself) on
years, then we also find a significant trend.
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reduced hurricane damage from Hurricane Charl@pi¥ (Institute for Business and
Home Safety 2008). Our findings of a downward trémahatural disaster loss with

the alternative method for all natural disasters fam all non-geophysical disasters at
the global level could be driven by such measuBitting up the sample into

developed versus developing countries, we find@gtand more clearly statistically

significant downward trend for developed countribst no trend whatsoever for

developing countries. This would also be consiste#ith increased defensive

mitigating measures since developed countries arehnbetter able to fund such
measures than developing countries. To be suregdsed mitigating measures are
only one possible explanation for the findings, ot the only one.

With the possible exception of Crompton and McAne(@008) who study
one specific type of natural disaster in one sirgdantry, due to lack of data no
existing study has been able to adequately takendefe mitigating measures into
account, and neither can we. Instead, we offeremd on trends in the frequency of
natural disasters, which could tentatively pointha direction that such measures are
increasingly undertaken. To this effect, figuren®ws trends in the simple count of
disasters, once for weather-related and once foplgesical disasters not related to
weather. There seems to be a clear upward tretiieifrequency count of weather-
related disasters. There is also an upward tremideirirequency count of geophysical
disasters. However, the trend line for weatherteelalisaster counts suggests more
than a doubling over the period 1980 to 2009, wdetbe trend line for geophysical
disasters suggests only a small percentage increese this period. A natural
guestion is whether this strongly increasing tremthe frequency count of weather-
related disasters is driven by increased awarearasseporting of natural disasters in

later compared to earlier periods as well as by settlements in areas that were
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uninhabited before as populations and economies grad where the same natural
hazard would have gone unrecorded (no damage)ebéforcheck this, in figure 9 we
repeat the exercise from figure 8, but this timstrieting the analysis to major
disasters, for which a reporting bias is less jikéMajor disasters are defined as
disasters that exceed a property damage valuehvusimearly interpolated from 85
million USD in 1980 to 200 million USD in 2009, exceed a (time-invariant) fatality
level of 100 people killed. As before, there isl@ac upward trend in the frequency
count of major weather-related disasters, but tieea¢so an upward trend in the count
of major geophysical disasters. As before, theueagy count of weather-related
disasters increases relatively more than the fregyueount of geophysical disasters.
However, since there is no physical reason why ftegquency count of major
geophysical disasters should have increased, sepwating bias is likely to remain
present even for major disasters, unless the iserean be fully explained by there
being fewer uninhabited areas available in laterogds. It is impossible to say how
large this reporting bias is, but there could vibellsome increase in the frequency of
weather-related disasters beyond what can be agdaiby reporting bias.
Interestingly, one observes a similar upward trenithe frequency of weather-related
disasters, both all and major ones only, for a tgufike Germany, in which
reporting bias is not very likely and where no magapansion of population into
previously unsettled areas has taken place ovepéhied of our study (no figures
shown, but available upon request).

Independently of the reason behind the strong asaen the frequency count
of weather-related disasters over our period otyaisg how can this be reconciled
with our finding of no upward trend in normalizedndage from natural disasters?

There are three possibilities. First, there cowddah opposite reporting bias in terms
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of damage caused such that economic loss is otiaragsd in the early years of our

study period and under-estimated in the later yeaesond, weather-related natural
disasters could have become less intensive ove. fithird, weather-related natural
disasters have not become less intensive, but sigeemitigating measures have
prevented increasingly frequent weather-relatedirabtdisasters from causing an
upward trend in normalized natural disaster logeces there is little reason to

presume that loss has been systematically ovanatgd in the past or that weather-
related natural disasters have become less innigie third explanation presents a

distinct possibility.

7. Conclusion

In this article, we have analyzed whether one cateal an increasing trend in
historical data on economic damage from naturadsiess. We have argued that the
conventional method used for normalization is te&oally problematic as it fails to
normalize for a spatially heterogeneous distributsd wealth which renders absolute
losses from different locations non-comparable aoheother. We have proposed an
alternative method, which normalizes disaster fosdoth differences in space and
time. The actual-to-potential loss (APLR) ratio yides a theoretically correct and
valid normalization method for economic disastessloContrary to conventional
normalization, our proposed alternative is validtfee purpose of detecting a climate
signal in the sense that it will always attributdigher value to periods in which,
ceteris paribus, more disasters of the same inyetadie place or the same number of
disasters strike with higher intensity. Yet, ougdhetically correct measure of disaster

loss encounters many more practical difficultiesntthe conventional normalization
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method, particularly if applied at the global lev&le have therefore undertaken our
analysis with both methods, regarding them as cemehts, not substitutes.

Independently of the method used, we find no &amt upward trend in
normalized disaster loss. This holds true whetheimnelude all disasters or take out
the ones unlikely to be affected by a changing aten It also holds true if we step
away from a global analysis and look at specifgiars or step away from pooling all
disaster types and look at specific types of desasistead or combine these two sets
of dis-aggregated analysis.

