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How certain are we about the certainty-equivalent long
term social discount rate?

Mark C. Freeman and Ben Groom∗

November 4, 2013

Abstract

The case for using declining social discount rates when the future is uncertain
is now widely accepted in both academic and policy circles. We present sharp
upper and lower bounds for this term structure when we have limited knowledge
about the nature of our uncertainty. At horizons beyond 75 years, these bounds
are widely spread even if there is agreement on the support and first four mo-
ments of the relevant underlying probability distribution. Hence, even in the
unlikely event that there is consensus between experts on the primitives of the
social discount rate, estimates of the present value of intergenerational costs and
benefits, such as the Social Cost of Carbon, can potentially lie anywhere within
a wide range. This makes it diffi cult to prescribe crisp policy recommendations
for long-term investments.

JEL Classification: H43, Q51
Keywords: Declining discount rates, Distribution uncertainty, Social Cost of Carbon.

1 Introduction

The outcome of Cost Benefit Analysis (CBA) of public projects with intergenerational conse-

quences is notoriously sensitive to the discount rate employed. Small variations in assump-

tions can lead to very different policy recommendations. This is particularly problematic

because the primatives that underlie discounting analysis are diffi cult to predict over long
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time horizons. For example, the growth rate of aggregate consumption and the rate of return

to capital over the next four centuries are essentially unknown today, since they depend on

a number of unpredictable events including technological change, political and social unrest,

environmental change and even pandemics (e.g. Almond (2006)).

Recognition of the uncertainty surrounding the discount rate has lead to a burgeoning

literature on the term structure of certainty-equivalent social discount rates. This has re-

cently been expertly reviewed by Gollier (2012) and Arrow et al. (2012). The overwhelming

consensus coming from these contributions is that, for risk free projects, the term structure

should be declining with the time horizon. This view is exemplified by a recent Policy Forum

article in Science, in which it is argued that where we are uncertain about the future “there

are compelling arguments for using a declining discount rate schedule”(Arrow et al. 2013,

p. 350). Furthermore, this consensus has been very influential. Declining term structures

can now be found in government guidelines in the UK and France, and in recent advice to

the Norwegian government. Declining term structures are also being considered in the US.

In the UK, declining discount rate schedules (DDR) have been used in the governmental

economic analysis of the High Speed 2 (HS2) rail link and for capital budgeting purposes

by the Nuclear Decommissioning Authority. They have also featured heavily in discussions

concerning the Social Cost of Carbon (SCC). It can be argued that DDRs have already

influenced public investment decisions in the UK.

The DDRs used in government policy are typically based on a ‘certainty-equivalent’

discount rate which embodies uncertainty in the future. One argument for a declining

certainty-equivalent supposes that for some random variable xH , the present value, pH , of a

certain $1 arriving at time H is given by pH = E [exp (−HxH)]. The H−period certainty-
equivalent discount rate is then given by RH = −H−1 ln (pH). Exponential functions are

convex, and this convexity becomes more pronounced as the time horizon, H, increases and

with greater uncertainty in xH . The certainty-equivalent RH declines with the time horizon

due to the effect of Jensen’s inequality to its lowest feasible value as the time horizon extends

to infinity, where the limiting value of the certainty-equivalent depends on the persistence of

xH over time. This simple structure, which is the focus of the paper, is quite general since,

as we discuss in the next section, xH can have a number of interpretations depending on the

theoretical framework employed.

While this theoretical argument is now widely accepted, putting the theory into practice

requires us to make assumptions about the probability density function (pdf) of xH : fH (xH).

The standard approach in the literature is for each author to take one or more specific

parameterizations of fH (xH) and apply these as if they reflected the true nature of our

knowledge. ‘The future is unknown but we can describe our uncertainty pretty accurately’
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has largely been the approach so far.

We take a less sanguine view of what we can say about the true form of fH (xH). We focus

on the observation that, not only do we not know what the future holds, but we also cannot

perfectly characterize the nature of our uncertainty about it. We most likely have little idea

from which distribution the primitives of the discount rate are coming when considering a

time-span of many decades or centuries.1 This leads to our central question: ‘how sensitive is

the term structure of social discount rates to different plausible characterizations of fH (xH)?’

While we recognize the philosophy of Knight (1921) that maintains that such uncertainty

is immeasurable, we take an alternative approach here.2 Our framework is based on the

willingness of the social planner to make decisions on the basis of specific assumptions about

fH (xH) that are suffi ciently uncontroversial for reasonable people to be able to agree upon

them today.3 Specifically, we consider a set of probability density functions such that all

economists agree that fH (xH) is a member of this set, yet there is no consensus as to which

element of the set best describes fH (xH).

A common way in which to describe probability density functions (pdf) is via summary

statistics such as the moments of the distribution: e.g. the mean, variance, skewness and

kurtosis. Therefore, a reasonable set that people might be able to agree contains fH (xH) is

that which contains all pdfs defined on the same support that share the same first K ≤ 4

moments.4 Of course, the number of pdfs contained in such a set is infinite, but using a

powerful method pioneered by Karlin and Studden (1966) it is possible to determine upper

and lower limiting pdfs within the set, and hence ‘sharp bounds’on the social discount rate

based on the level of consensus associated with the set.

Using this technique we present sharp bounds for RH based on a number of different

DDR models. This allows us to then calculate plausible ranges for the present values of

three long-term cash flow forecasts; (i) the social cost of carbon, (ii) the estimated benefits of

Phase 1 of the HS2 rail link, and (iii) the costs of decommissioning the previous generation

of nuclear power stations within the UK.

As is to be expected, the less we agree upon about the future, the more uncertain we are

about the “true”present value. For example, using gamma discounting (Weitzman (2001))

as our underlying DDR model, even if there is agreement on the first four moments of the

1As we discuss below, in the case of heterogeneous expert opinions, uncertainty over the true form of
fH (xH) has a somewhat different interpretation.

2The derivation of a declining schedule of discount rates in a Knightian uncertainty environment has
recently been developed by Iverson (Forthcoming).

3Although it is possible that these assumptions will be falsified with the benefit of hindsight.
4To avoid issues around infinities, as famously discussed in a related context through the ‘dismal theorem’

of Weitzman (2009), we assume throughout that the first K moments of fH (xH) are finite and that, more
generally, its moment generating function is defined.
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distribution, then the SCC can lie anywhere within the interval $13.6 per ton of carbon (/tC)

and $46.1/tC. This is a sobering result when one considers that even agreement on the first

moment is likely to be an optimistic assumption. In this position of relative ignorance, the

estimate of the SCC can be anywhere between $5/tC and $190/tC.

Our conclusion, therefore, is that social planners should be extremely cautious when

making policy decisions on intergenerational matters. If we accept that there are elements

of the uncertainty surrounding the discount rate that are poorly understood, we can only be

sure that the appropriate discount rate will lie within quite wide bounds even if we ignore

broader issues such as Knightian uncertainty and the ‘dismal theorem’of Weitzman (2009).

In such cases spot estimates of, say, the SCC will give a false impression of precision. On

the up side our method provides a concrete way in which to set the boundaries of sensitivity

analysis in CBA. On the down side, for intergenerational projects we may have to live with

the fact that we know very little about the future evolution of the fundamentals and that

the social value of such policies may be extremely uncertain. Depressingly for practitioners

of CBA, we may have to look elsewhere for a decision making apparatus in these cases.

