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ABSTRACT 

Drought events have critical impacts on agricultural production yet there is 

little consensus on how these should be measured and defined. This has 

implications for drought research and policy, which tends to either define 

droughts purely based on rainfall or focus uniquely on 'hot' droughts when 

temperature is considered. We develop a flexible, rainfall-temperature 

drought index that captures all dry events, including a previously overlooked 

class of drought events that we term ‘cold’ droughts. Our index is applied to 

a panel dataset of Indian districts over the period 1966-2009. Results suggest 

a statistically significant relationship between the index and agricultural 

production. Cold droughts are found to have consistent, negative marginal 

impacts that are comparable to those of hot droughts. Estimates of average 

yield losses due to hot droughts are reduced by as much as 33% when cold 

droughts are omitted. The associated economic costs are even more 

severely underestimated, by up to 107%. 
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1. INTRODUCTION 

Extended periods of low rainfall and high temperature that reduce the availability of moisture 

relative to normal climate conditions broadly constitute drought events (Mishra and Singh, 

2010). A number of low- and middle-income countries in the world, including those located 

in Sub-Saharan Africa and the Indian sub-continent, are particularly vulnerable to the impacts 

of such events. The human and economic costs of drought can be considerable. In India, the 

setting for our paper, Gadgil and Gadgil (2006) estimate that severe drought lowered annual 

GDP by around two to five percent between 1951 and 2003, while Pandey et al. (2007) show 

that drought was accompanied by a 12 to 33% increase in the poverty headcount ratio and a 

25 to 60% decline in household income. The onset of drought in India has also been 

empirically linked to conflict, rural wages and human capital accumulation (Jayachandran, 

2006; Sarson, 2015; Shah and Steinberg, forthcoming).  

Against a backdrop of rising temperatures and drier conditions, droughts are projected to 

become more common with critical implications for agricultural production (IPCC, 2012). How 

drought is defined plays a central role in policymakers’ responses, not only in the agricultural 

sector but also in the water sector and in early-warning systems. Yet, in the academic and 

policy literatures there is presently little consensus on how droughts might be measured and 

hence, defined. Indeed, there is no universal definition of the conditions constituting a 

drought (Wilhite, 2000). A range of indices attempt to quantify the severity of a drought, 

ranging from simple rainfall measures to complex indices that account for rainfall, 

temperature and estimates of potential evapotranspiration (Mishra and Singh, 2010). 

Different criteria of what constitutes a ‘drought’ therefore imply that a drought in one index 

may not constitute a drought in another. The implication is that, depending on the index used, 

there are classes of dry events which may simply be overlooked both in empirical analyses 

and by policymakers.  

In this paper, we develop a simple rainfall-temperature index that allows for a flexible 

characterisation of drought events. It captures every dry event, in which cumulative (growing 

season) precipitation is below average, long-term cumulative (growing season) precipitation,1 

while accounting for temperature. The novelty of our index is to include both the type of dry 

                                                           
1 Cumulative growing season precipitation is defined as total rainfall between June and September. Long-term 
cumulative precipitation is average cumulative growing season precipitation between 1956 and 2009. 
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events typically captured by indices that account for temperature, i.e. characterised by above-

average temperatures ('hot' droughts), as well as ones characterised by below-average 

temperatures. To our knowledge, the latter, which we term ‘cold’ droughts, have not been 

explicitly studied before. Our index is then applied to a panel dataset of Indian districts over 

the period 1966-2009 in order to estimate the marginal and total effects of drought on cereal 

productivity. These estimates are then used to calculate changes in yield and associated 

economic impacts. In a country where over two-thirds of total land area is vulnerable to 

drought (Ministry of Agriculture, 2009), and rain-fed agriculture covers approximately 60% of 

cropped area (Sharma, 2011), our analysis contributes to an important body of research on 

the impacts of droughts on Indian agriculture (e.g. Pandey et al., 2007; Sarkar, 2011).  

After motivating our analysis in the context of the relevant literature in Section 2, we present 

Indian weather data underlying hot and cold droughts, in Section 3. In Section 4, we propose 

an extension to a multiplicative index originally developed by Yu and Babcock (2010). This 

extension allows for a more flexible characterization of drought events while retaining a key 

strength of their index, namely the inclusion of temperature and the capacity to capture the 

interaction between rainfall and temperature. Applied to our panel dataset of Indian districts 

in Section 5, we find a statistically significant relationship between the index and agricultural 

production. We also find that cold droughts consistently display large negative marginal and 

total effects, comparable to those of hot droughts, and that omitting cold droughts leads to 

a large underestimation of total drought impact. Yield and economic losses are shown in 

Section 6 to be underestimated by up to 33% and 107%, respectively. Section 7 concludes. 

2. DEFINING ‘DROUGHT’ 

Simple drought indices often rely solely on precipitation measures and are typically preferred 

by policy-makers, including the Indian Meteorological Department (IMD), over more complex 

indices. Until 2016, the IMD recorded a ‘drought event’ when seasonal rainfall was below 75% 

of its long-term average value (between 1950 and 2000), and a ‘severe drought’ when rainfall 

was below 50% of this value. Simple metrics of precipitation deficiency, which have the 

advantage of being easily interpretable, are also used to evaluate drought impacts on 

agricultural production. For example, to estimate drought impact in the rice-growing regions 

of Asia, Pandey et al. (2007) define a drought as ‘moderate’ if rainfall is 70-80 percent of 

normal levels, and ‘severe’ if rainfall is 70 percent below normal. Auffhammer et al. (2012) 
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use a similar definition to study the effect of monsoon rainfall on rice yields in Indian states. 

The strength of these indices lies in their simplicity. 

However, simple definitions of drought are problematic for our understanding of drought 

impacts for two reasons. First, they impose arbitrary thresholds in order to define drought, 

evaluating drought impacts only after a given level of precipitation, when the agronomic or 

empirical basis of such thresholds is unclear (Wilhite and Glantz, 1985). Second, variables in 

addition to precipitation, in particular temperature, help determine the physical severity of a 

drought.2 Given temperature increases driven by climate change (Hatfield et al., 2011), a 

growing literature suggests critical turning points at which higher temperatures cease to have 

positive impacts on agricultural yield. Schlenker and Roberts (2009) find that higher 

temperatures in the US reduce county-level yields for corn (above 29°C), soy-beans (30°C), 

and cotton (32°C). Guiteras (2009) and Burgess et al. (2014) both show that, on average, daily 

temperatures above 34°C in India reduces agricultural productivity at the district scale. Lobell 

et al. (2012) identify the same threshold as harmful for Indian wheat yields. 

High temperatures have particularly acute effects on crop growth during periods of low 

precipitation since the rate of evapotranspiration, i.e. the combined process of water 

evaporated from land surfaces and plants, increases as temperatures rise (Prasad et al., 2008; 

Lobell and Gourdji, 2012). In general, this increases a plant's demand for water at a time when 

water availability is already low due to deficient precipitation. Recent research has 

documented that droughts in a range of settings have increased in severity as mean 

temperatures have risen. Higher temperatures, rather than the increased intensity of low 

rainfall events, have been held responsible for these drying trends (Vicente-Serrano et al., 

2014; Diffenbaugh et al., 2015). As such, not considering the effect of temperature on the 

severity of a drought event could underestimate drought impact, in turn giving misleading 

information about the likelihood of future production losses driven by climate change. 

More complex indices tend to rely on data that are not readily available in most economic 

datasets, e.g. for soil moisture levels and estimates of potential evapotranspiration. The lack 

of data for deriving such measures, which can depend on factors such as wind, radiation and 

humidity, limits their applicability in empirical analysis of drought impacts. In an attempt to 

                                                           
2 Such variables include, for example, access to irrigation. 
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bridge the gap between simple and complex indices, Yu and Babcock (2010) propose a 

drought index that neatly captures the interaction between two of the most important 

factors: temperature and precipitation. Applied to the study of drought tolerance of soybean 

and corn yields in the US, it takes a non-zero value only for years of below-average 

precipitation and above-average values of heat temperature (‘cooling degree-days’). The 

authors find that soybeans and corn have become increasingly drought-tolerant over time.  

