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1 Introduction

For more than two decades, environmental law and regulation was dominated
by command-and-control approaches typically either mandated pollution con-
trol technologies or inflexible discharge standards. In the 1980s policy makers
increasingly explored market-based environmental policy instruments. Such
mechanisms should provide economic incentives for firms and individuals to
carry out cost-effective pollution control. In particular, in a market-based sys-
tem the theory is that participants trade permits thereby minimizing the cost
of pollution control to society. The source of these cost savings is the capacity
of economic instruments to take advantage of the large differentials abatement
costs across polluters. 1 In a cap-and-trade system, regulators set a target level
for emissions (i.e. the cap) and issue permits which are allocated according to
different criteria (auctioning, grandfathering, etc.) to the installations partic-
ipating in the program. To enforce the cap, a penalty is levied for each unit
of pollutant emitted outside the limits of a given compliance period. Firms
may either reduce their own pollution or purchase emission permits in order
to ensure compliance. This transfer of permits by trading is the core principle
leading to the minimization of the costs caused by regulation; firms that can
easily reduce emissions will do so, while those that cannot buy permits. Cap-
and-trade systems continue today to be at the center of actions linked with
global climate change. In 2005, in an effort to meet targets under the Kyoto
Protocol, European policy makers launched the so-called European Emission
Trading Scheme (EU ETS). Most recently, cap-and-trade systems have been
discussed as a possible means to reduce carbon dioxide and other greenhouse
gas emissions in the U.S.

Given the prevalence of cap-and-trade schemes, a clear understanding of the
carbon pricing mechanism is obvious. Only a handful of papers in the liter-
ature are devoted to permit pricing and we briefly review those related to
our paper. One of the first references to market-based techniques for deal-
ing with pollution problems can be found in the seminal works of Coase [8]
and Dales [9]. Based on such an idea, Montgomery [14] provides, in a de-
terministic setting, a rigorous theoretical justification of how a market-based
approach leads to the efficient allocation of abatement costs across various
pollution sources. Recently, in an effort to bridge the gap between theory and
observed market-price behavior, an increasing number of empirical studies
have investigated the historical time series of the price of emission permits.
In the context of the first EU ETS phase (2005-2007) the following classes of
processes have been applied to the permit price series: jump-diffusion mod-

1 We refer to Baumol and Oates [2] for a complete discussion on market-based
policy measures, and to Taschini [17] for an introductory review on fundamental
concepts in environmental economics.
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els (Wagner [19], Daskalakis et al. [10]), GARCH-models (Benz and Trück
[3] and Wagner [19]), regime-switching models (Wagner [19], Benz and Trück
[3]), Mix-Normal GARCH-models (Paolella and Taschini [15]) and two-factor
models (Cetin and Verschuere [6]). Other authors support the argument that
the permit price responds to macroeconomic fundamentals and try to explain
the price evolution of emission permits in terms of electricity, gas, oil and coal
prices and weather effects (cf. Hintermann [12] and Mansanet-Bataller et al.
[13]).

A theoretical strand of literature evolved recently describing the price dy-
namics of emission permits by tailor-made stochastic equilibrium models. Al-
lowing for stochastic production costs, revenues from selling produced goods
and emission quantities, Carmona et al. [4] showed in a general setting that
the price of emission permits equals the discounted penalty multiplied by the
probability of the event of shortage (i.e. the aggregated cumulative emissions
exceed total number of permits). The models of Chesney and Taschini [7] and
Grüll and Kiesel [11] specify the process for the cumulative emissions in the
framework of Carmona et al. [4] by assuming that the firms’ emission rate fol-
lows a geometric Brownian motion. This means that the cumulative emissions
are described by the integral over a geometric Brownian motion for which no
closed-form density is available. The models of Chesney and Taschini [7] and
Grüll and Kiesel [11] differ in the way the cumulative emissions are approx-
imated. The linear approximation approach of Chesney and Taschini [7] has
the shortcoming that the moments of the approximated cumulative emissions
do not match the true ones. Grüll and Kiesel [11] overcome this problem by
applying a moment matching approach.
However, so far this type of literature including the above papers focused on
showing theoretical properties of emission trading systems rather than cali-
brate the model parameters to historical time series. Carmona et al. [4] analyze
the effect of windfall profits, Chesney and Taschini [7] investigate the effect of
asymmetric information on the permit price and Grüll and Kiesel [11] provide
a theoretical sound discussion about the permit price slump in 2006 in the EU
ETS.