2 The theory of declining discount rates

In this section, we briefly describe three theoretical foundations for expressions of the form

pH = E [exp(−HxH)] that result in declining schedules of social discount rates.

2.1 ENPV

We start with the Expected Net Present Value (ENPV) framework of Weitzman (1998) that

has spawned the extensive subsequent literature on DDRs. The theoretical foundations

for this approach have recently been discussed at length in Traeger (Forthcoming), Gollier

and Weitzman (2010), Freeman (2010), Gollier (2009) and elsewhere. Here we followthe

discussion in Freeman and Groom (2013).5 Denote the single period cost of capital, rt, by the

relationship exp (rt) = Et[pt+1H ]/ptH , where ptH is the value at time t of a claim to $1 at time

H (so p0H ≡ pH and pHH = 1). Rearranging this to give ptH = Et [pt−1H ] exp (−rt) and then
repeatedly iterating, it is straightforward to derive the initial value p0 = E [exp (−HrH)],

where rH = H−1
∑H−1

t=0
rt. Inter alia, this result is given in (Ang and Liu 2004, equation

17).

5This derivation of the ENPV condition significantly relaxes the assumptions of both the resolution of
uncertainty and the stochastic process for the interest rate compared to the original thought experiment in
Weitzman (1998).
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The diffi culty within the ENPV framework is placing interpretation on rt. Following

from the literature on the term structure of interest rates this is known to include both a

risk-free and a term premium component. However, it is standard in social discounting

to treat rt as a risk-free rate proxied by the yield to maturity on a Treasury bond. We

follow this convention in this paper and note that Cox et al. (1981) provide at least some

justification for this simplification. Therefore, within the ENPV approach, xH = rH where

rH is the average short-term interest rate over the interval [0, H − 1].

2.2 Consumption based asset pricing models

Consider a standard consumption based asset pricing framework where a representative agent

gains utility u (ct, t) from consuming ct units of the single consumption good at time t. From

the Euler equation, if a project makes a certain future payment of $1 at time H and nothing

at any other time, then its present value is given by:

pH =
E [u′(cH , H)]

E [u′ (c0, 0)]

If we assume that current consumption, c0, is non-stochastic and that the utility function

takes time-separable power form: u′(ct, t) = e−ρtc−γt , with pure time preference rate ρ and

coeffi cient of relative risk aversion γ, then:

pH = E

[
e−ρH

(
cH
c0

)−γ]

In line with our focus in this paper, this can be re-written as:

pH = E [exp (−HxH)]

where xH = ρ+ γ
H

ln (cH/c0).

As Gollier (2012) shows, the term structure that emerges from this framework depends on

what is assumed about the stochastic process driving consumption growth. Several models

are admissible including straightforward mean reversion with a persistent state variable,

regime shifting models and models with parameter uncertainty in the mean and variance of

the growth process.
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2.3 Heterogeneous agent models

While much of the discounting literature focusses on uncertainty, another strand consid-

ers heterogeneity, either of preferences or opinions on the discount rate. Doing so leads

to analytically similar expressions for the term structure, albeit with an entirely different

interpretation.

Suppose there is an economy with i = 1, .., N agents in which each has her own discount

rate riH , for horizon H. In this case, the social planner must decide on the optimal way

of combining these different rates. This is a contentious issue and not all approaches lead

to expressions of the form pH = E [exp (−HxH)]. For example, Heal (2012) argues that

the median value of riH might be more appropriate due to its democratic median-voter

properties. Yet two heterogeneous agent models do lead to such expressions.

in Gollier (2012), equations (9.20) and (9.21) follow Emmerling (2010) and combine the

heterogeneous agents by taking a weighted average of their individual discount factors:

pH =
N∑
i=1

q̂i exp (−HriH) (1)

q̂i = qi
u′ (ci0, 0)∑N

j=1 qju
′ (cj0, 0)

where the weights qi are the Pareto weights placed on agent i’s utility function by the social

planner. Once again, this takes a form appropriate for the focus of this paper: pH =

E [exp (−HxH)] , where the expectation is taken with respect to the probability measure q̂i
and xH = riH .

Second, following Gollier and Zeckhauser (2005), Jouini et al. (2010) imagine a setting

where each agent has his or her own rate of pure time preference, ρi > 0, and forecast of

future economic growth, gi, but all have logarithmic utility. They then determine their

individual discount rate using the Ramsey rule: riH = ρi + gi. In this case, if the social

discount rate is determined by equilibrium market prices that would result from each agent

trading their own initial endowment, wi, according to their individual preferences, then:

pH =
N∑
i=1

zi exp (−HriH) (2)

zi =
wiρi∑n
j=1wjρj

Again, setting xH = riH , this has same structure: pH = E [exp (−HxH)] where the expecta-

tion is now taken with respect to the probability measure zi. Li and Löfgren (2000) and Heal
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and Millner (2013) look at alternative specifications of the intertemporal welfare function

under heterogeneity and end up with similar expressions.

Thinking about heterogeneity presents perhaps less intractable problems with regard

to the future, since in principle one could undertake a survey of the relevant preferences or

beliefs. Nevertheless, it would be extremely unrealistic to say that we can either characterize

q̂i or zi with precision, leading again to uncertainty about the true form of fH (xH).

3 Method

In order to construct term structures of the social discount rate for use in policy decision

making, several attempts have been made to characterize fH (xH) for use in the equation

pH = E [exp (−xHH)]. We will turn to these empirical exercises in the following section.

Yet despite the best efforts of these endeavours, the precision presented in the eventual social

discount rate schedules obscures the diffi culty of accurately reflecting our uncertainty about

the future and the nature of heterogeneity.

But what is it reasonable to say that we ‘know’or agree on about fH (xH)? The method

that we now describe starts from a position of ignorance. We then gradually formalize

several scenarios which vary in what is ‘known’ (in the sense of what reasonable people

might agree upon for policy making purposes) about the moments and support of this pdf.

We then explain how the extent of our ignorance, as measured by the number of moments

of the pdf that are ‘known’, affects the precision with which we can estimate the shape and

level of the term structure of certainty equivalent social discount rates.

First consider the set of all well-defined probability density functions, =H , with elements
gH , which are supported on a common interval [aH , bH ].6 We assume that there is consensus

that the “true”fH (xH) is an element of this set, but we do not know which element it is.

Next, we suppose that we only know the first K (non-central) moments of about fH (xH);

Ef
[
xkH
]

= mkH for k ≤ K where Ef [·] is the expectation operator conditional on the pdf of
xH being fH . The smaller is K, the more ignorant we are about fH (xH) , but claiming any

knowledge of the moments of the pdf allows us to narrow our search to the subset =KH ⊂ =H
that contains all elements gH with first K moments Eg

[
xkH
]

= mkH for k ≤ K. We then

6There is a restriction that aH is finite. For all the examples we consider we also take finite bH , but the
extension to infinite bH is straightforward given the results in Eckberg (1977).
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define strict upper and lower bounds for RH , RuH and RlH , by:

RuH = − 1

H
ln (inf [Eg [exp(−HxH)] |gH ∈ =KH ]) (3)

RlH = − 1

H
ln (sup [Eg [exp(−HxH)] |gH ∈ =KH ])

As expressions of the form E [exp (−HxH)] are moment generating functions (mgf), or

Laplace-Stieltjes transformations, we can invoke a powerful result from Karlin and Stud-

den (1966) to find RuH and RlH . These are derived by establishing two separate, discrete

pdfs which are, loosely speaking, ‘at opposite ends’of the support and yet share the first K

moments. The upper bound for the mgf is found by calculating the most extreme discrete

distribution to place as much mass as possible in the left hand tail (lower values of the dis-

count rate), while still satisfying the K moment conditions. The lower bound is found by

minimizing the mass in the left hand tail.

