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Abstract 

The purpose of this paper is to identify which of the world’s cereal producing regions are likely to 

become vulnerable to climate change over the 21
st

 century by identifying those regions that will be 

(1) exposed to climatic stress and (2) have a limited capacity to adapt. First, we use a global 

hydrological model to identify regions likely to be exposed to drought, defined here as a location 

where the available soil moisture is projected to decline by the 2050s and 2080s relative to the 

mean soil moisture observed between 1990 and 2005.  Second, we use agricultural, meteorological 

and socio-economic data to develop models of adaptive capacity and run these models to show 

where adaptive capacity is likely to decline by the 2050s and 2080s relative to the baseline period of 

1990-2005.  Third, we contrast the hydrological and adaptive capacity model outputs to identify 

“vulnerability hotspots” for wheat and maize.  Here, a vulnerability hotspot is defined as a region 

that the models project as likely to experience both a decline in adaptive capacity and in available 

soil moisture.  Results from the hydrological model project significant drying in many parts of the 

world overt the 21
st

 century.  Results from the adaptive capacity models show that regions with the 

lowest overall adaptive capacity for wheat include much of western Russia, northern India, 

southeastern South America, and southeastern Africa. In terms of maize, regions with the lowest 

adaptive capacity include the northeastern USA, southeastern South America, southeastern Africa, 

and central/northern India.  When taken together, this study identifies five wheat and three maize 

growing regions likely to be both exposed to worse droughts and a reduced capacity to adapt.  For 

wheat, these are: southeastern USA, southeastern South America, the northeastern Mediterranean, 

and parts of central Asia.  For maize, our analysis suggests that vulnerability hotspots are: 

southeastern South America, parts of southern Africa, and the northeastern Mediterranean. 
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1. Introduction 

Crop models demonstrate that food production is vulnerable to climate change in many regions 

through a combination of temperature change, water stress and extreme weather (Challinor et al., 

2009; Challinor et al., 2010; Lobell and Field, 2007).  Although there is considerable uncertainty in 

these models, and some debate way that ozone pollution, carbon dioxide fertilization, and water 

shortages may interact with climate change to affect productivity, there is a general concern in the 

literature that these problems are likely to cause food production to fall over the next 100 years 

(Jaggard et al., 2010; Long et al., 2005; Royal Society, 2008; Sitch et al., 2007).  These concerns sit 

alongside economic and demographic models that project a rising demand for food thanks to 

population growth (Lutz and KC, 2010), urbanization (Satterthwaite et al., 2010), and a shift towards 

more meat consumption (Kearney, 2010).  This leads some to argue that global food security is 

threatened unless production increases by as much as 70% (Bruinsma, 2009; Godfray et al., 2010a; 

Godfray et al., 2010b).  Therefore, new technologies (Brown and Funk, 2008), and in particular 

biotechnologies (Tester and Langridge, 2010), may be needed to create more productive crops and 

ensure food security during the 21
st

 century.   

In addition, the socio-economic, ecological, and institutional context of farming has a tremendous 

influence on whether a producer can adapt to environmental stressors and remain productive 

(Adger, 2006; Brooks et al., 2005; Patt et al., 2005; Smit and Skinner, 2002; Thomas et al., 2007; 

Watts and Bohle, 1993).  For example, degraded soils, a lack of off-farm employment, social 

upheaval, and a dysfunctional government prevented the Ethiopian population from adapting to 

drought in the 1980s (Comenetz and Caviedes, 2002).  As a result, it only took a very minor drought 

(measured in terms of rainfall) to trigger a famine (Fraser, 2007).  By contrast, there are cases where 

even major climatic problems were adapted to without serious losses in agricultural productivity or 

human life (Green, 1993). The implication of this is that institutional reform, poverty reduction, and 

gender equality will help boost adaptive capacity and that this may be as important as developing 

new crops to meet the challenges of feeding future generations (Fraser et al., 2003; Paavola and 

Adger, 2006).   