With the objective to provide tractable pricing models for options on emis-
sion permits, Carmona and Hinz [5] were the first to address the complexity
of the calibration of the equilibrium model of Carmona et al. [4]. The authors
introduce a simple risk-neutral reduced-form model for the price of emission
permits and calibrate it to historical data. Our contribution extends Carmona
and Hinz [5] efforts by deriving estimation methods for the calibration to real
data of those competing equilibrium models introduced in this paper. Further-
more, for the first time in the literature, we compare in-sample performances
of reduced-form models including into the analysis standard continuous-time
stochastic processes (i.e. geometric Brownian motion and normal Inverse Gaus-
sian). Finally, we prove the existing relationship between the reduced-form
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model of Carmona and Hinz and the full-model of Chesney and Taschini.

The present paper is organized as follows. Section 2 introduces the equilibrium
model of Chesney and Taschini [7] and the model of Carmona and Hinz [5].
Furthermore, by deriving an estimation method for the model of Chesney and
Taschini [7] it is shown how the resulting reduced-form model is related to
the model of Carmona and Hinz [5]. Section 3 investigates historical model
calibrations and compares reduced-form models and standard continuous-time
stochastic models performances. Section 4 concludes.

2 Equilibrium Models

In this section we introduce the full equilibrium model of Chesney and Taschini
[7] (hereafter CT) and the full equilibrium model of Carmona et al. [4] (here-
after CFHP). Also, we present the reduced-form model of Carmona and Hinz
[5] (hereafter CH). For a comprehensive overview of other recent attempts at
developing valid price models for emission permits we refer to Taschini [17].

The model of CT assumes that the firms’ pollution emission rate Qt follows a
geometric Brownian motion

dQt = Qt[µdt+ σdWt].

Therefore, the cumulative emissions in [0, t] are given by

q[0,t] =
∫ t

0
Qsds.

As no closed-form formula for the density of the integral over a geometric
Brownian motion is available, CT approximate the cumulative emissions lin-
early 2 :

q[t1,t2] ≈ q̃CT[t1,t2] = Qt2(t2 − t1)

= Qt1 exp

{
ln(t2 − t1) +

(
µ− σ2

2

)
(t2 − t1) + σ

√
t2 − t1Z

}
,

where Z is a standard normally distributed random variable and [t1, t2] denotes
a time interval.

2 Grüll and Kiesel [11] modify the model of CT using a moment matching approx-
imation approach. When deriving estimation methods for the model of Grüll and
Kiesel [11] it can be seen that this model gives rise to the same reduced-form
model as the model of CT. Therefore, we do not discuss this model in depth in
the present paper.
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Let us also introduce P as the penalty that has to be paid for each emis-
sion unit that is not covered by a permit at the compliance date T . Also, N
is the total amount of permits allocated by the policy regulator to relevant
companies, i.e. the cap.

CFHP and CT prove that 3 the futures price of emission permits at time t is
given by

F (t, T ) = P · P
(
q[0,T ] > N |Ft

)
, (1)

where q[0,T ] is the random variable that denotes the aggregated cumulative
emissions of all relevant companies at time T .

Addressing the problem of pricing options contracts on emission permits, in
a recent paper CH develop a reduced-form model and propose the following
price dynamics of emission permits under the historical measure:

F (t, T ) = P · P
(

Γ0 exp

{∫ T

0
σsdWs −

1

2

∫ T

0
(σ2

s − 2hσs)ds

}
> 1 | Ft

)
, (2)

where Γ0 ∈ (0,∞), and σ2
s = β(T−s)β−1T−β and for some fixed h ∈ R 4 . Com-

paring Equations (1) and (2), the aggregated cumulative emissions normalized
with respect to the cap are described by the following process

q[0,T ]

N
= Γ0 exp

{∫ T

0
σsdWs −

1

2

∫ T

0
(σ2

s − 2hσs)ds

}
. (3)

It is important to notice that the cumulative emissions under such a specifi-
cation do not satisfy an important (and quite natural) property of fund pol-
lutant. 5 They do not strictly increase over time. Furthermore, it is extremely
difficult to interpret the parameters and the functional form of σs from an
economic perspective. However, this assumption makes computations in CH
much easier and yields a tractable option pricing model. Following the defi-
nition of CH, we call this type of simplified equilibrium models reduced-form
models.