More concretely, the extreme discrete distributions place non-zero probability mass at

$ points on the interval [aH , bH ] where the number of mass points depends on the number

of moments, K, of the distribution of xH that we are willing to assume we agree upon:

$ ∈ [(K + 1)/2, (K + 3) /2]. We denote these points by VqlH (vqlH) for the lower bound

of the mgf and VquH (vquH) for the upper bound when aH = 0 (aH 6= 0), with associated

probabilities πqlH and πquH , where q indexes the mass points from smaller to larger values of

xH . In this way it is possible to define ‘sharp bounds’on the term structure of the discount

rate based on different levels of ignorance about the future.

Consider the restricted case when aH = 0 and bH = BH ; we broaden the discussion to

more general values of aH and bH in the appendix. The method of Karlin and Studden (1966)

now follows from the observation that the set of functions
{

1, xH , ..., x
K
H , (−1)K+1 exp (−HxH)

}
for H > 0 and positive integer K is a Tchebycheff system. This allows us to identify the

properties of the discrete distributions that give sharp bounds for the mgf (see, for example,

Eckberg (1977)):

VqlH VquH

K even

$ = (K + 2) /2

K/2 points in (0, BH)

One point at BH

$ = (K + 2) /2

K/2 points in (0, BH)

One point at 0

K odd
$ = (K + 1) /2

(K + 1) /2 points in (0, BH)

$ = (K + 3) /2

(K − 1) /2 points in (0, BH)

One point at 0

One point at BH
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This is suffi cient to uniquely identify each extreme discrete distribution since the number

of degrees of freedom equals the number of moment constraints. For example, for even K,

there are K/2 degrees of freedom on location and (K + 2) /2− 1 degrees of freedom for the

probabilities, giving a total number of degrees of freedom of K. It is also straightforward to

verify that there are K degrees of freedom in parameter choice when K is odd. Therefore

the extreme density functions are uniquely defined by the K moment conditions in all cases.

To illustrate this technique with an example, suppose that experts agree on the first two

moments of the distribution; K = 2. In this case the extreme distribution that generates the

lower bound for E [exp (−HxH)] contains finite mass at the upper bound of xH : V2lH = BH .

There are now two unknowns; the value V1lH , and its associated probability mass, π1lH .

V1lH must be chosen from the interval (0, BH). Given the mean and variance restrictions

this point must lie below the mean, and its placement and the probability assigned must

satisfy the agreed first two moments for the set of distributions. The upper bound extreme

distribution places more emphasis on the left hand tail of the distribution, with one of the

mass points at zero and the other mass point and probability chosen in relation to this.

The appendix describes the closed form solutions for VqlH , VquH , πqlH and πquH , which

characterize the extreme discrete distributions for the cases K = 1, K = 2 and K = 3; the

latter two are found in Eckberg (1977). As noted by (Johnson and Taaffe 1993, p.96), “less

analytically tractable cases (e.g., four or five non-central moments) call for use of symbolic or

numerical methods for solving the nonlinear equations”. We use numerical methods here.7

Clearly, the divergence between the sharp bounds on the moment generating function is

greater if we claim only to know the first moment of fH (xH). If we are willing to make

stronger claims on the characteristics of fH (xH) and suppose that we know two or more

moments of the distribution, the bounds become narrower. The less ignorant we are about

the future, the more certain we can be about the term structure of social discount rates.

Of course it is not our contention that economists will perfectly agree on the first K

moments of fH (xH) , nor even its likely support. So, while we present results that vary in

the extent of agreement over the moments of the distribution, even the scenario in which

we make the least stringent claim to know only the first moment of fH (xH) may exhibit a

fanciful level of knowledge, particularly for distant time horizons. However, as we now show,

even if we claim to know more than is realistic, the potential range over which the social

discount rate might lie, [RlH , RuH ] for any far horizon H, is often very wide. Introducing

further disagreement/ignorance amongst experts will only make this range wider.

7Details available on request from the authors.
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4 Calibration

In order to calculate the sharp bounds on the social discount rate, several ingredients are

needed. Firstly, we must calculate the support of xH for each time horizon H; aH and bH .

Second, we must determine the non-central moments of the distribution at each time horizon,

mkH = E
[
xkH
]
, in order to evaluate the impact of varying degrees of ignorance about the

future. We limit our analysis to K ∈ [1, 4] as discussions about probability density functions

rarely go beyond kurtosis.

The approach we take employs six examples from the literature. These cover the three

theoretical frameworks described in Section 2 and all result in a single declining term struc-

ture of the social discount rate. For all horizons H ≤ 400 years, we estimate aH , bH and

mkH from the baseline probability density function, FH (xH) , that was used in each case;

this section describes how this task was undertaken.8 We then assume that experts agree

that these spot estimates of aH , bH and mkH can be used for policy-making purposes. From

this level of consensus regarding fH (xH), we then calculate RlH and RuH .

4.1 ENPV

Under the ENPV model xH = rH , the average risk-free rate over the horizon of the cash flow.

There are a number of studies that have calibrated econometric models of Treasury bond

yields in order to derive empirical schedules of the social discount rate using this ENPV

approach; see, for example, Newell and Pizer (2003), Groom et al. (2007), Gollier et al.

(2008), Hepburn et al. (2009), and Freeman et al. (2013). To estimate FH here, we use

the state-space model of Groom et al. (2007). We refer to this as model “GKPP”. Our

calibrations are taken directly from Groom et al. (2007).

Let θft = ln (100rft), with rf0 = 4%. The variable θft evolves according to:

θft = η + λtθft−1 + et

λt = η1λt−1 + ut

which is an AR(1) process with time-varying autoregressive parameter, λt. The error terms

are independently and identically normally distributed (i.i.n.d.) with variance σ2e and σ
2
u

respectively and zero means. To understand the properties of FH in this case we run 25,000

simulations for H ∈ [1, 400]. In each simulation the parameters are drawn from the dis-

8In some cases FH is supported on the interval [−∞,∞] and therefore we cannot choose finite aH , bH to
completely match this range. To overcome this problem, as described below, in such cases we choose aH
and bH so that Prob(xH < aH |FH) = εa and Prob(xH > bH |FH) = εb for very small values of εa and εb.
Our results are much more sensitive to the choice of aH than bH because rH → rmin = aH as H →∞.
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tributions estimated by Groom et al. (2007) before the AR(1) process is simulated for 400

periods. The support of FH is parameterized by taking the observed minimum and max-

imum values for each H. EF [exp (−HxH)] and mkH are estimated by taking expectations

across the 25,000 simulations for all values of H. More precise details of the simulation can

be found in Appendix 2.

4.2 Consumption based asset pricing models

To derive a declining discount rate in a consumption-based asset pricing environment, we

assume throughout that ln (ct/ct−1) = µt+et where et is i.i.n.d. with mean zero and variance

σ2t . We also assume that the process is homoskedastic with known variance, σt = σ, and

that the parameters of the power utility function are γ = 2 and δ = 0. The two models

that we consider look at the parameterization of expected consumption growth, µt.