Overall, therefore, the vulnerability of crop production to climate change is seen by many scholars as 

a function of both an exposure to a climatic stress, such as a drought, as well as an ability to adapt to 

that stress (Fraser et al., 2011b; Intergovernmental Panel on Climate Change, 2001; Watts and 

Bohle, 1993). To date, however, most quantitative and global scale projections of how food crop 

production is vulnerable to climate change have focused on the ways in which new temperature and 

rainfall patterns will affect plant growth (Zhang and Cai, 2011).  Those studies that do include socio-

economic factors in future projections are most often based only on two socio-economic variables, 

GDP and population, and there is limited or no assessment as to whether, or under what context, 

these variables are significant (Diffenbaugh et al., 2007).      

The aim of this paper is better integrate socio-economic and meteorological data to conduct a global 

scale quantitative assessment that identifies which of the world’s cereal producing regions may 

become vulnerable to climate change over the 21
st

 century.  We do this by identifying those regions 

that will be both exposed to climatic stresses and will not have the capacity to adapt to these 

problems.  The climate impact we focus on is declining cereal harvests since these provide the world 
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with approximately 90% of its calories and are likely to be affected by changing weather patterns 

(International Development Research Council, 1992).   In terms of climate change exposure, we have 

chosen to focus our attention on droughts as many climate models project that droughts will be a 

major factor in limiting future crop growth (Intergovernmental Panel on Climate Change, 2007).  To 

assess adaptive capacity, we use a range of socio-economic and ecological data and employ 

statistical methods to identify proxy indicators of adaptive capacity. We then use different socio-

economic and climate projections to identify regions that, given current trends, are likely to be both 

exposed to worse droughts in the future as well as have a diminishing capacity to adapt.  While this 

project does not provide conclusive results, this nonetheless represents an important step in the 

field of research devoted to better understanding when, where, and why food systems are likely to 

be vulnerable to climate change in the future.  

2 Data and Methods 

2.1 Quantifying and modeling exposure to drought 

To identify regions likely to be exposed to worse droughts in the future, we used soil moisture 

simulations from Mac-PDM.09, which is an established global hydrological model. Mac-PDM.09 

simulates soil moisture and runoff across the world at a spatial resolution of 0.5°x0.5°. A detailed 

description and validation of the model is provided by Gosling and Arnell (Gosling and Arnell, 2011) 

and the model has been applied in several recent studies of the global hydrological cycle (e.g.. 

Haddeland et al (2011); Gosling et al. (2010); Gosling et al. (2011)). Mac-PDM.09 requires the 

following climate variables as input: precipitation, temperature, vapour pressure, net radiation, and 

wind speed (the latter four to calculate Penman Monteith potential evapotranspiration, PE). 

Mac-PDM.09 was forced with the pattern of climate change from a single global climate model 

(GCM) run under the SRES A1B and B2 emissions scenarios for the 2050s and 2080s (see table 2 for 

details on the scenarios). We acknowledge that climate change projections could have been 

obtained from other GCMs, and that to some extent this could produce different results. However, 

given the exploratory nature of this research, we adopted the same approach employed by other 

recent assessments of the impact of climate change on global food production (Cheung et al., 2010; 

Iglesias and Rosenweig, 2009; Rockström et al., 2009) and applied a single version of the well-

established Met Office Hadley Centre coupled ocean-atmosphere GCM: HadCM3. The climate 

change forcing scenarios were created using ClimGen (Mitchell and Osborn, 2005 ), a spatial climate 

scenario generator that uses the pattern-scaling approach (Mitchell, 2003) to generate downscaled 

spatial climate change information for a given GCM (in this case HadCM3), following the procedures 

outlined by Todd et al. (2011). Mac-PDM.09 was also forced with CRU-TS3 data for a present-day 

simulation (1990-2005). The pattern-scaling technique employed by ClimGen ensures that the Mac-

PDM.09 climate change and present day simulations are directly comparable.  

The climate change scenarios applied to Mac-PDM.09 were not the original output from GCMs, but 

were instead created using ClimGen, a spatial climate scenario generator that uses the pattern-

scaling approach to generate spatial climate change information for a given global mean 

temperature change from present and a given GCM (Todd et al. 2011). ClimGen includes a statistical 

downscaling algorithm that calculates climate change scenarios for a fine 0.5 × 0.5 degree 

resolution, taking account of higher-resolution surface variability in doing so. ClimGen was 

developed at the Climatic Research Unit at the University of East Anglia (UEA), UK. The pattern-
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scaling approach relies on the assumption that the pattern of climate change (encompassing the 

geographical, seasonal and multi-variable structure) simulated by GCMs is relatively constant (for a 

given GCM) under a range of rates and amounts of global warming, provided that the changes are 

expressed as change per unit kelvin of global-mean temperature change. 