Based on Equation (3), under the historical measure the futures price of emis-
sion permits F (t, T ) divided by the penalty P satisfies the following stochastic

3 CFHP prove the formula in a discrete-time setting and show the equivalence of
the market equilibrium and the joint cost minimum. CT derive the formula by
arguing that the price of a certificate equals the value of a digital option because of
the penalty structure of a cap-and-trade system without banking and borrowing.

4 A justification for the choice of the constant h can be found in the original paper
of CH.

5 Cap-and-trade schemes are typically implemented to curb pollutants that need
total volume control because of the existence of a threshold in the flow or stock
of them - see Tietenberg [18].
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differential equation (SDE)

dat = Φ′(Φ−1(at))

√
β

T − t
(dWt + hdt). (4)

By means of discretization of this SDE and using the closed-form maximum-
likelihood estimation reported by CH, the parameters of this reduced-form
model can be estimated.

The aim of the remaining part of this section is to derive a stochastic differen-
tial equation for the permit prices in the equilibrium model of CT. This SDE
motivates the definition of a new reduced-form model (cf. Definition 2) which
explains the parameter choice in the reduced-form model of CH (cf. Corollary
3) and shows how the reduced-form model of CH is related to the equilibrium
model of CT.

Theorem 1 (Discretized SDE for the model of Chesney and Taschini).
For small positive ∆ the following difference is approximately standard nor-
mally distributed in the model of CT

1√
∆

(
Φ−1(at+∆)

√
T − (t+ ∆)− Φ−1(at)

√
T − t

)
. (5)

Proof :
The normalized permit price in the model of CT is given by

at = Φ

− ln
(
N−q[0,t]

(T−t)·Qt

)
+
(
µ− σ2

2

)
(T − t)

σ
√
T − t


which is equivalent to

Φ−1(at)
√
T − t =

1

σ
·
(
− ln

(
N − q[0,t]

(T − t) ·Qt

)
+

(
µ− σ2

2

)
(T − t)

)
.

Thus,

Φ−1(at)
√
T − t− Φ−1(at+∆)

√
T − (t+ ∆)

=
1

σ
·
(

ln

(
N − q[0,t+∆]

N − q[0,t]

· T − t
T − (t+ ∆)

)
− ln

(
Qt+∆

Qt

)
+

(
µ− σ2

2

)
∆

)

=
1

σ
·
(

ln

(
N − q[0,t+∆]

N − q[0,t]

· T − t
T − (t+ ∆)

)
− σW∆

)
.

Bearing in mind that T − t is an affine function and that the number of
remaining permits is approximately an affine function in t, we can use the

6



following approximation for small positive ∆

N − q[0,t+∆]

N − q[0,t]

T − t
T − (t+ ∆)

≈ 1,

which completes the proof. ♦

Unfortunately, Theorem 1 cannot be used in practice to estimate the param-
eters of the model of CT. This can be explained as follows: For parameter esti-
mation one would have to compute for the values of zti := Φ−1(ati+1

)
√
T − ti+1−

Φ−1(ati)
√
T − ti using at1 , . . . , atn , calculate the empirical mean and variance

of {zti} and then equate them to the theoretical mean and variance which
is a function of the model parameters µ and σ2. A useful estimation method
should ensure that the equation can be solved for every possible combination
of observed mean m ∈ M ⊆ R and variance v ∈ V ⊆ R+. In other words,
the set of possible mean-variance combinations M × V should span R × R+.
However, this is not the case as the set of possible mean-variance combinations
in Theorem 1 are a point. Therefore we introduce the following reduced-form
model that overcomes this difficulty.