This index has since been applied in a number of other settings, for example, to the 

assessment of drought impact on soybean in Missouri (Purcell and Caine, 2013). Of particular 

relevance is research by Birthal et al. (2015), who use the index to study the resilience of rice 

yields to drought in India. Their results indicate that rice yields have become more tolerant to 

drought over time. While this approach has the advantage of being a relatively simple way to 

account for both temperature and precipitation, the index restricts the definition of drought 

to events characterised by low rainfall accompanied by higher-than-average temperatures. It 

does not consider events characterised by below-mean rainfall as well as below-mean 

temperature. Such cold droughts are common in many settings, although their impacts on 

agricultural production remain unknown, due to either being omitted altogether (as in Birthal 

et al. 2015) or joined with hot droughts in arbitrarily-defined rainfall indices. This is an 

important gap in the literature that our paper aims to fill. 

We argue that cold droughts should not be omitted a priori for two reasons. First, a large 

number of potentially destructive droughts are not considered, which can lead to a serious 

underestimation of their total impact. Second, the classification of these events as non-

droughts could lead to biased estimates of drought impact. Thus, where cold droughts have 

a significant negative impact on productivity, the application of Yu and Babcock's (2010) index 

potentially underestimates drought impacts due to the inclusion of cold drought events in the 

‘no drought’ control group.  

3. DROUGHT IN INDIA 

According to the definition used by the IMD (at least until 2016), 13 ‘All-India drought years’ 

have been recorded since the beginning of the Green Revolution in 1966 (Birthal et al., 2015). 

Four of these occurred between 2000 and 2012. A ‘drought year’ was recorded when the total 

area affected by a moderate or severe drought covered 20-40% of the total land area of the 

country and seasonal rainfall during the monsoon season exceeded 10%. When more than 
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40% of the total land area was affected by drought, this was known as an ‘All India Severe 

Drought Year’. 

Weather data on daily rainfall and daily average temperature at the district level are sourced 

from the IMD to create Figures 1 and 2.3 Panel (a) of Figure 1 shows the proportion of districts 

in every given year limited to events characterized by both below-average rainfall and above-

average temperature, i.e. the events considered by Birthal et al. (2015) using Yu and 

Babcock’s (2010) index. The vertical blue lines indicate the years defined by India’s 

government as All-India droughts. Panel (b) of Figure 1 shows the proportion of districts in 

years characterised by below-average rainfall and below-average temperature; a large 

proportion of districts are clearly affected by this type of drought event. Figure 2 shows why 

the omission of these events is problematic. For each year, we estimate the number of 

districts affected by hot droughts net of the number of those affected by cold droughts, with 

a positive number (in red) denoting a year in which the former exceeds the latter. A negative 

number (in blue) indicates a year in which the latter exceeds the former. Overall, hot droughts 

are slightly more prevalent than cold droughts (roughly a split of 55% hot and 45% cold 

drought). In the 1990s, most of the drought-affected districts were affected by hot droughts. 

Since 1999, the number of cold droughts has increased, with the number of districts affected 

by cold droughts outnumbering districts affected by hot droughts in seven out of 11 years.4  

FIGURE 1 HERE 

FIGURE 2 HERE 

4. INTRODUCING A NEW DROUGHT INDEX 

In this section, we build on Yu and Babcock’s (2010) drought index, incorporating both rainfall 

and temperature. Their index is based on the following: 

𝐷𝐼𝑖,𝑡 = [− max(0, 𝐶𝐿𝐷𝐷𝑖,𝑡
𝑠𝑡𝑎𝑛𝑑)] ∗ [min(0, 𝑇𝑃𝐶𝑃𝑖,𝑡

𝑠𝑡𝑎𝑛𝑑)]                   (1) 

                                                           
3 The rainfall data are available in gridded format at a resolution of 0.25°x 0.25° (Pai et al., 2014). Gridded 
temperature data are at a resolution of 1°x1° (Srivastava et al., 2009). District-level weather data are then 
obtained by taking a weighted average of gridded weather observations from grid cells that fall within a district's 
boundary based on the proportion of the grid cell that falls in each district. 
4 This pattern, however, is slightly less pronounced when we examine an alternatively-defined growing season 
(May-December) (Figures A1 and A2 in the Appendix). 
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where: DI denotes the drought index, for a given unit of observation, i, in year t;  

𝐶𝐿𝐷𝐷𝑖,𝑡
𝑠𝑡𝑎𝑛𝑑  is standardized Cooling Degree Days (above 65°F, or 18.33°C); and, 𝑇𝑃𝐶𝑃𝑖,𝑡

𝑠𝑡𝑎𝑛𝑑  is 

standardized total monthly precipitation between the months of June and August. 

This index gives a value of zero to drought whenever either the temperature is below average 

or the rainfall is above average. As such, a drought occurs in a year when temperature is 

uncommonly high and precipitation is low, relative to the long-term average of these 

variables. A strength of this simple index lies in its capacity to capture the potential of high 

temperatures to exacerbate the effects of low rainfall on crop production. 

One weakness of the index described in (1) is that it defines as a drought only those years 

when an area suffers both low rainfall and high temperatures. Omitted are years when rainfall 

is low but temperatures are not particularly high. Defining drought events by low rainfall and 

high temperature restricts the measure of drought to the lower-right quadrant of Figure 3. 

Events in the lower-left quadrant, where both precipitation and temperature are below-

average, would not be counted as droughts according to the index in (1). 

FIGURE 3 HERE 

We consider a wider set of drought events by defining six variables. First, using weather data 

from the IMD, we calculate district-specific average long-term cumulative rainfall, LTARi, for 

the growing season (June-September) over the period 1956-2009.5 This variable is 

standardized by estimating 𝑍𝑇𝑅𝑖𝑡 =
𝑇𝑅𝑖𝑡−𝐿𝑇𝐴𝑅𝑖

𝑠𝑑𝑇𝑅𝑖
  , where TRit is total cumulative rainfall over 

the growing season for a given year and sdTRi is the standard deviation of TRit. Analogously, 

we calculate the district-specific average cumulative growing season cooling degree days, 

LTACDDi, for the June-September growing season as the average cumulative number of 

degree-degree days above the mean daily growing season temperature over the period 1956-

2009.6 Similar to rainfall, this variable is standardized by estimating 𝑍𝐶𝐷𝐷𝑖𝑡 =
𝐶𝐷𝐷𝑖𝑡−𝐿𝑇𝐴𝐶𝐷𝐷𝑖

𝑠𝑑𝐶𝐷𝐷𝑖
, 

                                                           
5 There are two main reasons driving our choice of growing season. First, the majority of India’s cereal production 
is cultivated in the kharif season, between June and September. Second, according to Jain and Kumar (2012), 
the majority of total yearly rainfall (approximately 80%) occurs between June and September. Authors such as 
Prasana (2014) also highlight that, while there is a strong and positive response to kharif production and June-
September rainfall, the same is not necessarily true for rabi production and post-monsoon rainfall (October-
December). This partly relates to the fact that rabi crops rely on available moisture from the June-September 
rains.  
6 The growing season cooling degree days measure is calculated as follows. First, we obtain the average 
growing season temperature. Second, for each day we subtract the average temperature from the observed 
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where CDDit is total cumulative daily degree days over the growing season for a given year 

and sdCDDi is the standard deviation of CDDit. 

Let 𝑀𝑇𝑅𝑖𝑡 = −𝑇𝑅𝑖𝑡 , i.e. the negative of total cumulative rainfall. We then obtain the 

normalized version of this variable, 𝑁𝑇𝑅𝑖𝑡, by estimating 𝑁𝑇𝑅𝑖𝑡 =
𝑀𝑇𝑅𝑖𝑡−𝑀𝑇𝑅𝑖

𝑚𝑖𝑛

𝑀𝑇𝑅𝑖
𝑚𝑎𝑥−𝑀𝑇𝑅𝑖

𝑚𝑖𝑛, where 

𝑀𝑇𝑅𝑖
𝑚𝑖𝑛 denotes the minimum observed value for district i (i.e. the maximum rainfall 

observed), and 𝑀𝑇𝑅𝑖
𝑚𝑎𝑥 denotes its maximum observed value (i.e. lowest rainfall). 