The first of this category are Markov regime switching models. Models of asset returns of

this variety have been estimated by Cecchetti et al. (2000) for the US economy. Two states

of the world are assumed to exist; good (G) and bad (B). If, at time t− 1, the world is in

state G (B) then µt = µG (µB) with µG > µB. The Markov process is such that, conditional

on being in state G (B) at time t− 1, the probability of remaining in the same state at time

t is 1− πG (1− πB). Following Gollier (2012), we use two such models in order to simulate
the uncertainty surrounding xH . In the “Markov1”simulations, the good and bad state

occur equally frequently and the latter reflects economic stagnation. In the “Markov2”

simulations, the bad state occurs rarely but is a severe recessionary environment. The

simulations are undertaken following the procedures described for the ENPV model, with

the support, EF [exp (−xHH)] and the moments mkH calculated analogously (see Appendix

2).

The third consumption based model incorporates parameter uncertainty; we call this

“Param Uncert”. This assumes that µt = µ for all t, but that the value of µ is unknown.

This approach is used as a justification for the French government’s position on long-term

social discounting, although the arguments are based on a simple numerical example rather

than an empirical analysis; see (Lebegue 2005, p.102). To calibrate this model we follow

Gollier (2012), and assume µ takes one of two values, µu > µl with equal probability. In

this case, the values of EF [exp (−HxH)] and mkH are known in closed form through the law

of total probability; EF [h (xH)] = 0.5EF [h (xH) |µ = µu] + 0.5EF [h (xH) |µ = µl] for any

function h (·) with finite expectation. Further descriptions of the calibration are given in

Appendix 2.
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4.3 Heterogeneous agent models

There are two strands of heterogeneous agent model in the empirical literature on the term

structure of discount rates. The first treats the individual agents, i, as countries or regions

and uses this framework to derive a global social discount rate (Gollier et al. (2008); Gollier

(2010); Emmerling (2010); Gollier (2012)). The second empirical approach, which we follow

here, is to seek expert opinion on the values of xH . Such a survey was the basis of the seminal

‘gamma discounting’paper of Weitzman (2001) which reports N = 2160 survey responses, ri,

from professional economists to the question: ‘Taking all relevant considerations into account,

what real interest rate do you think should be used to discount over time the (expected) benefits

and (expected) costs of projects being proposed to mitigate the possible effects of global climate

change?’. Implicit in this approach is the assumption that, for each expert, the discount

rate is independent of the time horizon, riH = ri and therefore that the pdf FH (xH) will

also be H−independent.
Empirical schedules of the social discount rate following from this survey have been

reported by Weitzman (2001), Jouini and Napp (2010) and Freeman and Groom (2013).

Here we follow the original approach taken by Weitzman (2001). He argued that the present

value of a future $1 environmental benefit should be calculated using the sample frequency

distribution of individual discount factors: pH = 2160−1
∑2160

i=1
exp (−Hri). While some

have argued that using this method to justify a theory based on probability density functions

conflates uncertainty and heterogeneity (e.g. Freeman and Groom (2013)), there remain some

theoretical justifications for this approach. For example, it follows from equation 1 if qi and

ci0 are the same for all agents. If also follows from equation 2 if each agent is weighted

equally: zi = 1/N for all i.

We estimate the sharp bounds for both the parametric and non-parametric descriptions

of the data on expert opinions. The first we label as the “Gamma”model, because we

follow Weitzman by using a gamma distribution to describe FH for all H with α = 1.904

and β = 47.231. This requires that we take aH = 0, which is the lower support of the

gamma distribution. We choose the upper bound, bH by selecting the value that gives a

0.1% probability that a random variable drawn from Γ (α, β) will be greater than this value.

This turns out to be bH = 19.12%. The benefit of the parametric assumption is that the

moment generating function and the kth non-central moments of a gamma distribution are

known in closed form: EF [exp (−HxH)] = (1 +H/β)−α and mkH = β−k
∏k−1

i=0 (α + i).

The second approach, which we call “Weit”, is non-parametric and uses simply the sample

frequency distribution of responses. This gives aH = −3% and bH = 27%, which are the

lowest and highest given answers to the survey question. The kth non-central moment is
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now given by mkH = 2160−1
∑2160

i=1
rki .

5 Results

The term structures of discount rates for the six calibrations that we consider, as given by

EF [exp (−HxH)], are illustrated by the solid lines in Figures 1 to 4 for H ≤ 400 years. We

call these the “baseline”calibrations in all cases.9

[Insert figures 1—4 around here]

As can be seen, these models all recommend a declining term structure of discount rates,

which provides robust theoretical and empirical foundations for current policy choices in

the UK, France and elsewhere. That said, there are also some clear discrepancies between

the different figures. For example, for both GKPP and Markov2 the decline in the term

structure occurs rapidly and then largely flattens out. For most of the other models the

discount rate continues to noticeably decline throughout the horizon considered. The Weit

model has negative values of RH for large H, while all other models have positive discount

rates for all horizons considered.

To understand what makes these term structures decline, Tables 1 reports the values of

mkH (k ≤ 4) for H ∈ [1, 10, 50, 100, 400].

[Insert Table 1 around here]

These six models can be broadly divided into three groups. Group 1 contains GKPP and

Markov1, Group 2 contains Param Uncert, Gamma and Weit, while Group 3’s only element

is Markov2.

The Group 1 models are distinctive; the first moment of xH declines over time while the

measures of spread (second to fourth non-central moments) are the lowest of all the models

considered, particularly at longer horizons. In these cases the declining discount rates

are primarily, but not exclusively, being driven by changes in the mean of the underlying

economic process and not the Jensen’s inequality effect that is usually used to justify DDRs.

Elements of Group 2, by contrast, have constant first moment across time apart from

small fluctuations for Param Uncert caused by the use of a finite number of simulations.

9 With the exception of the final graph, these term structures have been previously reported in the
literature. The “GKPP”line can be compared against Figure 3 in Groom et al. (2007), the “Markov1”and
“Markov2” lines can be respectively compared against the top line in Figure 5.3 of Gollier (2012) and the
top graph in Figure 5.2 of the same source, the “Param Uncert”line can be compared against Figure 6.2 of
Gollier (2012), while the “Gamma”line can be compared against Figure 1 in Freeman and Groom (2013).
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The measures of spread for these calibrations are the greatest. Therefore, unlike Group 1,

it is the uncertainty over xH that drives the schedule of DDRs. Group 3 has properties that

lie between those of Groups 1 and 2.

The support of the probability density functions, [aH , bH ] for H ∈ [1, 10, 50, 100, 400],

are reported in Table 2.

[Insert Table 2 around here]

The ENPV model is unusual in that the range bH − aH gets wider as H increases. This

is particularly caused by an increase in the upper bound over the first 50 years. For the

consumption based models, the range bH−aH gets narrower asH increases. This is primarily

a consequence of time diversification in consumption risk. Because there is no certainty that

future consumption must be above current consumption aH is frequently negative in these

cases, particularly for shorter horizons. For the heterogeneous agent models the assumption

is that fH (xH) is independent of H and therefore the values of aH and bH are fixed over

time, as are the non-central moments reported in Table 1.

