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Introduction 

The 2012 growing season saw one of the worst droughts in a 

generation in much of the United States. A warm, dry winter 

ended early and abruptly with an extraordinary heat wave in 

March that left soils parched in much of the country. A hot 

spring and hotter summer, punctuated by a near-

unprecedented hot June, left many crops stunted and heat 

stressed. Sustained hot conditions significantly accelerated 

crop development stages, and continued hot dry conditions 

through July meant plant stress during key stages around 

flowering in much of the Corn Belt [1]. Drought extent finally 

peaked in September, at which point 65.45% of the contiguous 

United States was experiencing drought conditions according 

to the U.S. Drought Monitor [2].  

   Droughts in Europe, the worst in several decades in some 

regions, and in Russia kept U.S. export demand high and 

emphasized the importance of a global perspective for U.S. 

agricultural policy and commercial interests [3]. More than any 

other season in recent memory, 2012 has cast a harsh light on 

the need for better analytic tools and a comprehensive 

approach to predicting and preparing for the effects of extreme 

weather on agriculture.  

   We present here an example of a simulation-based forecast 

for the 2012 U.S. maize growing season produced as part of a 

high-resolution, multi-scale, predictive mechanistic modeling 

study designed for decision support, risk management, and 

counterfactual analysis. The simulations undertaken for this 

analysis were performed in December 2012 using weather data 

up to and including November 30 2012, making it less a 

forecast of the harvest itself (which was largely completed 

before this date) than a forecast of the official county-level 

statistics of the 2012 harvest, scheduled for release on 

February 21, 2013 [4]. The presence of useful predictive 

information in a zero lead time forecast such as this is a 

necessary, although obviously not sufficient, condition of a 

framework’s ability to provide useful predictive information at 

longer lead times.  

   Broadly speaking, our goal in presenting this study is to 

demonstrate an improved multi-model simulation framework 

that can contribute to an understanding of where and how 

extreme conditions negatively impact U.S. agriculture. Such an 

understanding can help scientists, policy-makers, and 

stakeholders elucidate farm- and system-level changes that 

could be implemented in order to mitigate the impacts of similar 

droughts in the future. By presenting forecasts of 2012 county-, 

state-, and national-level maize yields before the official 

county-level statistics are reported by the USDA, we provide a 

basis for subsequent critical evaluation of the framework’s 

ability, with current technology, data, and models, to forecast 

the agricultural impacts of extreme weather. In so doing, we 

also contribute to understanding the validity of dynamic 

process crop models for assessing the impacts of a hotter 

future on agriculture as a result of climate change.  

   Predictive forecasts at any scale must address four basic 

properties: validation, uncertainty, credibility, and clarity. 

For example, the hindcasts presented here are validated 

against NASS statistics at the county, state, and national level 

and will be the subject of a subsequent peer-reviewed and 

publicly accessible validation study. To characterize and 

communicate the degree of certainty in our forecasts 

explicitly, we express predictions at each scale probabilistically 

based on model performance in the preceding years (Fig. 1).To 

establish our approach as credible, for example, we are 

            
Fig 1: Left: Simulated (dashed line and points), observed (solid line and points), and observed linear trend (dashed straight green line) 

of national average maize yield in metric tons per hectare from 1979-2012. The red dot indicates a USDA estimate for 2012 that has not yet 
been finalized. Gray shading indicates the range of the resampled forecast error. One year falls far outside this interval (circled in red): in 

1993 excessive rainfall led to water-logged soils throughout much of the Midwest, causing root death and reduced growth [5]. We have made 
no attempt to capture this effect in the simulations described here since we are primarily interested in the effects of heat and drought. We show 
the central 95% (lighter bands) and 75% (darker bands) of the resampled forecast error distribution.  Right: Deviation from observed of the 

simulated national maize yield as a percent of the observation in each year. The red dot and line indicate that the “observational value” used 
for 2012 is an estimate that is not yet official. 