Definition 2 (Reduced-form model of Grüll and Taschini).
Assume that the permit price divided by the penalty is described by the following
SDE

d
(
Φ−1(at)

√
T − t

)
= adt+ bdWt,

where a ∈ R, b ∈ R+ are the parameters of the reduced-form model under the
historical measure (hereafter GT).

We employ Definition 2 for parameter estimation in the next section. For
completeness, in the following Corollary we derive an SDE for the reduced-
form model of GT in order to compare it to the model of CH.

Corollary 3 (SDE for the reduced-form model of Grüll and Taschini).
The permit price dynamics in the model of GT are given by

dat =
Φ′(Φ−1(at))√

T − t

[(
a+

1− b2

2
√
T − t

Φ−1(at)

)
dt+ bdWt

]
.

Proof :

7



Let Xt = Φ−1(at)
√
T − t. Thus at = Φ

(
Xt√
T−t

)
:= f(Xt, t) and

fx(x, t) = Φ′
(

x√
T − t

)
· 1√

T − t
,

fxx(x, t) = Φ′′
(

x√
T − t

)
· 1

T − t
= − x√

T − t
Φ′
(

x√
T − t

)
· 1

T − t
,

ft(x, t) =
1

2
xΦ′

(
x√
T − t

)
· (T − t)−

3
2 .

By Definition 2, we have

dXt = adt+ bdWt,

d[X]t = b2dt.

By Ito’s lemma, we obtain

dat = df(Xt, t) = fx(Xt, t)dXt + ft(Xt, t)dt+
1

2
fxx(Xt, t)d[X]t

= Φ′
(

Xt√
T − t

)
· 1√

T − t

[
adt+ bdWt +

Xt

2(T − t)
dt− Xt

2(T − t)
· b2dt

]

=
Φ′(Φ−1(at))√

T − t

[(
a+

1− b2

2
√
T − t

Φ−1(at)

)
dt+ bdWt

]
.

♦

Remark:
The SDE for the reduced-form model of GT differs from the SDE for the
model of CH by the additional term 1−b2

2
√
T−tΦ

−1(at)dt.

Therefore, the functional form of σs in the reduced-form model of CH can be
motivated by the reduced-form model of GT. Furthermore, quite interestingly,
Corollary 3 establishes a clear link between the reduced-form models of CH
and GT and the equilibrium model of CT via the reduced-form model of GT.

3 Empirical analysis

In 2005 European policy makers launched the EU ETS, the world’s largest
emission trading system which covers approximately 50% of the CO2 emissions
in the European Union. The EU ETS consists of three different phases. Phase I
lasted until the end of 2007. Phase II started in 2008 and ends in 2012. A third
phase will start in 2013. Due to bankability restrictions between phase I and II,
it is necessary to treat the price series of each phase separately - see Alberola
and Chevallier [1]. As the futures market is more liquid than the spot market,
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in what follows we perform our model calibration analysis with price series of
futures contracts maturing in December 2007 and December 2012, respectively.
In the first phase the price of emission permits is characterized by a very high
volatility level. The significant market correction between the end of April and
the beginning of May 2006 (see Figure 1) occurred when emission data for the
year 2005 became public showing that there was an overall overestimation
of offending emissions. A long-lasting futures December 2007 price decrease,
characterized by a smaller volatility, started in August 2006. Such a price
behaviour is typical for permit prices at the end of a compliance period. This
has to do with the fact that at compliance time the permit price can only
take the values zero (overallocation) or the penalty fee (permit shortage). As
the reduced-form models also have this property one should expect that they
excel in capturing the observed price dynamics at the end of a compliance
period. In order to test this hypothesis we split up the futures December 2007
price series into two parts. We take the period of the crash as a cutting point.
Prices observed during the crash (i.e. 15 trading days) are not included into
our analysis. Another effect that can be observed at the end of the comliance
period is that from May, 10th 2007 transaction volumes are very low and the
permit price hovers below 0.30 e remaining at the same price level for several
consecutive days. We consider this special effect by performing our analysis
both on the full post-crash price series and on the series that is truncated
on May, 10th 2007. Finally, for phase II we consider futures contracts with
maturity December 2012 from January, 2nd 2008 until August, 31th 2009. The
futures permit price in this period exhibits a lower volatility level hinting at a
relatively more mature market. As observable in Figure 1, futures December
2012 prices range from 10 e to 35 e, peaking on July, 1st 2008 at 34.38 e.
So, in summing, we analyze the following four data series:

(1) pre-crash phase I ( 22 April 2005 - 24 April 2006)
(2) post-crash phase I (15 May 2006 - 17 December 2007)
(3) truncated post-crash phase I (15 May 2006 - 10 May 2007)
(4) phase II (2 January 2008 - 31 August 2009)

Besides comparing performances of the reduced-form models of CH and GT,
we calibrate other continuous-time stochastic processes and undertake an ex-
tensive model comparison. In particular, we restrict ourselves to widely known
stochastic processes, such as geometric Brownian motion (GBM) and normal
Inverse Gaussian (NIG). The last is an extensively used and more complex
process that overcomes some of the drawbacks of the GBM. For instance, it
captures the presence of fat tails.

Because residuals of the reduced-form models and of the GBM are normally
distributed, whereas residuals of the NIG process are not normally distributed,
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Fig. 1. Left: EUA-Dec07 futures price (22 April 2005 - 17 December 2007), right:
EUA-Dec12 futures price (2 January 2008 - 31 August 2009)

we consider two different type of analysis. We first run normality tests to all
models with normally distributed residuals providing an investigation of the
goodness-of-fit of reduced-form models and the GBM (cf. Table 2-5). Second,
we assess in-sample performances of NIG, GBM, the model of CH and the
model of GT by comparing Q-Q-plots (cf. Figure 2-5) and computing the
Kolmogorov-Smirnov-distance (cf. Table 1).
As expected, our empirical analysis shows that reduced-form models exhibit
their strength at the end of a compliance period. Taking the full post-crash
price series into account the reduced-form models outperform both GBM and
NIG (cf. Figure 3 and Table 1 and 3). However, the Q-Q-plots in Figure 4 reveal
that even reduced-form models cannot completely capture the price dynamics
in this particular period. Excluding the special effect of very high volatility due
to prices very close to zero and low trading volume at the very end of the first
compliance period (after May, 10th 2007) we get a slightly different picture.
Reduced-form models still outperform GBM but perform worse than the more
complex process NIG (cf. Figure 4 and Table 1 and 4). At the beginning of a
compliance period the price dynamics are by far captured better by NIG than
the tailor-made reduced-form models. Compared to GBM, the reduced-form
models perform slightly worse at the beginning of the first phase (cf. Table 2)
and similarly at the beginning of the second phase (cf. Table 5). Finally, the
two competing reduced-form models of GT and CH have a similar performance
whereby the model of GT slightly outperforms the model of CH at the very
end of the first compliance period (cf. Table 2-5). Summarizing, reduced-form
models perform relatively well at the end of a compliance period compared
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NIG GBM Carmona & Hinz Grüll & Taschini

Phase 1 - Pre-Crash Period

KS-Distance 0.0321 0.0928 0.1207 0.1179

Phase 1 - Post-Crash Period

KS-Distance 0.1716 0.2188 0.1645 0.1037

Phase 1 - Post-Crash Period (truncated)

KS-Distance 0.0683 0.144 0.0951 0.0994

Phase 2

KS-Distance 0.0257 0.0757 0.0816 0.0785
Table 1
Comparison of goodness-of-fit.

to standard stochastic processes. However, they are clearly outperformed by
complex standard stochastic processes, especially, at the beginning of the two
compliance periods.

4 Conclusions

We derive an estimation method for the equilibrium models proposed by Ches-
ney and Taschini [7] (CT) for modeling the price of emission permits. The
resulting estimation method for the model of CT cannot be used in practice.
This has to do with the fact that the obtained SDEs do not possess sufficient
free parameters for model-calibration and, therefore, are not flexible enough to
capture the historical permit price evolution. We propose a new reduced-form
model (hereafter denoted by GT) based on the full equilibrium models of CT.
Quite interestingly, the parameter choice in the reduced-form model proposed
by Carmona and Hinz [5] (CH) can be motivated by the reduced-form model
of our reduced-form model which is obtained by deriving estimation methods
for the full equilibrium model of CT.