Normalizing the negative of rainfall, rather than rainfall directly, allows us to generate a 

variable bounded between 0 and 1, with higher values signalling a more severe precipitation 

deficiency. Similarly, for normalizing the degree days measure, we estimate 𝑁𝐶𝐷𝐷𝑖𝑡 =

𝐶𝐷𝐷𝑖𝑡−CD𝐷𝑖
𝑚𝑖𝑛

𝐶𝐷𝐷𝑖
𝑚𝑎𝑥− 𝐶𝐷𝐷𝑖

𝑚𝑖𝑛, where 𝐶𝐷𝐷𝑖
𝑚𝑖𝑛 denotes the minimum observed value for district i (i.e. the 

minimum number of degree days observed), and 𝐶𝐷𝐷𝑖
𝑚𝑎𝑥 denotes its maximum observed 

value (i.e. highest number of degree days observed in  a given district). 

A multiplicative relationship is generated between the two normalized variables, which we 

use to define three different drought indices. First, hot droughts can be classified as 𝐷1it, 

corresponding to the classification of Yu and Babcock (2010) where rainfall is below normal 

and temperature above normal. Second, 𝐷2it corresponds to low rainfall in the absence of 

abnormally high temperatures. Third, we combine 𝐷1it and 𝐷2it to get 𝐷12it, thus 

accounting for both hot and cold droughts. Formally, we have: 

𝐷𝑟𝑜𝑢𝑔ℎ𝑡 = {

𝐷1it = NTR ∗ NCDD  𝑖𝑓 ZTRit < 0  𝑎𝑛𝑑 ZCDDit > 0;   0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝐷2it = NTR ∗ NCDD  𝑖𝑓 ZTRit < 0  𝑎𝑛𝑑 ZCDDit < 0;   0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐷12it = NTR ∗ NCDD  𝑖𝑓 ZTRit < 0 ;   0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        (2) 

As such, 𝐷1it can be interpreted as a normalized version of Yu and Babcock’s (2010) index. It 

captures all events in the lower-right quadrant of Figure 3, taking a strictly positive value for 

all events characterized by below-average precipitation and above-average temperatures. 

The second index, 𝐷2it, only takes non-zero values for events with below-average rainfall and 

below-average temperature, the category Yu and Babcock omit. Constructing these two 

indices separately allows us to test their respective statistical significance in the yield 

                                                           
temperature and obtain the number of degrees above the average temperature for each day. Finally, we sum 
all the positive temperature deviations for each day of the growing season and obtain cumulative daily-degree 
days. 
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regressions in Section 5. Finally, a third index, 𝐷12it, simply combines 𝐷1it and 𝐷2it and 

hence, captures all the events in the lower half of Figure 3. More detail on how the indices 

are constructed is presented in the Technical Appendix (A). 

Our indices are increasing in temperature but decreasing in precipitation since both higher 

temperatures and lower precipitation are expected to contribute to drought severity. A 

maximum value of one is obtained for the most severe droughts, and is only possible for the 

restricted set of drought events considered by Yu and Babcock. The similarity of their index 

to our own is illustrated in Table 1, which shows the correlation coefficients and the spearman 

correlation coefficient. As expected, our index D1 is highly correlated with Yu-Babcock, 

displaying a correlation coefficient of 0.776 and a spearman correlation coefficient in excess 

of 0.99. Our second index, on the other hand, has a negative correlation coefficient. Since Yu-

Babcock is invariant with a value of zero for these events, this result is also as anticipated.  

TABLE 1 HERE 

Figure 4 shows how our indices change over time, for all districts (panels (a) and (b)) and for 

drought-affected districts only (panels (c) and (d)). Hot (D1) and cold (D2) droughts are 

denoted Types 1 and 2, respectively. There are clear spikes in the values of the index for a 

number of All-India drought years. In recent years, 2002 and 2009 are associated with the 

largest deviations in rainfall; spikes correspond to these two years. Similarly, 1972, 1979, 1987 

are also considered years with particularly high deviations and our index rises in these years. 

Throughout the 1990s, however, it is striking that, despite relatively modest deviations of 

rainfall from trend, our index still records high values. On average, the negative deviations 

from long-term average rainfall were smaller throughout the 1990s. A possible explanation 

for this could be the fact that, as highlighted by Pai et al. (2012), overall, land surface air 

temperatures have increased over time. This pattern was particularly pronounced in the 

1990s and 2000s. 

FIGURE 4 HERE 
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5. IMPACT OF DROUGHT ON CEREAL PRODUCTIVITY 

5.1 Data and Methodology 

To investigate drought impacts on aggregate cereal productivity at the district level, we obtain 

agricultural data from the ICRISAT Meso-level Database.7 For the period 1966-2009, the 

dataset contains detailed agricultural and socioeconomic information (ICRISAT, 2012). For 

most if not all districts, data are available for annual crop production and area under crop 

production for a range of crops. We create a balanced panel, which implies that, out of the 

311 available in the dataset, only 275 districts are used in our empirical analysis due to missing 

weather and/or production data. Six cereals are considered, namely rice, wheat, maize, 

barley, sorghum, and millet.8 Yields for each are estimated along with a simple cereal yield 

variable, obtained by dividing total cereal production by total cereal area. Table 2 summarises 

the variables used in our analysis. 

TABLE 2 HERE 

To model the relationship between yield and our drought index, we estimate the following 

fixed-effects model: 

ln (𝑦𝑖𝑡𝑐) = 𝛼𝑖 + 𝛾𝑡 + 𝛿𝑖1 ∗ 𝑡 + 𝛿𝑖2 ∗ 𝑡2 +  𝛽𝑞 𝐷𝐼𝑖𝑡𝑞 + 𝜖𝑖𝑡                  (3) 

where for district i in year t: In(yit) denotes the natural logarithm of cereal yield (or crop c); 𝛼𝑖 

and 𝛾𝑡 represent the district and year fixed effects, respectively; 𝛿𝑖1 and 𝛿𝑖2 are the 

coefficients on the district-specific quadratic trend. The coefficient associated with a type q 

(i.e. Type 1 - hot or Type 2 - cold) drought index, which captures the marginal impact of a type 

q drought, is denoted 𝛽𝑞. Finally, 𝜖𝑖𝑡 represents the error term. After estimating (3), we 

include dummy variables for each of the drought types - Type 1, Type 2, Types 1 and 2 – in 

order to account for a potential intercept shift and the convergence of marginal effects. 

In the following section, we perform a number of tests on the sensitivity and robustness of 

our main results. First, we cluster standard errors at the district level and second, consider 

two alternative growing seasons: May-December and annual (January-December). The 

former allows for the fact that, in some states, there may be substantial amounts of rain 

                                                           
7 Since 1966, a number of districts have split into smaller districts. To maintain spatial consistency over time 

district splits are dealt with by returning split districts to their ‘parent’ districts as of 1966. 
8 For millet we add data on quantities of pearl millet and finger millet to create an aggregate quantity of millet. 
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outside of the June-September period. The latter is chosen to capture rainfall later in the year, 

which may help explain rabi production, despite a current lack of evidence for post-monsoon 

rainfall impacts on rabi production (see footnote 5 and Prasana, 2014).  

In a third test, we adopt an alternative specification for cooling degree-days – 30 degrees 

rather than the long-term district average temperature over the growing season – for two 

reasons. First, according to research on the effects of temperature on crop yield in India (e.g. 

Guiteras 2009), crop yields typically start decreasing above 30 degrees Celsius. Since we use 

mean temperature, which in some cases is below 30 degrees C, it could be argued that an 

increase in temperature should not necessarily result in a decline in production. However, 

using 30 degrees C as an absolute cut-off point implies a value of zero in our drought index 

for many drought events (when rainfall is very low), which makes our index less 

comprehensible. Also, it is possible that in some cases, negative impacts of temperature on 

production might be observed at levels below 30 degrees C, e.g. in ‘colder’ districts, where 

the crops cultivated might be more sensitive to temperature deviations. 