 



 
Fig 2: Median deviation of simulated county-level yields from linear trend as a percentage of 
county-specific trend yield from 1979 to 2011 (extrapolated to 2012). Only counties with at 
least 500 ha of maize harvested in 2011 are shown.  

publishing zero lead time county-, state- and national-level 

forecasts of U.S. maize yields for the 2012 season [6], 

complemented by hindcasts from 1979 to 2011 (Fig. 1), ahead 

of official county-level statistics. The final essential property of 

a good prediction is that it be communicated to stakeholders in 

a way that provides clear and actionable information about 

risks and outcomes. Elements essential for prediction clarity 

include (a) clearly defined assumptions, (b) expression of 

results in terms of decision-relevant metrics familiar to 

stakeholders, and c) risk communication through simple but 

robust probabilistic measures of uncertainty.  

   For example, the USDA released in February 2013 their 

annual report on long-term agricultural projections (for 2013-

2022) [7]. Despite substantial variability in actual maize yields 

around the linear trend over the past 30 years (e.g., see Fig. 1), 

the report assumes that yields in 2013 will revert back to the 

linear trend and describes expected production over the next 

decade deterministically (i.e., it does not provide uncertainty 

estimates). A consequence of such reports is media coverage 

such as the following: 

U.S. corn output is projected to increase 34% to 14.4 billion 

bushels in the 2013-14 season, the USDA said yesterday 

in a 10-year forecast. – Bloomberg News 02/12/13 [8] 

This is clearly a misreading of the report, which is meant to 

provide a long-term baseline for agricultural production and 

trade rather than a prediction for next year’s harvest. Such 

miscommunications could be minimized given clear 

explanation of the assumptions, uncertainties, and appropriate 

uses of future forecasts. 
 

The model, inputs, and results 

We have undertaken a high-resolution mechanistic model-

based assessment of the 2012 growing season in the United 

States. The modeling framework used here is called the 

parallel System for Integrating Impacts Models and Sectors 

(pSIMS). At the core of this system is the process-based crop 

model CERES-Maize, distributed as part of the Decision 

Support System for Agrotechnology Transfer (DSSAT) [9]. 

Simulations are performed at 5-arcminute spatial resolution 

(about 10 km) and driven by input data at a variety of spatial 

and temporal scales including 

 daily time-series of key weather variables 

spanning January 1, 1979 to November 30, 

2012, from the North American Regional 

Reanalysis [10];  

 soil profiles estimated from the Harmonized 

World Soils Database [11];  

 observed planting and maturity dates and 

planting densities from the USDA crop 

progress reports released weekly during the 

growing season for many decades, generally 

at the resolution of states or crop reporting 

districts,  

 county-level data from 1979 to 2011 on 

irrigated and rainfed harvested areas from 

USDA NASS; and  

 estimates of the distribution of land and management 

practices at the subcounty level from the Spatial Production 

and Allocation Model dataset [12].  

Simulations are performed everywhere in the conterminous 

U.S. for rainfed and irrigated maize, with 2 cultivars chosen 

based on the recent local history of growing degree units, and 

5 planting dates (the dates at which 10, 30, 50, 70 and 90% of 

the crop is reported to be planted in each year according to the 

USDA crop progress reports). The results are then aggregated 

to the county level and compared with survey-based historical 

observations of yields from the USDA NASS to estimate 

reseampled forecast errors as in Fig. 1 and validate the overall 

forecast. Results indicate that the drought damage was fairly 

well distributed across the major grain-producing regions of the 

country, with the worst-hit areas in the Midwest (Fig. 2).   

   We estimate national average yields of 7.507 t/ha for 2012, 

24.6% below the expected value based on increasing trend 

yield alone, with an interval based on resampled forecasts 

errors (not including 1993) stretching from 6.768 to 8.967 t/ha 

(Fig. 1) (the lower bound is 5.586 with 1993 included in the 

analysis). On average, the median yield simulations deviate 

from NASS observations by 8.3% from 1979 to 2011 (6.5% 

without including 1993). For comparison with 2012, the USDA 

releases a national maize yield forecast every month starting in 

early August of each year (with the last forecast released in 

November), based on surveys of kernel counts and weights 

from fields around the country. In 2012, the USDA August 

forecast for National average maize yield was 7.746 t/ha, which 

was revised down twice to 7.658 t/ha in October before being 

tweaked up to 7.676 t/ha in November (the red dot in Fig. 1).  