 

2.2  Quantifying and modeling adaptive capacity.  

To identify regions likely to have low adaptive capacity we built on the approach developed in 

Simelton et al. (2009). Their work is based on the assumption that regions where cereal harvests are 

sensitive to droughts, i.e. cases when relatively minor droughts in the past generated large 

reductions in cereal harvests, will have a low adaptive capacity.  We developed this approach by 

hypothesizing that we would be able to quantify adaptive capacity by using socio-economic and 

biophysical data to identify proxy indicators of drought sensitivity. We then used the identified proxy 

indicators to create models of adaptive capacity to map areas of high potential for adaptation for 

the same two scenarios (A1B and B2, see table 2) as used in the hydrological model.  

In particular: 

1. Using crop distribution and simulated soil moisture data for 1990-2005, we calculated a 

“drought severity index” for each country and each year.  Two data sets were used for this.  

First, we used Leff et al. (2004)’s data on crop distribution as a fraction of the landbase 

devoted to rice, wheat and maize production in each 5 minute (~10km) grid cell.  Second, we 

used simulated soil moisture data from Mac-PDM.09 (0.5 degree grid; ~55km) for 1990 – 

2005.  The crop distribution data were aggregated over the 36 neighbouring cells to obtain 

the same 0.5 degree resolution as used in the hydrological model. For each 0.5 degree grid 

cell where at least ≥1% of the land base was devoted to rice, wheat or maize respectively, 

we calculated the total soil moisture for the period of October to October for each year 

between 1990 and 2005. Therefore, using the period of October to October, we calculated 

the average amount of soil moisture that was available on each country’s rice, wheat and 

maize land between 1990-2005 and divided this by the total amount of soil moisture that 

was available in each year.  This returned a “drought severity index” where a drought is 

defined as a score >1, i.e. a year with below average soil moisture. The choice to use the 

October to October time period was deliberate.  First, we tested a number of different 

periods of time with which to calculate the drought index.  Similar to Lobell & Field (2007), 

we found that final results were relatively insensitive to choice of months. Second, since one 

goal of this project was to conduct a global assessment, the October to October period is 

useful as this captures both northern and southern hemisphere growing seasons. Finally, 

using an annual (rather than a seasonal) period of time to assess rainfall made our results 

more conservative in that this under-represented many droughts because good rainfall in 

one of the calendar years had the effect of reducing the drought severity index for the other 

year.      

2. Using harvest data from 1990-2005, we calculated a “harvest loss” index that shows how 

significant harvests losses were in regions and years where droughts occurred.  This harvest 

loss index was based on crop production data obtained from FAOSTAT (FAO, 2008) for rice, 

wheat and maize and included 102 rice producing countries, 112 wheat producing countries, 

and 127 maize producing countries.  First, missing data was interpolated with a smoothing 
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spline function restricted within the range of existing values (Crawley, 2007). Missing data 

points at the beginning or end of the time series were linearly extrapolated if less than four 

consecutive years were missing or left as missing values if more years were missing. For each 

crop, the expected harvest was calculated as a de-trended crop production using an auto-

regression model with four year lags (Schneider and Neumaier, 2001; Simelton et al., 2009). 

A three year-lag was used in order to increase the number of data points for a few countries 

with limited time series. For each year with a drought, we calculated the crop failure index 

by dividing the expected (or detrended) harvest by the actual observed harvest.  In this way, 

a high harvest loss index indicates that the harvest in a particular year was below expected.   

3. For each crop, we calculated an adaptive capacity index by dividing the drought index by the 

harvest loss index for each year and country where there was a drought.  This meant that a 

high adaptive capacity score indicated countries and years when harvests were good relative 

to the size of the drought.   