We would particularly draw the reader’s attention to the difference between the Gamma

and Weit calibrations as given by the solid lines in Figure 4. These term structures are

noticeably different, particularly at long horizons, even though they are both based on the

same survey data. From Table 1 we can see that the first four non-central moments are

extremely similar for these two models and therefore they cannot explain the discrepancy

between the two lines. Table 2, though, reports that aH = 0 for Gamma while aH = −3% for

Weit at all horizonsH. The gamma approximation effectively discards the zero and negative

responses from the survey, while using the precise sample frequency does not. While only

46 (3) experts gave an answer of ri = 0%, (ri < 0%) out of a total sample size of N = 2160,

the treatment of these minority responses is crucial in determining the rate of decline of the

social discount rate because RH → min{ri} = aH as H →∞.
In Table 3, we report an example of the discrete distributions that provide the sharp

upper and lower bounds for RH ; vqlH and vquH . This is for the Markov1 model for horizons

H = 50 years and H = 200 years. As described above, these bounds are determined by

discrete distributions with non-zero mass in [aH , bH ] at between (K + 1) /2 and (K + 3)/2

points. The figures in square parentheses denote the probabilities associated with each

non-zero mass point, πqlH and πquH .

[Insert Table 3 around here]

We calculate such discrete distributions for all models and all horizons H ≤ 400 years

and the sharp bounds on the discount rate are then derived from each. These are reported
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as the dotted lines in Figures 1—4.

Consider first the two models in Group 1. For GKPP, while the bounds are clearly

distinct from the baseline calibration, the spread of potential values for RH is not particularly

great. This is because the declining schedule is driven by the mean, rather than the spread,

and aH remains well above zero for all horizons considered. For Markov1, while again the

mean is the dominant effect reducing RH with increasing H, the bounds spread is much

wider than for GKPP. This is because aH remains below zero for all H considered – see

Table 2. For the three models in Group 2, the spread of possible values for RH is wide

for all H and K beyond approximately 75 years. For the Markov2 model, there is great

uncertainty about the value of RH at a horizon of approximately 100 years but there is more

consensus for longer horizons. This is because aH continues to increase rapidly even when

H is large; see again Table 2.

Our central observation comes from these graphs. If there is a high level of agreement

between economists about the partial characteristics of fH (xH), which we would contend

there is not, even then the rate with which the social discount rate declines can take a

wide range of potential values. This will have obvious implications for the extent to which

conclusions can be drawn from CBA of intergenerational projects.

To illustrate this point, in Table 4 we calculate a Social Cost of Carbon (SCC) in US

dollars per ton of carbon ($/tC) from each of the term structures reported in Figures 1—4

using the schedule of marginal carbon damages provided by Newell and Pizer (2003). These

cash flows have a horizon of 400 years, with 50% of the undiscounted costs arising by year

170.

[Insert Table 4 around here]

Excluding Weit, the range of estimates for the baseline calibrations range from 8.3$/tC to

32.0$/tC. Weit is a considerable outlier, with an estimated SCC of $979.8/tC. This results

from the fact that RH is negative under this model for far horizons. As a consequence very

long term environmental damages are compounded rather than discounted. Again, this

shows the sensitivity of the results to the choice of aH for high values of H, which is the

primary feature that distinguishes the Weit model from the Gamma model.

For some models, providedK = 4, it is possible to estimate the SCC relatively accurately.

For example, the GKPP (Param Uncert) model has a range of $16.3/tC ($13.6/tC) to

19.9/tC ($16.5/tC). For Markov2, the range is $8.2/tC to $9.2/tC. For many models,

though, great uncertainty remains over the Social Cost of Carbon even when we assume that

moments of fH (xH) are perfectly known up to and including the kurtosis. Under Gamma

(Markov1), the range is $13.6/tC ($25.2/tC) to $46.1/tC ($85.0/tC). For values of K < 4,
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the ranges increase substantially. For example, if we only know the mean, variance and

skewness of fH (xH) under the Markov1 model, then the SCC can lie anywhere in the range

$22.6/tC —$242.2/tC.

Again, the Weit model is the outlier, with a range of potential values for the SCC of

$11.6/tC —$84,592/tC when K = 4. This schedule would make it almost impossible for a

policy maker to make any serious economic decisions about a wide range of climate change

mitigation programmes. For K = 1, we cannot even preclude the value of one and a half

million dollars per ton of carbon under this calibration.

Tables 5 reports the present value of the offi cial estimates of benefits from Phase 1 of

the HS2 rail link (London to Birmingham) that is currently being considered in the UK.

The cash flows are taken directly from the HS2 offi cial website. These arise over a 75

year period to 2085, with 50% of the undiscounted benefits occurring by year 53. Table

6 considers instead the estimated costs of decommissioning nineteen nuclear power stations

in the UK as given in the Nuclear Decommissioning Authority report and account 2012/13.

While these span over a longer time horizon than HS2 (125 years), the half-life, as it were, is

shorter, with 50% of the undiscounted costs occurring by year 29. Further details on these

cash flow estimates are available on request from the authors.

[Insert Table 5 & 6 around here]

As might be expected, given the shorter time horizons involved, the present value bounds

are narrower than for the social costs of carbon. Nevertheless, particularly when K ≤ 3,

the uncertainty is still of policy importance. For example, using gamma discounting and

K = 3, the NPV of the benefits of HS2 lies between £ 20.7bn—£ 28.3bn and the present value

costs of decommissioning the previous generation of nuclear power stations lies in the interval

£ 44.8bn—£ 51.3bn. With lower K, this uncertainty is widened considerably further.

6 Conclusion

There are strong theoretical arguments for using a declining term structure of discount rates

for intergenerational projects, and these are largely based on uncertainty about future growth

and interest rates. So persuasive have these arguments been that they are now recognised

in government policies and recommendations in the UK, France, Norway and the US. The

practical question that necessarily follows is: how can uncertainty be charactersised and the

theory be operationalised?

So far policy makers have sought a range of expert economists’advice on the best route

forward, and the experts have provided them with empirical estimates of the certainty equiv-
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alent term structure of social discount rates based on specific theories and characterisations

of uncertainty; see, for example, Gollier (2012), Arrow et al. (2012).

The fact of the matter is, though, that we know far less about the future state of the

world and the uncertainty surrounding growth and the interest rate than the complete char-

acterisations of uncertainty that many of these models suggest. This raisies the question,

how certain are we about the certainty equivalent social discount rate?

Starting from a position of relative ignorance about our knowledge of uncertainty in the

future, this paper shows that, even if these experts have strongly overlapping views on the

primatives of social discounting, and agree on the first four moments of the distribution of

growth or the interest rate, the empirical term structure of the certainty equivalent social

discount rate emerging from many theoretical models cannot be positioned within anything

but very wide bounds, particularly for long time horizons. The obvious implication of this

is that policy prescriptions become less crisp for all but the highest return public projects.

For instance viable estimates for the Social Cost of Carbon and the Net Present Values of

other intergenerational project become alarming dispersed from this position of ignorance.

Apparently trivial disagreements over parameterization choices can lead to significant differ-

ences in policy recommendations.10

While not quite a dismal theorem, overall this paper presents a depressing empirical

finding for practitioners of Cost Benefit Analysis. Even if we are willing to put issues of

Knightian uncertainty to one side, we must accept that we know little about the true nature

of uncertainty in the distant future. This admission of ignorance means that estimated

present values are likely to be so imprecise as to provide only minimal guidance to policy

makers on intergenerational projects. We may have to look elsewhere for a decision making

apparatus in such cases.

