The Economics of Steering the Transition to a Low Carbon Economy

	Monday 20 th October: Understanding Climate Risk								
	10.30 – 11.30	Session 1:	A framework for the economics of low-carbon change						
	11.30 – 12.00	Break							
	12.00 – 13.00	Session 2:	Exploring the Apparent Trade-Offs Between Reducing Climate Risk and Fostering Growth						
	13.00 – 15.00	Lunch							
	15.00 – 16.00	Session 3:	The Dynamic Net Economic Costs of Transition						
	16.30 – 17.00	Session 4:	Wrap-up and Open Discussion						
S									
× ◆ 除									
K									

ISF

INDACION RAMON

A framework for the economics of low-carbon change

Copyright © LSE 2014

A framework for the economics of low-carbon change

Part I: Understanding climate risk

Part II: Working with Uncertainty

Part III: Endogenous growth

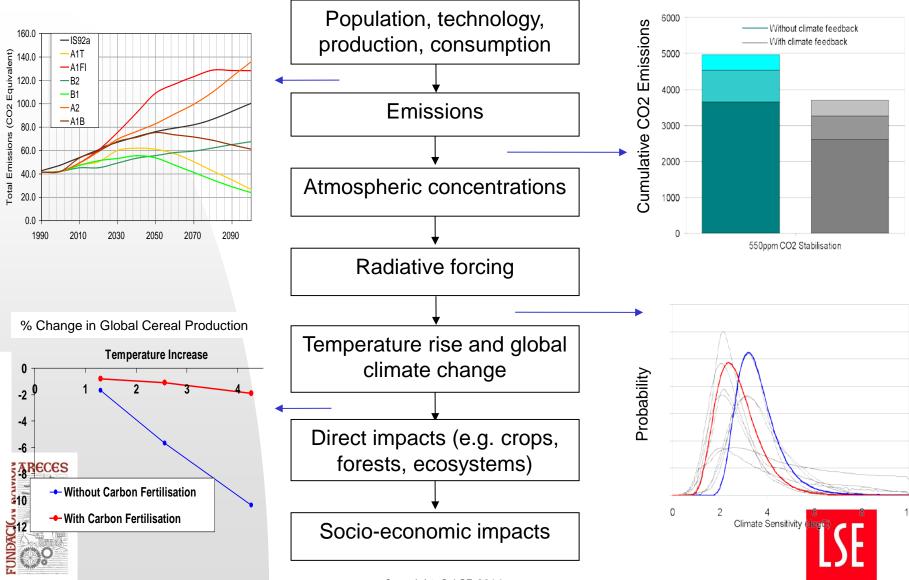
Part I: Understanding climate risk

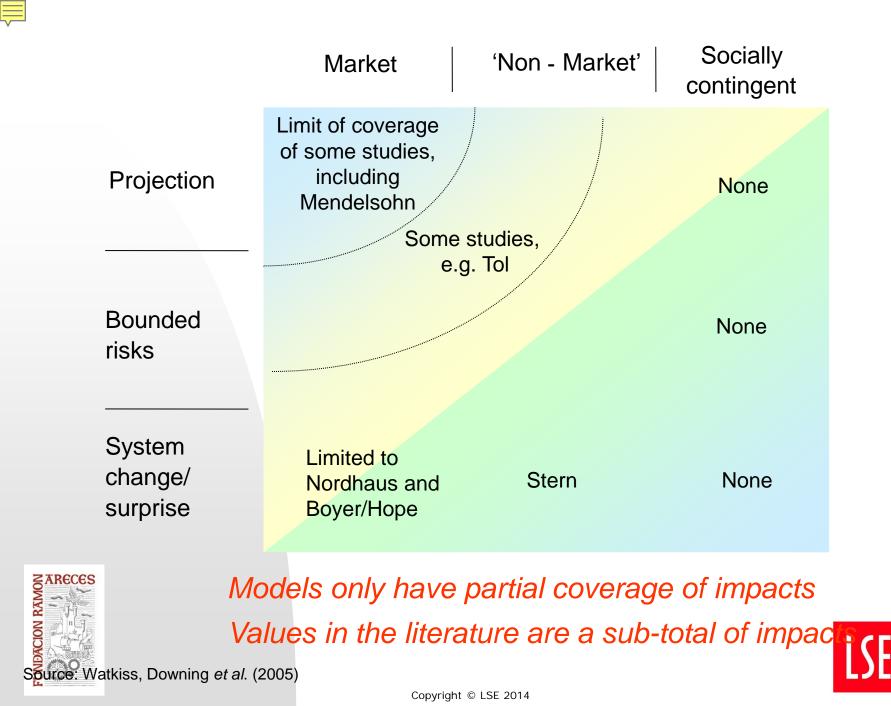
- The next 15 years of investment will also determine the future of the world's climate system
- Climate change caused by past greenhouse gas emissions is already having serious economic consequences, especially in more exposed areas of the world
- Without stronger action in the next 10-15 years, which leads global emissions to peak and then fall, it is near certain that global average warming will exceed 2°C, the level the international community has agreed not to cross
- On current trends, warming could exceed 4°C by the end of the century, with extreme and potentially irreversible impacts

Part I: Understanding climate risk

- Stocks not flows of greenhouse gases affect climate
- The Intergovernmental Panel on Climate Change (IPCC)'s review of recent emission projections suggests that if current trends continue, global emissions in 2030 will be around 68 Gt CO₂e, compared with around 50 Gt CO₂e today
- To have a likely (more than two-thirds) chance of holding the average global temperature rise to 2°C, the IPCC suggests that by 2030, global emissions should be no more than 42 Gt CO₂e per year
- Would need to fall thereafter to near 25 Gt CO₂e by 2050 and below 10 CO₂e by end-century (stabilise)

Need to understand uncertainty – how would a business react?