Much caution is required in correctly interpretitigese findings. What the
results tell us is that, based on historical ddiere is no evidence so far that climate
change has increased the normalized economic foss hatural disasters. More
cannot be inferred from the data. In particulag cannot infer from our analysis that
there have not been more frequent and/or more sivenweather-related natural
disasters? Our analysis necessarily cannot take into accolefénsive mitigating
measures undertaken by rational individuals anetgowents and a serious attempt at
trying to collect data on such measures shouldhegpriority list for future research.
Such measures would translate into lower economicagie compared to the damage
in the absence of defensive mitigation and if naifigg measures have increased and
strengthened over time then this increasing treméatd mitigation could well mask
an increasing trend in natural disaster loss owee.tOur finding of an increasing
trend in the frequency count of weather-relate@steys, including only major ones,
tentatively points in the direction of an increagitrend toward such defensive
mitigating measures, unless the trend were fullylared by reporting bias. Besides

the issue of defensive mitigating measures, anaegat to keep in mind in making

19 In fact, our frequency count of weather-relatedural disasters suggests increasing rather

than decreasing frequency of such disasters.
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inferences from our analysis is that it is basedistorical data. Available evidence
suggests that climatic change has only just begdnlzat it will take many years and
decades still before its consequences will be tielly(IPCC 2007a, 2007b). If so, the
past will be a poor guide to the future.

In sum, while we find no evidence for an increastrgnd in normalized
economic damage from natural disasters, this pesvitb reason for complacency.
That inflation-adjusted non-normalized disaster dgenis significantly increasing
should prompt policy-makers into seriously condgittermeasures to prevent the
further accumulation of wealth in disaster-proneaar More importantly for the
debate on climate change, our results do not uriderthe argument of those who,
based on the precautionary principle, call for pioly greenhouse gas emissions in
order to prevent or reduce a potentially increasiognomic toll from natural disasters
in the future. We find no evidence for an incregdiend in the normalized economic
toll from natural disasters based on historicabdaut given our inability to control
for defensive mitigating measures we cannot ruleitsuexistence, let alone rule out

the possibility of an increasing trend in the fetur
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Figure 1a: Determining the affected area.
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the geo-reference of disaster centre; differentetaepresent different levels of GDP.
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Figure 1b: Determining the affected area if disastmtre is on the intersection of a

degree of longitude and a degree of latitude
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Figure 2: Global deflated losses from natural desas
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Figure 3: Global losses from all natural disastemsnalized with conventional
approach (top) and alternative approach (bottom)
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Figure 4: Global losses from non-geophysical desastormalized with conventional
approach (top) and alternative approach (bottom)
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Figure 5a: Losses from non-geophysical disastedeweloped countries normalized
with conventional approach (top) and alternativerapch (bottom)

150 200
1

100
1

Mormalised losses in billion USD of 2009

o
uw
Aniinln I
T T T T T T T
1980 1985 1990 1995 2000 2005 2010
Coeff. of year: 1.180
tvalue: 1.401
pvalue: 172

40
1

Sum of APLRs
20 30
1 1

10
1

0

T T T T T
1980 1985 1990 1995 2000 2005 2010
Coeff. of year: - 661
tvalue: 4.413
pvalue: 0.000

Note: Based on 8,307 disasters; developed couminiesr OECD countries and other high-income

countries according to World Bank classification

37



Figure 5b: Losses from non-geophysical disastedevreloping countries normalized
with conventional approach (top) and alternativerapch (bottom)
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Figure 5c: Losses from non-geophysical disastet$SA and Canada normalized
with conventional approach (top) and alternativerapch (bottom)
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Figure 5d: Losses from non-geophysical disasteWastern Europe normalized with
conventional approach (top) and alternative apgr@hottom)
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Figure 5e: Losses from non-geophysical disasteksiim America and The
Caribbean normalized with conventional approach)(&md alternative approach
(bottom)
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5f: Losses from non-geophysical disasters in SanthEast Asian and in Pacific
countries normalized with conventional approacp)nd alternative approach
(bottom)
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Figure 6a: Global disaster losses from convectinamnts normalized with
conventional approach (top) and alternative apgr@hottom)

25
1

20
1

15
1

10

5]
1

T T T T T T
1980 1985 1990 1995 2000 2005 2010
Coeff. of year: 125
tvalue: 1.366
pvalue: 183

Mormalised losses in billion USD of 2009

0

w

xro

L=

o

Fd

s

Eu -

@

C,_l-l- EEmm B Il _u=-_-00H
T T T T T T T

1980 1985 1990 1995 2000 2005 2010
Coeff. of year: -.093
tvalue: -1.491
pvalue: 147

Note: Based on 5,869 disasters; Includes damagssffash floods, hail storms, tempest storms,
tornados, and lightning.

43



Figure 6b: Global disaster losses from storm eveotsalized with conventional
approach (top) and alternative approach (bottom)
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Figure 6¢: Global disaster losses from tropicalayes normalized with conventional
approach (top) and alternative approach (bottom)
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Figure 6d: Global disaster losses from precipitatielated events normalized with
conventional approach (top) and alternative apgr@hottom)
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Figure 7a: Disaster losses from convective eventise United States normalized
with conventional approach (top) and alternativerapch (bottom)
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Figure 7b: Disaster losses from convective evenWestern Europe normalized with

conventional approach (top) and alternative apgr@hottom)
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Figure 7c: Disaster losses from hurricanes in thiédd States normalized with

conventional approach (top) and alternative apgr@hottom)
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Figure 7d: Disaster losses from hurricanes in @¢@tmerica and The Caribbean
normalized with conventional approach (top) andraktive approach (bottom)
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Figure 8: Annual frequency count of geophysical eedther-related disasters
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Figure 9: Annual frequency count of major geophgisand weather-related disasters
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