4. To model adaptive capacity, all countries were categorized in terms of what climatic zone 

the crop land in the country fell into (temperate, tropical, arid, and cold following Köppen’s 

climate zones (Kottek et al., 2006)), the level of Gross National Income per capita in 2008 

(poor, lower middle, upper middle and high income following World Bank categories (World 

Bank, 2009)), and type of government  (authoritarian regime, hybrid regime, flawed 

democracy, full democracy following the Economist’s Intelligence Unit’s classification system 

(The Economist, 2009)).  While this meant there were 64 hypothetical “types” of country, in 

reality, this resulted in 32 different types of rice producing country, 36 types of wheat 

producing country and 34 types of maize producing country. Using these different types of 

cereal producing country as the basis of our analysis we developed linear models of adaptive 

capacity for rice, maize and wheat where the adaptive capacity index was regressed against 

seven country-level socio-economic, political, and ecological variables (Table 1).  

5. For the last step, we ran the adaptive capacity models developed in step 4 for the IPCC’s 

SRES A1B and B2 scenarios at the 0.5 degree grid level.  Data for these scenarios came from 

the International Future’s Database (version 6.18) that provides socio-economic projections 

at country-level that are consistent with all the IPCC’s SRES scenarios (International Futures, 

2009). These scenarios, and the data used in them, are presented in table 2.  To do this, we 

first identified each 0.5 degree grid cell where >1% of the landscape is currently planted with 

rice, wheat and maize and categorized each grid cell in terms of its climatic zone, income 

level, and government type using the same categorization system as was used to create the 

adaptive capacity models described in section 2.2.1.   Then, we used the adaptive capacity 

models to estimate a baseline level of adaptive capacity for 1990-2005.  Finally, we used the 

linear models with the socio-economic data for the A1B and B2 scenarios to project gridded 

adaptive capacity in the future for the same time periods as the hydrological model outputs: 

2045-60 (2050s) and 2075-90 (2080s). 

  



9 

 

Table 1: Socio-economic variables used to create adaptive capacity models. 

Variable  Unit   Source  

Rural population % of population IF, 2009 
Cropland per capita ha/capita IF, 2009 
Safe water % IF, 2009 
Gini coefficient 0-1 IF, 2009 
Agriculture value added to 
GDP per ha 

$/ha Cropland IF, 2009 

GDP per capita $PPP/capita IF, 2009 
Fertiliser intensity kg/ha FAO, 2008 (fertiliser);  

IF, 2009 (cereal yield) 
 

Table 2. Description of the scenarios used to model the vulnerability of cereal crops to drought. 

Source: http://www.ipcc.ch/ipccreports/tar/wg1/029.htm 

 

Scenario 

Name  

Description 

 

Cropland 

per Capita 

Rural 

Population 

Gini 

coefficient 

Safe 

water 

Fertiliser 

intensity 

Agriculture 

Value Added 

to GDP per 

ha 

GDP per 

capita 

  Global average % Change compared to baseline period (1990-2005) 

A1B – 

2020s 

A future world of 

very rapid economic 

growth, global 

population that 

peaks in mid-century 

and declines 

thereafter, and rapid 

introduction of new 

and more efficient 

technologies. 

Balanced used of 

energy sources. 

-72% -19% 1% -21% 17% 3% 36% 

A1B – 

2050s 

-73% -32% 10% -50% 24% 6%* 141% 

A1B – 

2080s 

-69% -47% 18% -75% 33% 5%** 342% 

B2 – 2020s A world in which the 

emphasis is on local 

solutions to 

economic, social, and 

environmental 

sustainability, with 

continuously 

increasing population 

and intermediate 

economic 

development.  

-72% -20% 1% -21% 18% 15% 36% 

B2 – 2050s -75% -33% 10% -51% 28% 22%* 147% 

B2 – 2080s -74 -48% 18% -77% 63% 25%** 376% 

*Average for the period 2045-2050, ** Average for the year 2050 only   

 

 

 

3. Results 

3.1 Hydrological model  
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Figure 1 presents changes from baseline (1990-2005) in two of the main climatic drivers of soil 

moisture (precipitation and temperature) for 2045-2060 and 2075-2090, under each scenario (A1B 

and B2). The climate projections show that changes in precipitation are slightly greater under the 

A1B emissions scenario than under the B2 emissions scenario. Likewise, warming is higher under 

A1B than under B2. The largest declines in precipitation with climate change are for northern Brazil, 

North Africa, southern Africa, the Arabian Peninsula, and Western Australia. Large increases in 

precipitation are simulated by the GCM for northern India, north-eastern China and the high 

northern latitudes. Warming is highest in the northern hemisphere. Relative changes in temperature 

with time are greater than the relative changes in precipitation; e.g. the pattern of precipitation 

change for Australia is similar for the two time horizons, whereas for temperature, the pattern of 

warming changes from 2045-2060 to 2075-2090.  