Estimates based on analysis of the IPCC's review of emission scenarios, as shown in Figure SPM.4 and Table SPM.1 in IPCC, 2014. Summary for Policymakers (IPCC *AR5*, Working Group III).



	Part I:	Unde	nderstanding climate risk				
0°C	Global tem 1°C	perature cha 2°C	nge (relative 3°C	to pre-indus 4°C	trial) 5°C		
Food	Falling crop yields in many areas, particularly developing regionsPossible rising yields inFalling yields in many						
		titude regions		developed regions			
Water	Small mountain gl disappear – wate supplies threatene several areas	aciers availab Meditei	ant decreases in ility in many area rranean and Sour	as, including	Sea level rise threatens major cities		
Ecosyst							
	Extensive Dama to Coral Reefs	ge Rising	nction				
Extreme Weathe	ctreme eather Event: ^{Rising intensity of storms, forest fires, droughts, flooding and heat waves}						
Major Ir	Risk of Abrupt and Major Irreversible Changes		Increasing risk of dangerous feedbacks and abrupt, large-scale shifts in the climate system				
			pyright © LSE 2014				

Part II: Cascade of Uncertainty

Copyright © LSE 2014

Part III: Endogenous growth (i)

- Thomas Malthus posited that finite resources would constrain humans' ability to supply rising demand
- But every mouth is born with a brain and knowledge and innovation weightless; helped us do more with resources we have
- Recent **endogenous-growth theory** has focused on the factors that drive technology in an attempt to understand its role in economic growth
- Knowledge has the potential to positively impact capital productivity
- The concept of "knowledge capital" ~ similar to physical capital, but is dependent on a number of factors such as cumulative R&D expenditures and physical and human capital investment
- Even in a materially stationary state, indefinite growth in well-being is possible because of progress in the intellectual economy
- Not new: Adam Smith argued that the division of labour is limited by the extent of the market (Smith, 1776), and economic growth enlarges markets and permits greater specialisation and variety; increasing returns to scale stimulate economic growth (Young, 1928)

Part III: Endogenous growth (ii)

- New equipment enables new ideas and innovation in technologies.
- E.g. investing in computers induces bright ideas on how to use them.
- Investment in physical and knowledge capital drives increasing returns to scale in production, where more knowledge begets increased output and liberates resources for further investment (Romer 1990/1994 Solow 1999*)
- A virtuous growth spiral in which future output becomes "pathdependent." It's what Malthus (and many others) missed
- This lecture examines the impact of endogenous growth on assessing the transition to a low carbon economy

*Romer P.M. (1990), "Endogenous Technical Change,"Journal of Political Economy, 98:S71-S102. Romer P.M. (1994), "The Origins of Endogenous Growth," Journal of Economic Perspectives, 8:3-22. Solow, R.M. (1999), "Neoclassical Growth Theory," Taylor J.B. and Woodard M., eds., "Handbook of Macroeconomics," vol. 1A (North-Holland, Amsterdam).

Part III: Endogenous Growth and Climate

Dietz and Stern (2014) use Nordhaus' static 'DICE' models. Take more strongly into account three essential elements of the climate problem

- the endogeneity of growth, relaxed underlying drivers of economic growth are exogenous and unaffected by climate change
- the convexity of damages,
- and climate risk

To facilitate comparison with Nordhaus' work, all of the analysis is conducted with a high pure-time discount rate

Main innovation: the damages from climate change affect the drivers of long-run growth, not just current output. Cant just add/subtracts levels impacts off a pre-determined trend*.

They find business-as-usual trajectories of greenhouse gas emissions give rise to potentially large impacts on growth and prosperity in the future, especially after 2100.

*See also Daniel et al, 'Applying Asset Pricing Theory to Calibrate the Price of Climate Risk: A Declining Optimal Price for Carbon Emissions' American Economic Association Meetings, January 2015.

Key reading

Ackerman, F. and Daniel, J., 2014. *(Mis)understanding Climate Policy: The role of economic modelling*. Synapse Energy Economics, Cambridge MA. Prepared for Friends of the Earth and WWF-UK. Available at: <u>https://www.foe.co.uk/sites/default/files/downloads/synapse-misunderstanding-climate-policy-low-res-46332.pdf</u>.

Aghion, P.; Howitt, P.; (2009) *The economics of growth*. Massachusetts Institute of Technology (MIT) Press: Cambridge, US. <u>http://discovery.ucl.ac.uk/17829/</u>

Aghion, P., Hepburn, C., Teytelboym, A., and Zenghelis, D., (2014). *Path-dependency, innovation and the economics of climate change*.

Simon Dietz & Nicholas Stern, (2014). *Endogenous growth, convexity of damages and climate risk: how Nordhaus' framework supports deep cuts in carbon emissions*, GRI Working Papers 180, Grantham Research Institute on Climate Change and the Environment. <u>http://www.lse.ac.uk/GranthamInstitute/wp-content/uploads/2014/06/Working-Paper-159-Dietz-and-Stern-2014.pdf</u>

Global Commission on the Economy and Climate, 2014. *Better Growth, Better Climate: The New Climate Economy Report,* Chapter 5, Available at <u>http://newclimateeconomy.report</u>

Mazzucato, M. (2011), The Entrepreneurial State, London: Demos.

Stern, N (2007): *The economics of climate change*, Cambridge University Press, Cambridge