Consistent with Yu and Babcock (2010), we do not include controls in our main specifications. 

This is also the norm in the broader weather and climate literature. In a fourth test, we thus 

examine the sensitivity of all of our results to the inclusion of controls to ensure that they are 

robust to the inclusion of variables which are also likely to affect production, such as irrigation 

and the use of modern inputs. Fifth, we test alternative functional forms of the index. In 

particular, since the impacts of drought may not be linear, we include a squared term. Finally, 

we derive results using an additive index instead of a multiplicative index. An additive 

relationship may be relevant in a number of extreme cases. For example, in a year where 

rainfall is close to zero and where temperatures have also been low, our index would have a 

low value, which may be misleading.  

5.2 Regression results  

We run a regression of the natural logarithm of yield on a set of district-specific quadratic 

trends and the drought indices. Specifically, for both the main model described in (3) and all 

of the robustness and sensitivity checks we run the regression using the full sample and by 

crop. For the full sample and for each crop we then run three regressions. First, we include 

only Type 1 (hot) drought events. Second, we estimate separate coefficients for Type 1 and 

Type 2 (cold) drought events. Finally, we run a regression where we only include the drought 
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index that combines Type 1 and Type 2 events, i.e. hot and cold. The results for the full sample 

can be seen in Table 3, with columns 1-3 showing results in the absence of dummy variables 

and 4-6 those with the inclusion of dummies. The results by crop are in Tables 4-5 (without 

dummies) and 6-7 (with dummies). 

Table 3 highlights three main points. First, both types of drought have significant and negative 

effects when considered separately, as shown in columns 2 and 5. Thus, Type 2 events, i.e. 

those omitted by Yu and Babcock (2010) and Birthal et al. (2015), have large and statistically 

significant, negative impacts on yield.  

TABLE 3 HERE 

Second, by comparing the specifications where we omit Type 2 events (columns 1 and 4) with 

those where this type of event is included (columns 2 and 5), we note that the estimated 

marginal coefficient of Type 1 droughts is smaller in the former. When we include a dummy 

variable, the difference in magnitude is negligible. But when all dummy variables are 

excluded, the coefficient of Type 1 events is substantially smaller - and outside the 95% 

confidence interval of the estimated coefficient - when Type 2 events are also included (for a 

graphical representation, see Figure A3 in the Appendix). Thus, a failure to account for Type 

2 events can lead to an underestimate of the marginal impacts of drought, with this 

underestimate being more severe when a dummy is not included.  

Third, we find that in contrast to hot drought, cold droughts have a larger marginal, but lower 

total, effect on agricultural production. Although both excess heat and reduced moisture have 

negative impacts on production, reduced precipitation carries greater weight in the cold 

drought index than in the hot drought index since values of temperature are, by definition, 

higher in the latter than in the former. As a result, yields are likely to respond (more) 

negatively to changes in the cold drought index than in the hot drought index. A value of 0.5 

in our cold drought index represents approximately the same precipitation deficiency as a 

value of one in our hot drought index, which could help explain larger marginal impacts.  

The results by crop (Tables 4-7) corroborate the patterns found across the whole sample using 

the cereal index. The estimated coefficients for Type 2 events are consistently large, negative 

and significant for all crops except for maize (when dummies are excluded). This provides 

further evidence that such events have a large negative impact on production and hence, 
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should not be excluded from analyses of drought impact on cereal yield in India. Similar to 

our findings for the whole sample, in most cases (maize again being the exception) when a 

dummy is not included to account for the intercept shift, the omission of Type 2 events leads 

to a smaller, estimated coefficient of Type 1 droughts. This effect is especially large in the case 

of rice, the crop analysed by Birthal et al. (2015), thus implying that they may have 

underestimated the impact of drought on rice. We estimate the potential scale of 

underestimation, in terms of yield and its economic value, below. 

TABLE 4 HERE 

TABLE 5 HERE 

TABLE 6 HERE 

TABLE 7 HERE 

We perform a number of sensitivity checks on our results, in which we consider: (i) standard 

errors clustered at the state level; (ii) two alternative growing seasons (May-December and 

annual); (iii) an alternative specification for our degree-days variable (30 degrees C rather 

than the long-term district average temperature over the growing season); (iv) controls; (v) 

alternative functional forms of the index (including the square of the index); and, (vi) an 

additive index instead of a multiplicative index. For the full sample, the coefficients from each 

of these specifications are summarized in Tables A1-A2. In Figure A3, we present a graphical 

summary of the coefficient values and their confidence intervals for each specification using 

the full sample.9 Tables A3-A14 summarize all the robustness checks by crop.  

In summary, while different specifications unsurprisingly generate different coefficients, our 

overarching conclusions are quite robust, especially in the case of aggregate cereal 

production. One key result, that of cold droughts driving larger marginal effects than hot 

droughts, is, in contrast to our other main results less robust in a number of alternative 

specifications. Of all the checks, our results are especially robust to alternative index 

specifications (Tables A4, A6, A8, A10, A12, A14).  

 

6. ESTIMATING YIELD AND ECONOMIC LOSSES 

                                                           
9 Tables with the additional robustness checks are available from the authors upon request. 
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In a back-of-the-envelope attempt to gauge first, how important both types of droughts are 

in the Indian context and second, how serious the omission of Type 2 droughts is for 

estimating Type 1 drought impacts, we run simple simulations using our estimated 

regressions. This allows us to generate predictions of yields with and without droughts. 

Specifically, we estimate the: (i) average yield loss for an affected district over the sample 

period; (ii) average total production loss for an affected district over the sample period; (iii) 

average total value of production for an affected district; (iv) average unweighted yearly total 

production loss in our sample of Indian districts; and, (v) the average yearly total cost across 

sampled districts. A summary of estimates is presented in Tables 8 and 9, including crop-

specific results.10 Details of how we generated these estimates can be found in the Technical 

Appendix (B).  

TABLE 8 HERE 

TABLE 9 HERE 

From Tables 8 and 9, we note the following. Despite a higher estimated coefficient, total yield 

and economic losses from cold droughts are smaller than those from hot droughts. This is due 

to the index values for cold droughts being substantially lower (approximately half) for 

affected districts. For our aggregate cereal measure, we estimate the average yield loss per 

district at 160 kg/ha and 110 kg/ha for hot and cold droughts, respectively. These smaller 

impacts on yields translate into lower total economic costs. Whereas we estimate that, in a 

given year, the total economic cost of a hot drought is, on average, approximately USD 1.02 

billion (using 2008 crop prices; column 2 in Table 8),11 this falls to USD 650 million for a cold 

drought (column 3 in Table 8).  

To our knowledge, there is only one study in the literature that attempts to estimate drought 

costs for the whole of the country. Using data for all Indian districts, Sarkar (2011) estimate 

cereal losses of 27.6 million tonnes due to drought in 2002.12 In our sample of 275 districts 

(out of 311 apportioned districts), we estimate total production losses of about 16.3-16.9 

                                                           
10 For the crop-specific results, these were obtained using the crop-specific regressions. 
11 Crop prices in Indian rupees are converted into USD using the average monthly exchange rate obtained from 
http://www.x-rates.com/average/?from=USD&to=INR&amount=1&year=2008. More details on how prices are 
computed are available in the Technical Appendix (B).  
12 They value these losses at around 1.3 trillion rupees. An error in their calculations, however, suggests a loss 
closer to 130 billion rupees 

http://www.x-rates.com/average/?from=USD&to=INR&amount=1&year=2008
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million tonnes in 2002, which we value at 103 billion rupees using nominal prices. In addition 

to covering fewer districts, the differences in estimates are also likely to stem from 

methodological differences as well as the fact that we do not take into account a potential 

reduction in cultivated area during a drought year.13 

Omitting cold droughts can lead to a lower estimate of hot drought impact, especially when 

the dummy variables are excluded. Including dummy variables allows for a convergence in 

the marginal effect. However, if the change in intercept is taken into account when estimating 

costs, the divergences in the costs persist despite the inclusion of dummy variables. These 

effects are quantifiably large as we illustrate by comparing the first two columns of Tables 8 

and 9 for the full sample. When dummies are excluded (Table 8), this effect is large. Average 

yield losses are estimated to be 33% higher (from 120kg/ha to 160 kg/ha) when cold droughts 

are included. These estimates have a substantial effect on the estimated average annual cost. 