Figure 2 displays the results of the hydrological model showing changes to available soil moisture 

between the baseline period (1990-2005) and 2045-2060 and 2075-2090. Results are also displayed 

for the A1B and B2 scenarios.  Generally, these outputs suggest that there could be less available soil 

moisture across many of the world’s grain producing regions and that, as the 21
st

 century continues, 

problems could gradually worsen. There are subtle differences between the A1B and B2 scenarios, 

with the changes from baseline slightly greater under A1B. For example, a larger extent of southern 

Africa experiences a decrease in soil moisture greater than 25%, under A1B than B2. Changes from 

baseline increase with time into the future as well. For example, note the substantial declines in soil 

moisture across the central United States under both scenarios, from 2045-2060 to 2075-2090.  

The changes in soil moisture largely reflect changes in precipitation up to the middle of the 21
st

 

century. For instance, the largest declines in soil moisture for 2045-2060 are generally for areas that 

experience substantial declines in precipitation. However, as warming continues into the latter half 

of the 21
st

 century, and at a greater rate than precipitation change for some regions (e.g. western 

Europe and northern Australia; see Figure 1), potential evaporation increases relative to baseline 

and, as a result, soil moisture declines further. For some regions, even though precipitation changes 

little, or increases with time into the future, soil moisture declines relative to baseline because of 

large warming and subsequently high potential evapotranspiration (e.g. north-eastern China and 

north Australia).  
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Table 3 (a).  Models of Adaptive Capacity for Wheat.  

Governance
1 

Agro 

environment
2 

Income 

level
3 

Intercept Cropland/cap Rural 
Pop 

Gini Safe 
Water 

Fertiliser Agr GDP/ 
cropland 

GDP/ cap Adjusted 
R2 

p-
value 

DF n of 
countries 

               

Authoritarian 

regime 

Tropical Low  0.696  -0.297 -

1.852 

0.234 0.050 0.567  0.263 0.012 31 5 

Authoritarian 

regime 

Arid Low 5.979 2.306 -3.235   0.127 -1.087 1.690 0.611 0.000 29 6 

Authoritarian 

regime 

Arid Lower 

middle 

1.448 0.341 -0.569 -

1.969 

0.078    0.300 0.000 73 10 

Authoritarian 

regime 

Arid Upper 

middle 

0.253 0.287       0.720 0.001 9 2 

Authoritarian 

regime 

Temperate Low 0.670     -0.247   0.334 0.060 7 3 

Authoritarian 

regime 

Temperate Lower 

middle 

-1.180  1.165  -0.366 -0.036 -0.459  0.530 0.000 33 5 

Hybrid regime Arid Lower 

middle 

0.180 -0.223   0.375 0.059   0.831 0.001 8 3 

Hybrid regime Temperate Low 1.931 -0.407 -0.690  -0.139  -0.326  0.641 0.000 28 4 

Hybrid regime Temperate Lower 

middle 

1.941  -0.849     -0.168 0.462 0.001 18 3 

Flawed 

democracy 

Tropical Lower 

middle 

0.220      0.164 0.075 0.162 0.039 26 4 

Flawed 

democracy 

Arid Lower 

middle 

1.906 -1.005 -0.828      0.412 0.016 12 2 

Flawed 

democracy 

Arid Upper 

middle 

0.442  0.674    -2.425  0.341 0.032 12 2 

Flawed 

democracy 

Temperate Lower 

middle 

1.107  -0.320    -0.487  0.688 0.000 26 4 

Flawed 

democracy 

Temperate Upper 

middle 

0.601   -

1.188 

    0.155 0.005 42 6 
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Flawed 

democracy 

Temperate High 0.550 -0.988       0.097 0.158 11 2 

Flawed 

democracy 

Cold Upper 

middle 

2.857 0.262 -1.679    1.205 -0.242 0.665 0.004 10 3 

Full democracy Temperate High -0.022 0.159 0.113   0.106 -0.097  0.119 0.006 83 15 

Full democracy Cold High  1.546  0.421 -

9.533 

 -0.381   0.378 0.000 57 10 

1 
The Economist, 2009; 

2
 Kottek et al., 2006; 

3
 Grubler et al., 2006 and the World Bank, 2009  
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Table 3 (b). Models of Adaptive Capacity for Maize.  