   Mechanistic models have the added benefit of being capable 

of simulating counterfactual scenarios in order to explore the 

major causes and potential ameliorating factors of extreme 

events. For example, in addition to the basic hindcast and zero 

lead time forecast, we performed a simple counterfactual 

experiment to characterize the similarities and differences 

between 2012 and 1988, the most recent comparable drought 

year. To do so, we swapped the observed weather for 1988 

and 2012 and ran the simulations with all else equal. The 

findings indicate that, even though the losses in 1988 relative 

to trend were more severe (30.1% loss relative to trend, 



compared to 24.6% in 2012), the weather in 2012 was actually 

far worse. According to the counterfactual simulations, if 

weather in 1988 had matched what we saw in 2012, losses 

would have approached 37.2% of trend. Similarly, the scenario 

indicates that if the 2012 season had seen weather like 1988, 

losses relative to trend would have been only 13.4%.  

   These results imply that system-level changes or adaptations 

have occurred since 1988 that could be used to improve further 

drought-response strategies. Counterfactuals can also be used 

to quantify the benefits of system-level management and 

technology changes, such as increased water retention and 

irrigation, which have the potential for substantial contributions 

to risk management and adaptation planning.  
 

Discussion 

Hot and dry conditions during the 2012 growing season led to 

devastating crop losses in much of the country, and likely the 

worst U.S. maize harvest (relative to the increasing yield trend) 

since at least 1988. Investments in modern assessment, 

planning, and decision-support tools that can provide 

actionable local information within a global context that satisfies 

the four principles of validation, uncertainty, credibility, and 

clarity could improve risk assessment, increase lead times for 

decisions at seasonal to multidecadal timescales, and help 

stakeholders prepare for a warmer climate as global 

temperatures continue to rise. Continued advances, such as 

improved tracking of drought and climate change effects, 

require better metrics for measuring drought and heat events, 

long-running programs for monitoring climate change effects in 

agriculture, and tools for identifying hotspots as they emerge.  

   While better monitoring and modeling can help us prepare for 

these events by mitigating and managing our risk and 

exposure, forecasting tools developed in concert with farm 

management practices will foster more effective risk 

management. Drought tolerance, for example, can be improved 

by changes in farming methods from the field scale to the 

system scale, such as more investment in tolerant hybrids, 

efficient irrigation technologies that leverage sustainable water 

resources and minimize ground water depletion, low-till and no-

till farming, and improved soil water retention through cover 

crops and smart fallow management.  

   Forecasts, ideally probabilistic forecasts, from systems such 

as the one presented above can play a significant role in 

improving modern crop-risk management, reducing losses, and 

increasing returns. For forecast tools to remain relevant and 

credible, whether based on mechanistic or on empirical models 

(or a combination of the two), they must be open and accepting 

of the limitations and uncertainties in their frameworks and 

strive to continuously evaluate and improve their underlying 

components and methodologies. 

   In the present analysis, we found that the model missed the 

observations signficantly in some years, while estimating other 

years very accurately. Mechanistic models have the 

advantage, relative to empirical models, that they can be used 

for counter-factual analysis; when and where forecasts with 

mechanistic models go wrong (or right), they can be used to 

understand why the forecast went wrong (right) and, with some 

examination, often even indicate what it is about the system 

that one doesn’t (or does) understand. Subsequent analysis of 

these results will study these outcomes.  

  Droughts and other climate extremes call for a comprehensive 

approach to monitoring, modeling, and predicting growing 

seasons globally by using a combination of statistical models, 

real-time satellite observations, and high-resolution process-

based models. Learning from the successes of weather 

forecasting, researchers need to bring together data and 

models in a probabilistic framework that leverages real-time 

data and high-performance computing to improve risk 

assessment for a range of scales, such as demonstrated here. 
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