This is USD 805 million (Table 8, column 1) when cold droughts are omitted compared to USD 

1.02 billion (Table 8, column 2) when they are included, which represents a 27% increase. 

Thus, if estimating the economic cost of hot droughts without accounting for cold droughts, 

the average yearly total costs of drought would approximate USD 805 million. Including cold 

droughts raises this total cost by 107% to USD 1.67 billion (column 4 in Table 8). The difference 

can be broken down as follows: USD 216 million can be attributed to the lower coefficient of 

hot droughts, and USD 649 million to the inclusion of cold droughts. A similar difference exists 

when dummy variables are included, in Table 9.14  

The impacts derived using the separate crop-specific specifications generate patterns of yields 

and costs similar to those that emerge from our aggregate cereal specification. Also, the 

patterns that emerge in the full sample specification are present in the crop-specific 

regressions. Cold droughts have a particularly large impact on rice, leading to substantive 

physical and economic losses. Indeed, about half of the total average economic cost from cold 

                                                           
13 A more detailed explanation is given in the Technical Appendix (B). There are two further studies that attempt 
to estimate drought costs in India, which are less relevant for the purpose of comparison with our estimates. 
Pandey et al. (2007) estimate costs from yield losses for three states in eastern India and the EM-DAT database 
bases its national-level cost estimates on the basis of losses in housing, agriculture and livestock. Within range 
of our estimates, the former estimate a cost of USD 900 million for the 2002 drought. However, a large number 
of droughts do not have associated costs. Specifically, for our sample period, only 12 drought events were 
recorded for India in the EM-DAT database and, out of these 12 events, only five have had their associated costs 
estimated. 
14 However, in the case of Table 9, this difference arises from accounting for the intercept change, rather than 
the underestimation of the marginal impact. 
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droughts can be explained by losses in rice yields. In the absence of dummies, we estimate 

rice yield losses of around 160kg/ha (column 5 under ‘Rice’ in Table 8). Excluding Type 2 

drought, i.e. comparing column 1 and 2 under ‘Rice’ in Table 8, suggests underestimates in 

the region of about 33%. Thus, it is highly likely that Birthal et al. (2015) underestimated the 

impacts of droughts on rice yields in their analysis.15  

7. CONCLUSION 

Overall, there are three main findings that emerge from our analysis. First, after proposing an 

index which extends one developed by Yu and Babcock (2010), we show that both hot and 

cold droughts have significant impacts on agricultural productivity in India. Thus, it is 

important to include the latter category of droughts, especially in a setting where there has 

been a clear increase in the number of such events in recent years. Moreover, if an 

assessment of economic impacts is performed solely based on hot droughts alone, 

approximately half of all potential dry events would be overlooked. Our results strongly 

suggest that these events have had quite a severe impact on cereal yields.  

Second, the omission of cold droughts leads to a smaller estimated coefficient of hot 

droughts, especially when a dummy variable is not included to account for a potential 

intercept shift. Effectively, this implies that, if cold droughts have a large negative effect on 

productivity, estimating the coefficient for hot droughts without accounting for cold droughts 

could lead to underestimates of the marginal effect of hot drought thus further downward 

biasing the overall impact of drought in empirical analyses. This result does not challenge the 

central findings of Yu and Babcock (2010) and Birthal et al. (2015) that impacts of drought 

have declined over time. Yet, it does question the size of the marginal impacts estimated in 

both of these studies, and implies that a focus on hot droughts alone does not tell the whole 

drought story. 

Third, the quantitative implications of our results are likely to be large, particularly given the 

fact that our cost estimates are based purely on yield losses. Since we do not take any 

potential changes in the cultivated area into account, we are likely to underestimate true 

                                                           
15 Birthal et al. (2015) estimate rice yield losses due to drought ranging from 187 to 200 kg/ha. Differences in 
estimated impact are also likely to stem from the fact that they use a different sub-sample of districts and 
estimate a specification that differs from the one used in our analysis, e.g. we adopt a district-specific quadratic 
trend whereas they adopt a linear trend, as well as including interaction terms and irrigation as a control 
variable. 
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production losses. The economic value of production loss attributable to cold droughts is 

illustrated to be approximately 60% of the total economic value of production losses 

attributable to hot droughts in our main specification. Also, omitting cold droughts and a 

dummy variable can lead to an underestimation of the economic value of production losses 

due to hot droughts, which in our simulations amounted to a difference of about 27%. While 

we acknowledge that our back-of-the envelope estimates are based on a number of 

assumptions regarding prices and so forth, they do suggest that we have found sufficient 

empirical evidence and an economic rationale to justify the inclusion of cold drought in 

analyses of drought impact. 

Our results have clear implications for public policy. Since cold droughts have measurable 

impacts on agricultural production that are severe yet not as severe as those resulting from 

hot droughts, policymakers should seek to distinguish between the two types of drought 

defined in this paper. Simple metrics of precipitation deficiency will obviously capture both 

types but since temperature plays a critical role in determining the extent of dry conditions 

at the local scale, it still needs to be explicitly accounted for. Detecting cold drought and 

tracking their impacts over time can serve as an early-warning response for when cold 

droughts transform into hot droughts, i.e. during periods when temperatures are predicted 

to be above the average of long-term trends. With global warming expected to continue to 

contribute to rising temperatures as well as potentially influencing patterns of extreme 

rainfall events, our index can thus help to shape the appropriate policy response to drought, 

particularly with respect to climate adaptation and agricultural production in more climate 

vulnerable locations. 
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10. TECHNICAL APPENDICIES 

9.1. (A) – Data and Variables 

Building the dataset: 

We start with the raw data file, which already includes cumulative monthly rainfall data at 

the district level. 

Generating rainfall variables 

We generate three rainfall variables, which represent cumulative rainfall over three distinct 

periods, namely: 

 A short Monsoon period (June-September), used in our main results 

 An extended Monsoon period (May-December), used as a robustness check. 

 An annual rainfall measure (January-December), used as a robustness check. 

For each of the three cumulative rainfall variables we then define a long-term average rainfall 

measure for each district. To do this, we take the average total cumulative rainfall over the 

growing season for each district over the period 1956-2009. For our main specification, we 

define the growing season as June-September (see above).  

For a given district, the general formula used is the following: 

𝑇𝑅𝑖𝑡 = ∑ 𝑅𝑚𝑖𝑡

𝑁

𝑚=1

 

Where the total rainfall in a given growing season for a given district i in a given year t, is equal 

to the sum of the monthly cumulative rainfall over the months (m to M) included in the 

growing season. To calculate the long-term average rainfall, we use the following formula: 

𝐿𝑇𝐴𝑅𝑖 =
1

54
∑ 𝑇𝑅𝑖𝑡

𝑇=2009

𝑡=1956

 

Where the long-term average rainfall for a given district i is simply calculated as the average 

total rainfall in that district over the 1956-2009 period. 
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Generating temperature variables 

We opt for a measure of cooling degree days (CDD) to capture accumulated heat over the 

growing season (June-September, in our main specification). This captures the number of 

degree-days above a reference temperature over a given time period. We use two alternative 

specifications for generating this variable. 

In our main specification, we compute CDD based on the average temperature over the 

monsoon period (June-September). We test the sensitivity of results to alternative growing 

periods (May-December and Annual, respectively).  