Using futures prices in the EU ETS with maturity December 2007 and Decem-
ber 2012, for the first time in the literature we calibrate reduced-form models
and assess the in-sample performances of the models of CH and GT. With
the aim of providing a comprehensive comparison among potentially compet-
ing models, we also calibrate and compare two quite popular continuous-time
stochastic processes (GBM and NIG). In a perfect competitive equilibrium
framework with no-banking options, futures permit prices are characterized
by the fact that they tend to either zero or the penalty fee at the end of a com-
pliance period. As reduced-form models capture this characteristic, we split
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up the permit price series in order to analyze the performance both at the be-
ginning and at the end of a compliance period. In the current price-evolution,
we observe that reduced-form models perform relatively well at the end of a
compliance period compared to standard stochastic processes. However, they
are clearly outperformed by complex standard stochastic processes such as
NIG, especially, at the beginning of the two compliance periods. GBM and
reduced-form models perform similarly at the beginning of a compliance pe-
riod. However, reduced-form models describe the price dynamics at the end of
the first compliance period much better than GBM. Finally, the two compet-
ing reduced-form models of GT and CH have a similar performance whereby
the model of GT slightly outperforms the model of CH at the very end of the
first compliance period.

The evaluation of the price of emission permits in the coming years will show
whether, in a more mature permit market, complex standard stochastic pro-
cesses such as NIG still outperform reduced-form models that take into account
peculiar characteristics of permit markets.

5 Appendix

The residuals of GBM and the reduce-form models of CH and GT are all
standard normally distributed. Therefore we can apply normality tests to the
log-returns in the case of GBM, to the data transformed according to the
discretized version of Equation (7) in the case of the model of CH and to the
data transformed according to the discretized version of Definiton 6 in the case
of the model of GT. We omit the usual footnotes concerning the significance of
the normality tests as the null hypothesis that the data is normally distributed
is rejected throughout at the 5% significance level. The tables show the test
statistics of the performed normality tests. The most favourable test statistic
for normality (i.e. the lowest) is marked bold in each row.
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Normality test GBM Carmona & Hinz Grüll & Taschini

Kolmogorov-Smirnov 0.0928 0.1207 0.1179

Anderson-Darling 5.2260 7.5697 7.1298

Pearson 39.594 67.106 67.255

Jarque-Bera 1734.8 3458.7 2792.4

Cramer-von-Mises 0.8326 1.2122 1.1363
Table 2
Comparison of goodness-of-fit (Pre-Crash).
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Fig. 2. Log-returns, transformed data and Q-Q-plots of different models for
pre-crash-period
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Normality test GBM Carmona & Hinz Grüll & Taschini

Kolmogorov-Smirnov 0.2188 0.1645 0.1037

Anderson-Darling ∞ 13.213 9.800

Pearson 1048.5 689.3 136.15

Jarque-Bera 50059 406 233

Cramer-von-Mises 8.6221 2.6040 1.7628
Table 3
Comparison of goodness-of-fit (Post-Crash).
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Fig. 3. Log-returns, transformed data and Q-Q-plots of different models for
post-crash-period
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Normality test GBM Carmona & Hinz Grüll & Taschini

Kolmogorov-Smirnov 0.1440 0.0951 0.0994

Anderson-Darling 10.581 3.887 4.277

Pearson 171.93 113.28 58.53

Jarque-Bera 387.94 82.39 78.14

Cramer-von-Mises 2.0310 0.7166 0.7889
Table 4
Comparison of goodness-of-fit (Post-Crash truncated).
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Fig. 4. Log-returns, transformed data and Q-Q-plots of different models for
post-crash-period (truncated)
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Normality test GBM Carmona & Hinz Grüll & Taschini

Kolmogorov-Smirnov 0.0757 0.0816 0.0785

Anderson-Darling 3.2396 3.3747 3.0556

Pearson 46.741 44.896 43.377

Jarque-Bera 72.644 212.838 140.951

Cramer-von-Mises 0.5395 0.5381 0.4884
Table 5
Comparison of goodness-of-fit (Second Phase).
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Fig. 5. Log-returns, transformed data and Q-Q-plots of different models for second
phase
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