References

Almond, D. (2006), ‘Is the 1918 influenza pandemic over? Long-term effects of in utero in-

fluenza exposure in the post-1940 U.S. population’, Journal of Political Economy 114, 672—
10As a further example of this point that does not invoke sharp bounds on RH , we note that Weitzman

(2001) chose a gamma distribution to characterize his survey data largely because it has a well-known moment
generating function, leading to an elegant closed form expression for the H−period social discount rate. He
might, instead, have chosen a Wald (Inverse Gaussian) distribution, which is also supported on [0,∞) and
leads to a closed form expression for RH . In this Wald distribution case, the estimated SCC is $14.6/tC,
more than 25% lower than the baseline Gamma estimate of $20.0/tC. Indeed, a Kolmogorov-Smirnov test
marginally prefers the Wald distribution to the Gamma distribution when fitting the survey data. Details
of the properties of RH when FH (xH) is given by a Wald distribution are available on request from the
authors.

17



712.

Ang, A. & Liu, J. (2004), ‘How to discount cashflows with time-varying expected returns’,

Journal of Finance 59, 2745—2783.

Arrow, K., Cropper, M., Gollier, C., Groom, B., Heal, G., Newell, R., Nordhaus, W.,

Pindyck, R., Pizer, W., Portney, P., Sterner, T., Tol, R. & Weitzman, M. (2012), How

should benefits and costs be discounted in an intergenerational context? The views of an

expert panel. Resources for the Future Discussion Paper, RFF DP 12-53.

Arrow, K., Cropper, M., Gollier, C., Groom, B., Heal, G., Newell, R., Nordhaus, W.,

Pindyck, R., Pizer, W., Portney, P., Sterner, T., Tol, R. & Weitzman, M. (2013), ‘Deter-

mining benefits and costs for future generations’, Science 341, 349—350.

Cecchetti, S. G., Lam, P. & Mark, N. C. (2000), ‘Asset pricing with distorted beliefs: Are

equity returns too good to be true?’, American Economic Review 90, 787—805.

Cox, J. C., Ingersoll, J. E. & Ross, S. A. (1981), ‘A re-examination of traditional hypotheses

about the term structure of interest rates’, Journal of Finance 36, 769—799.

Eckberg, A. E. (1977), ‘Sharp bounds on Laplace-Stieltjes transforms, with applications to

various queueing problems’, Mathematics of Operations Research 2, 135—142.

Emmerling, J. (2010), Discounting and intragenerational equity. Mimeo: Toulouse School of

Economics.

Freeman, M. C. (2010), ‘Yes, we should discount the far-distant future at its lowest possible

rate: A resolution of the Weitzman Gollier puzzle’, Economics: The Open-Access, Open-

Assessment E-Journal 4(2010—13).

Freeman, M. C. & Groom, B. (2013), Positively gamma discounting. Loughborough Univer-

sity Working Paper.

Freeman, M. C., Groom, B., Panopoulou, E. & Pantelidis, T. (2013), Declining discount

rates and the Fisher Effect: Inflated past, discounted future? Grantham Research Insti-

tute on Climate Change and the Environment Working Paper No. 109, London School of

Economics.

Gollier, C. (2009), ‘Should we discount the far-distant future at its lowest possible rate?’,

Economics - The Open-Access, Open-Assessment E-Journal 3(2009—25), 1—14.

18



Gollier, C. (2010), Discounting, inequalities and economic convergence. CESifo working

paper: Industrial Organisation, No. 3262.

Gollier, C. (2012), Pricing the Planet’s Future: The Economics of Discounting in an Uncer-

tain World, Princeton University Press, Princeton.

Gollier, C., Koundouri, P. & Pantelidis, T. (2008), ‘Declining discount rates: Economic

justifications and implications for long-run policy’, Economic Policy 23(56), 757—795.

Gollier, C. & Weitzman, M. L. (2010), ‘How should the distant future be discounted when

discount rates are uncertain?’, Economics Letters 107(3), 350—353.

Gollier, C. & Zeckhauser, R. (2005), ‘Aggregation of heterogeneous time preferences’, Journal

of Political Economy 113, 878—896.

Groom, B., Koundouri, P., Panopoulou, E. & Pantelidis, T. (2007), ‘Discounting the distant

future: How much does model selection affect the certainty equivalent rate?’, Journal of

Applied Econometrics 22(3), 641—656.

Heal, G. (2012), Discounting - uncertainty, disagreement or both? Mimeo; Columbia Busi-

ness School.

Heal, G. & Millner, A. (2013), Discounting under disagreement. Working paper, Grantham

Research Institute, No. 112.

Hepburn, C., Koundouri, P., Panopoulou, E. & Pantelidis, T. (2009), ‘Social discounting

under uncertainty: A cross-country comparison’, Journal of Environmental Economics

and Management 57(2), 140—150.

Iverson, T. (Forthcoming), ‘Minimax regret discounting’, Journal of Environmental Eco-

nomics and Management .

Johnson, M. A. & Taaffe, M. R. (1993), ‘Tchebycheff systems for probabilistic analysis’,

American Journal of Mathematical and Management Sciences 13, 83—111.

Jouini, E., Marin, J.-M. & Napp, C. (2010), ‘Discounting and divergence of opinion’, Journal

of Economic Theory 145, 830—859.

Jouini, E. & Napp, C. (2010), Aggregation of discount rates: An equilibrium approach.

Mimeo; Université Paris-Dauphine.

Karlin, S. & Studden, W. (1966), Tchebycheff Systems: With Applications in Analysis and

Statistics, John Wiley & Sons, New York.

19



Knight, F. H. (1921), Risk, Uncertainty and Profit, Hart, Schaffner & Marx; Houghton

Miffl in Company, Boston MA.

Lebegue, D. (2005), Revision du taux de actualisation des investissem- net publics. rap-

port du groupe de experts, commisariat generale de plan., Technical report, Commisariat

Generale de Plan.

Li, C.-Z. & Löfgren, K.-G. (2000), ‘Renewable resources and economic sustainability: A dy-

namic analysis with heterogeneous time preferences’, Journal of Environmental Economics

and Management 40, 236—250.

Newell, R. G. & Pizer, W. A. (2003), ‘Discounting the distant future: How much do uncertain

rates increase valuations?’, Journal of Environmental Economics and Management 46, 52—
71.

Traeger, C. P. (Forthcoming), ‘What’s the rate: Disentangling the Weitzman and Gollier

effect’, Journal of Environmental Economics and Management .

Weitzman, M. L. (1998), ‘Why the far-distant future should be discounted at its lowest

possible rate’, Journal of Environmental Economics and Management 36(3), 201—208.

Weitzman, M. L. (2001), ‘Gamma discounting’, American Economic Review 91, 260—271.

Weitzman, M. L. (2009), ‘Onmodeling and interpreting the economics of catastrophic climate

change’, The Review of Economics and Statistics 91(1), 1—19.

20



7 Appendix 1

In this appendix, we describe in more detail the method that we use for determining RuH

and RlH . When fH (xH) is supported on the interval [aH , bH ] for aH 6= 0, we first undertake

a change of variables. Define yH = xH − aH , g
∗
H (yH) = gH (xH) and =∗KH as the set

containing all elements g∗H (yH). The lower bounds for RH are derived from the bounds for

Eg∗ [exp (−HyH)].

RlH = − 1

H
ln (exp (−HaH) sup [Eg∗ [exp(−HyH)] |g∗H ∈ =∗KH ])

and there is an analogous expression for RuH , with the supremum replaced by the infimum.