Our first step is to define the average daily temperature over the growing season for each 

district between 1956 and 2009. For any given district, CDD is estimated as: 

𝐶𝐷𝐷𝑖𝑡 = ∑ ∑(𝐷𝑇𝑖𝑚𝑑 − 𝐷𝑇𝐴𝑖)

𝐷

𝑑=1

𝑀

𝑚=1

 

Our long-term average CDD is then calculated as follows: 

𝐿𝑇𝐴𝐶𝐷𝐷𝑖 =
1

54
∑ 𝐶𝐷𝐷𝑖𝑡

𝑇=2009

𝑡=1956

 

where d and m represent a given day and month included in the growing season and N and 

M respectively represent the total numbers of days in a given month and the total number of 

months in the growing season; DT denotes the average daily temperature in district i in day d 

of month m; and, DTA represents the average growing season daily temperature for a given 

district over the 1956-2009 period. Next, we create 𝐿𝑇𝐴𝐶𝐷𝐷𝑖, which is simply the average 

cumulative degree days above the mean daily temperature experienced by district i over the 

1956-2009 period. 

In addition, we create alternative degree day variables, where 30 degrees is used as a base 

temperature (instead of the average temperature over the growing season). We do this for 

the three alternative growing seasons. We have: 

𝐶𝐷𝐷30𝑖𝑡 = ∑ ∑(𝐷𝑇𝑖𝑚𝑑 − 30)

𝐷

𝑑=1

𝑀

𝑚=1
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There are two main reasons why we use the district average as our reference temperature. 

The first has to do with the fact that we often pool a number of cereals together in our 

regressions. Given that there is no unique reference temperature for ‘cereals’, we prefer to 

use the district mean temperature. The second reason relates to sample size. Some districts 

may not have many days with an average daily temperature above 30 degrees. Thus, these 

districts have to be dropped from our sample since they have an invariant drought index.  

Data inputting for controls used in the robustness check 

In an attempt to gauge the sensitivity of our results to the inclusion of additional controls, we 

include a number of variables which could ostensibly be related to observed yields. These 

include area under cultivation, fertilizer, rural population density and proportion of irrigated 

area. For the latter three variables, there are a number of missing observations. For instance, 

in the case of rural population, the values are only recorded every 10 years when a census is 

performed. In other cases, there are also a number of missing observations. It should be 

stressed, however, that the imputations discussed below do not affect our main results since 

we use them only as a robustness check. We now discuss the assumptions underlying the 

imputation of each variable. 

In the case of rural population we have data for 1971, 1981, 1991 and 2001. As such, between 

two waves of the census (e.g. between 1981 and 1991), we assume an exponential growth in 

between two waves. In the case of the pre-1971 and post-2001 data, we assume the growth 

rate of the subsequent and previous period, respectively, i.e. for the pre-1971 data, we 

assume the growth rate witnessed between 1971 and 1981. Similarly, for the post-2001 data, 

we assume the growth rate witnessed between 1991 and 2001. There are five occurrences 

where this process predicts impossible values (i.e. negative population). For these five we 

replace the impossible value by a missing value. Since we confine our sample to a balanced 

sample for all of our robustness checks, these observations are not used. 

For the remaining variables, fertilizer and irrigation, we use linear interpolation (using the 

Stata command ipol) when the missing observation is between two values. In order to reduce 

the number of missing observations, we use linear extrapolation when they are either before 

the first or after the last observation (by using the Stata option epolate within the ipolate 

command). In the case of fertilizer we initially have 2,691 missing observations. However, the 

majority of these occur outside of our sample period (1966-2009). Only 270 observations 
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occur within our sample period and are either interpolated or extrapolated. Out of these, the 

method produces 30 impossible (negative) values. In these cases, we simply replace the 

variable by a missing observation. This ensures that these impossible values do not affect our 

robustness checks.  

We then carry out a similar exercise for the proportion of area under irrigation. First, we 

define the proportion of net irrigated area as the ratio of net irrigated area to net cropped 

area. Generating this variable results in five observations which have impossible (above 1) 

values. In three of these cases, since the values are below 1.05 we replace them by 1. We 

replace the two values that exceed 1.05 with a missing observation. Yet, after creating this 

variable, there are still 1,090 missing observations. Most of these occur due to missing data 

on net irrigated area. As such, we use the interpolation command with the extrapolation 

option and replace the (38) impossible (negative) values by missing values. For the remaining 

missing values we interpolate (with the extrapolate option) the proportion of net irrigated 

area and replace the negative values with a missing observation. 

Generating additional variables (excluding drought indices) 

We generate a number of additional variables: 

 Rural population per hectare; obtained by dividing the rural population by gross 

cropped area 

 Total cereal quantity produced; obtained by summing the quantity produced of each 

individual type of cereal 

 Total cereal area; obtained by summing the areas devoted to each individual cereal 

 Cereal yield; obtained by dividing the total quantity of cereal by total cereal area 

 Individual cereal yield; obtained for each cereal by dividing total production by the 

total area devoted to a particular cereal 

Generating drought indices 

Crucial to our analysis is the construction of a novel drought index. For our purposes, we 

develop four drought indices. Below we describe the steps we carry out for each one. 
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Yu-Babcock index 

We denote: total rainfall over the growing season 𝑇𝑅𝑖𝑡; the mean of total rainfall over the 

growing season over 1956-2009 𝐿𝑇𝐴𝑅𝑖; and, the standard deviation of 𝑇𝑅𝑖𝑡 as 𝑠𝑑𝑇𝑅𝑖. We 

then obtain the standardized variable using the following formula: 

𝑍𝑇𝑅𝑖𝑡 =
𝑇𝑅𝑖𝑡 − 𝐿𝑇𝐴𝑅𝑖

𝑠𝑑𝑇𝑅𝑖
 

We proceed analogously for our 𝐶𝐷𝐷𝑖𝑡 measure. Let: 𝐶𝐷𝐷𝑖𝑡 be cumulative degree days above 

the long-term mean temperature of a district during the growing season; 𝐿𝑇𝐴𝐶𝐷𝐷𝑖  be long-

term average cumulative degree days in the growing season; and, 𝑠𝑑𝐶𝐷𝐷𝑖  be the standard 

deviation of 𝐶𝐷𝐷𝑖𝑡. We compute the standardized variable: 

𝑍𝐶𝐷𝐷𝑖𝑡 =
𝐶𝐷𝐷𝑖𝑡 − 𝐿𝑇𝐴𝐶𝐷𝐷𝑖

𝑠𝑑𝐶𝐷𝐷𝑖
 

Following this, we use the following to compute the Yu-Babcock index: 

𝐵𝑌𝑈𝑖𝑡 = − max(0, 𝑍𝐻𝐷𝐷𝑖𝑡) ∗ min (0, 𝑍𝑇𝑅𝑖𝑡) 

Normalized indices  

For the remaining indices, we use a normalized variable between 0 and 1, rather than a 

standardized value. We construct a variable, 𝑀𝑇𝑅𝑖𝑡, which is simply the negative of 𝑇𝑅𝑖𝑡 

(i.e. 𝑀𝑇𝑅𝑖𝑡 = −𝑇𝑅𝑖𝑡). The following is estimated to obtain 𝑁𝑇𝑅𝑖𝑡 and 𝑁𝐶𝐷𝐷𝑖𝑡: 

𝑁𝑇𝑅𝑖𝑡 =
𝑀𝑇𝑅𝑖𝑡 − 𝑀𝑇𝑅𝑖

𝑚𝑖𝑛

𝑀𝑇𝑅𝑖
𝑚𝑎𝑥 −  𝑀𝑇𝑅𝑖

𝑚𝑖𝑛
 

𝑁𝐶𝐷𝐷𝑖𝑡 =
𝐶𝐷𝐷𝑖𝑡 − 𝐶𝐷𝐷𝑖

𝑚𝑖𝑛

𝐶𝐷𝐷𝑖
𝑚𝑎𝑥 −  𝐶𝐷𝐷𝑖

𝑚𝑖𝑛
 

We differ from Yu and Babcock (2010) in creating a normalized version of the rain and 

temperature variables such that they vary strictly between 0 and 1, with 1 indicating the most 

extreme value (the highest temperature and lowest rainfall) and 0 indicating the lowest value. 

From these two variables, we then create a normalized rainfall-temperature index 𝑁𝑅𝑇𝐼𝑖𝑡, 

which is simply a product of these variables: 

𝑁𝑅𝑇𝐼𝑖𝑡 = 𝑁𝑇𝑅𝑖𝑡 ∗ 𝑁𝐶𝐷𝐷𝑖𝑡 

From this, we obtain three additional indices. First: 



36 
 

𝐷𝐼1𝑖𝑡 = {
𝑁𝑅𝑇𝐼𝑖𝑡 𝑖𝑓 𝑍𝑇𝑅𝑖𝑡 < 0  𝑎𝑛𝑑 𝑍𝐻𝐷𝐷𝑖𝑡 > 0  

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

This is equivalent to a normalized version of the Yu-Babcock (2010) index. It only takes a non-

zero value for events where rainfall deficiency and temperature are above average. 

Second, we create our cold drought index analogously, using the following: 

𝐷𝐼2𝑖𝑡 = {
𝑁𝑅𝑇𝐼𝑖𝑡 𝑖𝑓 𝑍𝑇𝑅𝑖𝑡 < 0  𝑎𝑛𝑑 𝑍𝐻𝐷𝐷𝑖𝑡 < 0  

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

This is the category omitted by Yu and Babcock. It only takes a non-zero value for events 

where rainfall deficiency is above-average and temperature is below average. 

Finally, we create a third index, which combines 𝐷𝐼1𝑖𝑡and 𝐷𝐼2𝑖𝑡: 

𝐷𝐼12𝑖𝑡 = {
𝑁𝑅𝑇𝐼𝑖𝑡 𝑖𝑓 𝑍𝑇𝑅𝑖𝑡 < 0   

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

This index takes non- zero values for all events where precipitation is below average. 

The three main strengths of this index are that it: (i) defines all potential dry events; (ii) takes 

into account both temperature and rainfall; and, (iii) is increasing in temperature and rainfall 

deficiency. The main strength vis-à-vis the Yu and Babcock’s index is that, by using the 

normalized negative of rainfall, we are able to construct an index that accounts for all 

potential types of drought without running into the problem of negative values that emerges 

from the interaction of the standardized variables.  

Our index, however, still has four potential drawbacks. First, the normalization process is 

bounded between 0 and 1 which means that if a given district has a very large outlier in a 

given year but records lower values in other years then this would indicate a low value in the 

drought index thus masking what might have been a very bad drought year. This problem is 

less likely to arise in the standardized index. The second potential weakness arises from the 

multiplicative nature of the index. Thus, whenever temperature is close to 0 this can lead to 

a very low value of the drought index despite very deficient rainfall. Note, however, that this 

problem is only likely to arise for the 𝐷𝐼2𝑖𝑡 index, and also applies to Yu and Babcock’s index. 

Third, similar to their index, our index does not take into account intra-seasonal deficiencies 

in rainfall, which have been shown to have important impacts on agricultural productivity, 

e.g. Fishman (2016). Finally, similar to most drought indices, our index does not take into 

account (rare) multi-year droughts because this would require an index with ‘memory’ that 



37 
 

takes into account soil moisture conditions. That said, since drought in India is mainly driven 

by variation in the annual monsoon, we argue that using an annual measure of monsoon 

rainfall is of greater relevance when estimating drought impact in our setting. 

To ensure that the multiplicative relationship is not driving our results we also create a series 

of additive indices, which conceptually are very similar to our multiplicative indices. 

Specifically, the normalized additive rainfall temperature index, 𝑁𝐴𝑅𝑇𝐼𝑖𝑡, is constructed as: 

𝑁𝐴𝑅𝑇𝐼𝑖𝑡 = 𝑁𝑇𝑅𝑖𝑡 + 𝑁𝐶𝐷𝐷𝑖𝑡 

The only difference is that 𝑁𝑅𝑇𝐼𝑖𝑡 is the product of rainfall and temperature while 𝑁𝐴𝑅𝑇𝐼𝑖𝑡 

is additive. From the latter, we have the following: 

𝐴𝐷𝐷𝐼1𝑖𝑡 = {
𝑁𝐴𝑅𝑇𝐼𝑖𝑡  𝑖𝑓 𝑍𝑇𝑅𝑖𝑡 < 0  𝑎𝑛𝑑 𝑍𝐶𝐷𝐷𝑖𝑡 > 0  

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐴𝐷𝐷𝐼2𝑖𝑡 = {
𝑁𝐴𝑅𝑇𝐼𝑖𝑡 𝑖𝑓 𝑍𝑇𝑅 < 0  𝑎𝑛𝑑 𝑍𝐶𝐷𝐷𝑖𝑡 < 0  

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐴𝐷𝐷𝐼12𝑖𝑡 = {
𝑁𝐴𝑅𝑇𝐼𝑖𝑡 𝑖𝑓 𝑍𝑇𝑅𝑖𝑡 < 0   

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where 𝐴𝐷𝐷𝐼1𝑖𝑡, 𝐴𝐷𝐷𝐼2𝑖𝑡and 𝐴𝐷𝐷𝐼12𝑖𝑡are the additive equivalents to 𝐷𝐼1𝑖𝑡, 𝐷𝐼2𝑖𝑡 and 

𝐷𝐼12𝑖𝑡. 

As a robustness check, we construct each of these indices for three distinct periods (i.e. June-

September, May-December, and January-December) for our rain and temperature variables. 

We also inspect the correlations among all the indices. They are very high. 

Determining the sample and generating trends 

After developing the drought indices, we create a data file which includes only the 

observations between 1966 and 2009, i.e. our sample period. This choice is purely driven by 

data availability. Prior to 1966, our dependent variables (production and yields) are missing 

from the ICRISAT dataset and hence, would have resulted in districts being dropped. Prior to 

starting our analysis, we also dropped any districts for which at least one observation is 

missing in order to keep a balanced panel. We then generate district-specific quadratic trends 

using the following: 

𝑡𝑟𝑒𝑛𝑑 = 𝑡 − 1965 

𝑡𝑟𝑒𝑛𝑑_𝑠𝑞 = 𝑡𝑟𝑒𝑛𝑑2 
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where t denotes the year. 

9.2. (B) – Estimating Economic Impact 

As is made clear in the main text, the cost estimates generated in this paper are based purely 

on yield losses, without taking into account any potential changes in the cultivated area. 

Specifically, our cost estimates are derived using a series of seven steps. We detail all the 

assumptions and steps used throughout and discuss their relative strengths and weaknesses.  

Step 1 - Obtain a national estimate of crop prices and aggregate cereal price for each year: 

Crop prices: We generate a national weighted average of crop price by year (using the egen 

command and the user-written option wtmean), where the weight is determined by area of 

land under cultivation. For millet the process is slightly different since there are two kinds of 

millet in our sample (pearl millet and finger millet). As a result, we first generate, for each 

year, a weighted average of millet prices at the district-level. We then sum the total area 

under millet production (area under pearl millet + area under finger millet) and use this to 

establish a national weighted average millet price for a given year. Note that the egen 

command automatically adjusts the computation for missing data. As a result, districts that 

do not report prices for a given year are not included in the weighted average. 

We then use 2008 crop prices to estimate prices (and costs) in USD: aggregate cereal price 

index (24.147 USD/quintal); rice (29.947 USD/quintal); wheat (22.360 USD/quintal); maize 

(16.125 USD/quintal); barley (19.089 USD/quintal); sorghum (18.88 USD/quintal); and, millet 

(17.5 USD/quintal). These prices are obtained by obtaining the weighted average of crop-

specific prices in India for 2008 (in Rupees) and converting this by the averages of the 2008 

monthly exchange rates extracted from: http://www.x-

rates.com/average/?from=USD&to=INR&amount=1&year=2008. 

All of the tables are also constructed using nominal yearly prices in Rupees and are available 

from the authors upon request.  