Well defined probability density functions are elements of =∗KH if and only if they are

supported on the interval [0, BH ], where BH = bH − aH and if they have the same K non-

central moments, MkH for k ≤ K. These non-central moments are given by the binomial

theorem:

MkH =
k∑
ζ=0

(−1)ζ
(
k

ζ

)
mk−ζ
kH aζH

We then use the method described in the body of the paper to find sup [Eg∗ [exp(−HyH)] |g∗H ∈ =∗KH ]

and inf [Eg∗ [exp(−HyH)] |g∗H ∈ =∗KH ] and then note that once the values of VqlH , VquH , πqlH
and πquH have been determined, RlH is then given by:

RlH = − 1

H
ln (exp (−HaH) sup [Eg∗ [exp(−HyH)] |g∗H ∈ =∗KH ])

= − 1

H
ln

(
$∑
q=1

πquH exp (−HvquH)

)

where vqlH = VqlH + aH . An analogous expression follows for RuH .

Closed form solutions for VqlH , VquH , πqlH and πquH are available for K ≤ 3. When

K = 1, the lower bound has only one mass point which is on the mean value; V1lH = M1H .

The upper bound has mass at V1uH = 0 and V2uH = BH only and the probability π1uH is set

to ensure that the mean is equal toM1H ; π1uH = (BH −M1H) / BH . Closed form solutions

for K = 2 and K = 3 are given in Eckberg (1977). For the case K = 2:

q = 1 q = 2 q = 1 q = 2

VqlH
M1HBH −M2H

BH −M1H

BH VquH 0
M2H

M1H

πqlH π1 1− π1 πquH
M2H −M2

1H

M2H

M2
1H

M2H
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where π1 = (BH −M1H)2 /
(
M2H −M2

1H + (BH −M1H)2
)
. For K = 3:

q = 1 q = 2 q = 1 q = 2 q = 3

VqlH
A1 − χ

2

A1 + χ

2
VquH 0 ζ BH

πqlH
χ+ A1 − 2M1H

2χ

χ− A1 + 2M1H

2χ
πquH 1− π∗1 − π∗2 π∗1 π∗2

where:

A1 =
M3H −M1HM2H

M2H −M2
1H

A2 =
M2
2H −M1HM3H

M2H −M2
1H

, χ =
√
A21 + 4A2

π∗2 =
M1HM3H −M2

2H

M1HB3
H − 2M2HB2

H +M3HBH

, π∗1 =
(M1H − q2BH)2

M2H − q2B2
H

, ζ =
M2H − q2B2

H

M1H − q2BH

8 Appendix 2

Here we describe in detail the way in which the simulations are undertaken.

8.1 ‘GKPP’State Space model:

The parameter estimates (with associated standard errors) are η = 0.510 (0.0082), η1 = 0.990

(0.002), ln(σ2e) = −9.158 (1.324), ln (σ2u) = −6.730 (0.144). To characterize FH we run 25,000

simulations for H ∈ [1, 400]. For each simulation we initially draw values of η, η1, ln(σ2e)

and ln (σ2u) at random from normal distributions with the appropriate mean and variance.

Following Groom et al. (2007) we discard simulations with η1 > 1. We then simulate

the AR(1) process for 400 periods. This process can lead to some high values of rft,

particularly when η1 is close to 1, and therefore we discard simulations where rft > 100%

at any point in the 400 year horizon. In order to parameterize aH and bH , we note the

minimum and maximum values taken by xH across the 25,000 simulations for all H. We

then approximate a functional form: aH = φa (min (xH) , H), bH = φb (max (xH) , H) to

smooth small fluctuations caused by the fact that min (xH) and max (xH) are estimated over

a finite number of simulations. The values of EF [exp (−HxH)] and mkH are calculated by

taking expectations across the 25,000 simulations for all values of H.
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8.2 Consumption Based models

8.2.1 Markov 1 and Markov 2:

For each simulation, we set the initial state to G. For model “Markov1”, µG = 2%, µB = 0%,

πG = πB = 1% and σt = σ = 3.6% while for "Markov 2”, µG = 2.25%, µB = −6.78%,

πG = 2.2%, πB = 48.4% and σt = σ = 3.13%.

Following the techniques used for model GKPP, we estimate the properties of FH across

25,000 simulations. This enables us to calculate both EF [exp (−HxH)] and the moments

of xH . To parameterize aH and bH we again note the minimum and maximum values

taken by xH across the 25,000 simulations for all H and use smoothing functions, aH =

φ∗a (min (xH) , H), bH = φ∗b (max (xH) , H) , to eliminate small fluctuations caused by the use

of a finite number of simulations.

8.2.2 "Param Uncert":

The calibration is based upon Gollier (2012); µu = 3% and µl = 1%. These outcomes are

equally likely. The limits of the support, aH and bH , are estimated by setting Φl (aH) = 0.1%

and Φu (bH) = 99.9%, where Φu and Φl denote the cumulative density functions of normal

variables N (µu, σ
2) and N (µl, σ

2) respectively.
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Figure 1. This figure presents the term structure of social discount rates as given through

the ENPV setting by the state-space model of Groom et al. (2007). The solid line is

the baseline parameterization from this model, which can be compared against Figure 3

in Groom et al. (2007). We then present upper and lower bounds on RH conditional on

matching the first K moments of FH (xH) for K ∈ [1, 4] as reported in Table 1. The support

of the probability density function is also restricted to lie in [aH , bH ] for values of aH and bH
reported in Table 2.
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Figure 2. As Figure 1, except FH (xH) is now derived from two Markov switching models for

logarithmic consumption growth. The solid line in the top graph can be compared against

the top line in Figure 5.3 of Gollier (2012), while the solid line in the bottom graph should

be compared against the top graph in Figure 5.2 of the same source.
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Figure 3. As Figures 1 and 2, except FH (xH) is now derived from the parameter uncertainty

model for logarithmic consumption growth. The solid line can be compared against Figure

6.2 of Gollier (2012).
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Figure 4. As Figures 1—3, except FH (xH) is now derived from Weitzman’s seminal (2001)

“gamma discounting” survey. The solid line in the top graph can be compared against

Figure 1 of Freeman and Groom (2013). The top graph follows Weitzman in using a

gamma distribution to approximate the sample frequency of responses, while the bottom

graph does not make this approximation and uses the raw sample distribution instead.
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GKPP Markov1 Markov2 Param Uncert Gamma Weit

Panel A: m1H ; First non-central moment
H=1 3.192% 4.057% 4.546% 4.030% 4.031% 3.937%
H=10 2.707% 3.830% 3.869% 4.016% 4.031% 3.937%
H=50 2.560% 3.267% 3.741% 4.021% 4.031% 3.937%
H=100 2.458% 2.859% 3.727% 4.014% 4.031% 3.937%
H=400 2.198% 2.247% 3.718% 4.015% 4.031% 3.937%

Panel B: m2H ; Second non-central moment
H=1 0.103% 0.679% 0.603% 0.735% 0.248% 0.242%
H=10 0.076% 0.202% 0.217% 0.254% 0.248% 0.242%
H=50 0.081% 0.130% 0.155% 0.212% 0.248% 0.242%
H=100 0.079% 0.102% 0.147% 0.206% 0.248% 0.242%
H=400 0.055% 0.060% 0.140% 0.203% 0.248% 0.242%

Panel C: m3H ; Third non-central moment
H=1 3.344E-05 6.918E-04 6.415E-04 7.589E-04 2.048E-04 2.241E-04
H=10 2.194E-05 1.192E-04 1.201E-04 1.769E-04 2.048E-04 2.241E-04
H=50 5.186E-05 5.589E-05 6.858E-05 1.260E-04 2.048E-04 2.241E-04
H=100 5.281E-05 3.951E-05 6.021E-05 1.191E-04 2.048E-04 2.241E-04
H=400 1.788E-05 1.763E-05 5.362E-05 1.145E-04 2.048E-04 2.241E-04

Panel D: m4H ; Fourth non-central moment
H=1 1.098E-06 1.336E-04 1.012E-04 1.574E-04 2.127E-05 2.923E-05
H=10 6.616E-07 7.845E-06 8.235E-06 1.386E-05 2.127E-05 2.923E-05
H=50 8.736E-06 2.551E-06 3.183E-06 7.958E-06 2.127E-05 2.923E-05
H=100 7.786E-06 1.621E-06 2.559E-06 7.250E-06 2.127E-05 2.923E-05
H=400 9.660E-07 5.564E-07 2.076E-06 6.776E-06 2.127E-05 2.923E-05

Table 1. This table presents the first four moments of FH (xH) as estimated from the

different models for H ∈ [1, 10, 50, 100, 400].
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GKPP Markov1 Markov2 Param Uncert Gamma Weit

Panel D: Lower support of pdf, aH
H=1 2.17% -29.49% -19.14% -20.25% 0.00% -3.00%
H=10 1.32% -8.20% -10.85% -5.04% 0.00% -3.00%
H=50 1.28% -3.35% -5.06% -1.15% 0.00% -3.00%
H=100 1.26% -2.28% -2.56% -0.22% 0.00% -3.00%
H=400 1.22% -1.05% 2.43% 0.89% 0.00% -3.00%

Panel E: Upper support of pdf, bH
H=1 4.77% 21.74% 21.67% 28.25% 19.12% 27.00%
H=10 11.15% 12.34% 12.44% 13.04% 19.12% 27.00%
H=50 100.00% 8.30% 8.44% 9.15% 19.12% 27.00%
H=100 100.00% 7.00% 7.14% 8.22% 19.12% 27.00%
H=400 100.00% 4.98% 5.11% 7.11% 19.12% 27.00%

Table 2. This table presents the upper and lower support levels, aH and bH , for the proba-
bility density functions that we consider when generating sharp upper and lower bounds for

RH for H ∈ [1, 10, 50, 100, 400].
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Lower bound on RH Upper bound on RH

v1uH v2uH v3uH v1lH v2lH v3lH

Panel A: H = 50
K=1 -3.35% 8.30% 3.27%

[43.22%] [56.78%] [100%]
K=2 -3.35% 3.62% 2.80% 8.30%

[5.11%] [94.89%] [91.49%] [8.51%]
K=3 -3.35% 3.21% 8.30% 1.22% 4.42%

[2.74%] [92.70%] [4.56%] [36.13%] [63.87%]
K=4 -3.35% 1.78% 4.66% 0.79% 4.07% 8.30%

[0.69%] [46.54%] [52.77%] [25.99%] [72.85%] [1.16%]

Panel B: H = 200
K=1 -1.55% 5.90% 2.49%

[45.82%] [54.18%] [100%]
K=2 -1.55% 2.87% 2.04% 5.90%

[8.56%] [91.44%] [88.43%] [11.57%]
K=3 -1.55% 2.44% 5.90% 1.11% 3.60%

[4.62%] [88.77%] [6.61%] [44.67%] [55.33%]
K=4 -1.55% 1.49% 3.80% 0.85% 3.25% 5.90%

[1.35%] [53.70%] [44.96%] [34.07%] [63.90%] [2.03%]

Table 3. For model Markov1 and H = 50, 200 years, this table presents the discrete

distributions that result in the upper and lower bounds for RH ; vquH and vqlH . Figures in

square parentheses give the probabilities, πquH and πqlH , associated with each value of xH
that has non-zero mass.
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GKPP Markov1 Markov2 Param Uncert Gamma Weit

Panel A: Baseline SCC
17.5 32.0 8.3 14.4 20.0 979.8

Panel B: Lowest SCC
K=1 14.7 10.3 6.3 5.4 5.3 5.6
K=2 14.9 13.8 7.1 8.6 7.2 6.9
K=3 16.2 22.6 8.0 12.9 11.1 9.9
K=4 16.3 25.2 8.2 13.6 13.6 11.6

Panel C: Highest SCC
K=1 42.3 2,452.9 471.6 89.2 188.9 1,549,070
K=2 25.6 447.0 32.4 38.9 83.7 309,301
K=3 24.7 242.2 17.1 27.3 63.8 189,093
K=4 19.9 85.0 9.2 16.5 46.1 84,592

Table 4. This table presents estimates of the Social Cost of Carbon (SCC) in terms of
dollars per tonne of carbon ($/tC) for each model considered. Marginal damages of carbon

emissions are taken from Newell and Pizer (2003). Panel A presents the estimate of the

SCC derived from each schedule of discount rates. Panels B and C present minimum and

maximum estimates of the SCC for each model, where the discount rate is respectively taken

from the sharp upper and lower bounds of RH for that model.
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GKPP Markov1 Markov2 Param Uncert Gamma Weit

Panel A: Baseline HS2 benefits
27.0 25.0 18.4 21.9 23.1 22.9

Panel B: Lowest HS2 benefits
K=1 25.3 18.5 15.4 13.9 13.8 14.3
K=2 25.5 21.1 16.8 18.0 16.7 16.4
K=3 26.3 24.3 18.1 21.3 20.7 19.9
K=4 26.4 24.7 18.3 21.7 22.1 21.2

Panel C: Highest HS2 benefits
K=1 44.7 199.8 351.8 74.1 66.7 330.4
K=2 29.9 39.6 33.7 31.3 33.2 73.5
K=3 29.4 30.9 23.5 25.4 28.3 50.8
K=4 27.6 25.7 18.9 22.3 25.0 32.8

Table 5. As Table 4, but now this reflects the present value of the estimated benefits of
Phase 1 of the High Speed 2 (HS2) rail line in the UK; London to Birmingham (£ bn).
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GKPP Markov1 Markov2 Param Uncert Gamma Weit

Panel A: Baseline decommissioning costs
51.9 48.7 43.4 46.1 46.8 46.9

Panel B: Lowest decommissioning costs
K=1 50.6 42.9 40.4 39.1 38.9 39.5
K=2 50.7 45.3 42.0 42.9 41.7 41.6
K=3 51.4 48.0 43.2 45.5 44.8 44.4
K=4 51.4 48.3 43.3 45.9 45.9 45.4

Panel C: Highest decommissioning costs
K=1 67.0 209.4 314.2 94.1 85.3 376.7
K=2 54.1 62.7 55.5 53.8 55.2 102.6
K=3 53.7 54.6 47.5 49.0 51.3 78.5
K=4 52.3 49.4 43.8 46.4 48.6 59.0

Table 6. As Tables 4 & 5, but now the present values are associated with the costs of

decommissioning the previous generation of nuclear power stations in the UK as given in the

2012/13 report and accounts of the Nuclear Decommissioning Authority (£ bn).
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