Weaknesses and strengths of the assumptions:  

National prices. For any given year, there are large differences in prices across districts. It 

could be argued that prices at the district- or state-level may be more appropriate. However, 

there are issues with missing price data at the district-level and, to a lesser extent, at the 

http://www.x-rates.com/average/?from=USD&to=INR&amount=1&year=2008
http://www.x-rates.com/average/?from=USD&to=INR&amount=1&year=2008
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state-level even for cases where there is a non-zero quantity reported. This is the main reason 

why we opt for national prices.  

Using fixed prices in USD: Using a fixed price throughout the sample period implies that the 

estimates of costs will vary depending on the chosen year since the choice of the year will, by 

definition drive both the exchange rate and the price level. Yet, output losses in the early 

periods are made comparable to losses in later periods since they are given the same value. 

Using nominal prices could lead to the economic cost of drought artificially increasing over 

time as nominal prices in most cereals have trended upwards over the sample period. In any 

case, we have also performed this exercise using nominal prices in rupees and the results are 

available from the authors upon request. 

Step 2 - Estimate the regression of interest:   

We estimate the following linear regression in which the coefficients for the two types of 

droughts are estimated separately, and there are: (i) no dummy variables; (ii) no controls; (iii) 

district-specific quadratic trends; (iv) district fixed effects; and, (v) year fixed effects. 

ln (𝑦𝑖𝑡𝑐) = 𝜶𝒊 + 𝜷𝒕 + 𝜹𝒊𝟏 ∗ 𝑡 + 𝜹𝒊𝟐 ∗ 𝑡2 + 𝜃1 𝐷𝐼1𝑖𝑡 +  𝜃2 𝐷𝐼2𝑖𝑡 + 𝜖𝑖𝑡                 

Step 3 - Estimate the yield losses:  

After Stata has generated the output for the regression in Step 2, we operationalise the 

following steps: 

 Step 3.1 – Predict the natural logarithm of yield for drought when  𝐷𝐼12𝑖𝑡 > 0 (i.e. 

when the given district is drought affected). We do this by using the predict command 

following the estimation of the regression before replacing observations not affected 

by drought with an empty observation. We denote this variable 𝑙𝑦ℎ𝑎𝑡𝑑. Note, to limit 

potential biases in the estimates of overall costs, we remove districts with implausible 

predicted yields, which we define as yields below 100 kg/ha and above 5 tonnes/ha). 

This assumption, however, affects very few observations, specifically 25 predicted 

values out of over 6,000 events in the full sample.  

 Step 3.2 – Predict the natural logarithm of the yield variable under no drought (i.e. 

𝐷𝐼12𝑖𝑡 = 0; 𝑜𝑟 𝐷𝐼1𝑖𝑡 = 0 𝑎𝑛𝑑 𝐷𝐼2𝑖𝑡 = 0). We rename the variables 𝐷𝐼1𝑖𝑡and 𝐷𝐼2𝑖𝑡 

(e.g. they temporarily become 𝐷𝐼1𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡 and 𝐷𝐼2𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡) and create two new 

temporary variables: 𝐷𝐼1𝑖𝑡 = 0 and  𝐷𝐼2𝑖𝑡 = 0. We then use the predict command to 
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obtain predicted yield and a variable denoted 𝑙𝑦ℎ𝑎𝑡𝑛𝑑. The temporary 𝐷𝐼1𝑖𝑡  and 

𝐷𝐼2𝑖𝑡  variables are deleted, and 𝐷𝐼1𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡 and 𝐷𝐼2𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑖𝑡 are, respectively, 

renamed 𝐷𝐼1𝑖𝑡 and 𝐷𝐼2𝑖𝑡. We replace 𝑙𝑦ℎ𝑎𝑡𝑛𝑑 with an empty observation for every 

case where 𝐷𝐼12𝑖𝑡 = 0 (non-drought affected case). Note that when we estimate the 

predicted values using dummy variables, we also switch the dummy variable equal to 

zero when we replace the index coefficient with zero. 

 Step 3.3 – Obtain yield values. All our predicted values are in logs. We thus convert 

these variables into levels and denote these variables  𝑦ℎ𝑎𝑡𝑛𝑑 and 𝑦ℎ𝑎𝑡𝑑. 

 Step 3.4 – Obtain predicted yield losses by simply subtracting the predicted yield 

under no drought (Step 3.2) by the actual predicted yield (Step 3.1) for all cases where 

𝐷𝐼12𝑖𝑡 > 0 . Formally, we calculate  𝑦𝑙𝑜𝑠𝑠𝑒𝑠 = 𝑦ℎ𝑎𝑡𝑛𝑑 − 𝑦ℎ𝑎𝑡𝑑. 

 Step 3.5 – Obtain predicted yield losses by drought type by simply subtracting the 

predicted yield under no drought by the actual predicted yield for each type of drought 

separately. Thus, we estimate: 𝑦𝑙𝑜𝑠𝑠𝑒𝑠1 = 𝑦ℎ𝑎𝑡𝑛𝑑 − 𝑦ℎ𝑎𝑡𝑑  𝑖𝑓 𝐷𝐼1𝑖𝑡 > 0; and, 

𝑦𝑙𝑜𝑠𝑠𝑒𝑠2 = 𝑦ℎ𝑎𝑡𝑛𝑑 − 𝑦ℎ𝑎𝑡𝑑  𝑖𝑓 𝐷𝐼2𝑖𝑡 > 0. Note the two types of drought are 

mutually exclusive (i.e. it is impossible for a district to simultaneously have a hot and 

a cold drought). 

Step 4 - Estimate district-level production losses:  

This requires three further steps: 

 Step 4.1 - Convert land area to ha. As highlighted in the supporting documentation,16 

the land-use data is in 000’s of ha. As a result we simply multiply cereal area by 1,000 

to derive the cereal area in ha. Note that we do not model potential land-use changes 

as a response to a drought event, which is likely to happen. In other words, we exclude 

the possibility that land under cereal production might decline in a drought year given 

our focus on developing an inclusive drought index and estimating the marginal 

effects of drought on agricultural production. 

 Step 4.2 - Convert yield losses to 1,000t/ha. Currently, our yield losses are in t/ha. We 

thus convert the yield losses to 1,000t/ha by dividing 𝑦𝑙𝑜𝑠𝑠𝑒𝑠  by 1,000. 

                                                           
16 See: http://vdsa.icrisat.ac.in/Include/document/all-apportioned-web-document.pdf  

http://vdsa.icrisat.ac.in/Include/document/all-apportioned-web-document.pdf


41 
 

 Step 4.3 – Get the total district production losses (in 1,000t). Obtain the product of 

the variable obtained in Step 4.1 by that obtained in Step 4.2. 

Step 5 - Estimate the district-level cost of production losses:  

To do this we perform two further steps: 

 Step 5.1 – Convert price data to million USD/1,000t.  For the results shown in the 

paper, our price data are in USD per quintal (as explained in Step 3.1) and our 

production loss data (estimated in Step 4.3) are in 1,000t. To obtain the price data in 

million USD per 1,000t we divide our price level by 100. Note, a quintal is 100kg. To 

convert it into 1,000t (1,000,000kg) we multiply the price data by 10,000. However, 

since we want the data in million USD rather than USD, we divide this by 1,000,000. 

Thus, price*10,000/1,000,000 = price/100 

 Step 5.2 – Obtain total value of production losses. After obtaining prices in million 

USD/1,000t we multiply the variable derived in Step 5.1 by the variable derived in Step 

4.3 to obtain the total value of production losses in USD millions. Note, for our 

estimates in rupees, we apply the exact same procedure using yearly nominal prices. 

Step 6 - Estimate total yearly production losses:  

To obtain this measure in 1,000t we sum estimated total production losses of each affected 

district in a given year. We use the total function of the egen command. Note that the value 

in the table represents the unweighted average yearly loss.  

Step 7 - Estimate total yearly production costs:  

To obtain this measure in millions of rupees, we simply sum the estimated total value of the 

production losses of each affected district in a given year. We use the egen command with 

the total function. Note again that the value in the table represents the unweighted average 

yearly loss.  
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