Governance
1 

Agro 

environment
2 

Income 

level
3 

Intercept Cropland/cap Rural 
Pop 

Gini Safe 
Water 

Fertiliser Agr GDP/ 
cropland 

GDP/ 
cap 

Adjus
ted 
R2 

p-
value 

DF n of countries 

               

Authoritarian 

regime 

Tropical Low  -0.613  0.411 1.456   -0.292  0.296 0.000 81 12 

Authoritarian 

regime 

Arid Low 8.100 1.322 -3.984   -0.081 -2.363 1.126 0.610 0.000 29 6 

Authoritarian 

regime 

Arid Lower 

middle 

0.855   -

4.916 

0.183 0.108 -0.317  0.318 0.000 52 9 

Authoritarian 

regime 

Arid Upper 

middle 

0.262 0.249       0.015 0.306 10 2 

Authoritarian 

regime 

Temperate Low 0.832      -2.339  0.146 0.098 12 3 

Authoritarian 

regime 

Temperate Lower 

middle 

-0.234  0.334 2.423 -0.227 -0.054  -0.219 0.497 0.000 32 5 

Hybrid regime Tropical Low 0.043    0.081  0.316 0.129 0.161 0.001 74 10 

Hybrid regime Tropical Lower 

middle 

0.503  0.323  -0.313 -0.242   0.274 0.033 18 3 

Hybrid regime Arid Low 4.229 3.956 -2.836 -

8.439 

1.290 -0.450 3.926  0.239 0.085 18 3 

Hybrid regime Arid Lower 

middle 

-0.478   1.312 0.554  0.761  0.376 0.004 22 3 

Hybrid regime Temperate Low 0.852    -0.205 -0.140  -0.304 0.363 0.003 24 4 

Hybrid regime Temperate Lower 

middle 

1.067  -0.410  0.077    0.710 0.000 18 3 

Flawed democracy Tropical Lower 

middle 

0.167 0.305    0.065   0.154 0.009 45 10 



14 

 

Flawed democracy Tropical Upper 

middle 

1.390  -0.143 2.529  -0.197   0.421 0.001 26 5 

Flawed democracy Arid Upper 

middle 

0.846     -0.386   0.141 0.076 15 2 

Flawed democracy Temperate Lower 

middle 

0.591   2.627  -0.428   0.268 0.072 11 4 

Flawed democracy Temperate Upper 

middle 

-0.630 1.262 0.429 0.895   0.202  0.471 0.000 38 6 

Flawed democracy Temperate High -5.442 -2.870 2.429  14.205   2.090 0.638 0.014 8 2 

Full democracy Tropical Upper 

middle 

-1.464   7.560 0.269   0.602 0.621 0.001 13 2 

Full democracy Temperate High -0.160 0.374 0.174   0.074   0.226 0.000 69 12 

Full democracy Cold High  -0.716     -0.281 0.369  0.317 0.018 16 4 

1 
The Economist, 2009; 

2
 Kottek et al., 2006; 

3
 Grubler et al., 2006 and World Bank, 2009  
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Figure 1. Change (%) in mean annual precipitation and temperature relative to baseline (1990-2005) for 

two future time horizons under the SRES B2 (left panels) and A1B (right panels) scenarios. 
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 Figure 2. Percentage change in growing season (Oct-Oct) soil moisture from baseline (1990-2005) for 

two scenarios (A1B and B2) and two time horizons (2045-2060 and 2075-2090).  
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3.2 Adaptive capacity model 

In terms of modeling adaptive capacity, we did not find statistically significant results to explain adaptive 

capacity in the world’s rice harvest.  This may be because much of the world’s rice crop is irrigated and, 

therefore, not as affected by changes in available soil moisture that are driven by precipitation (note, 

testing this sort of hypothesis is beyond the scope of this paper). We did, however, find evidence of 

statistically significant relations between maize and wheat adaptive capacity and a range of socio-

economic characteristics.  In our baseline analysis, we observed that regions with the lowest overall 

adaptive capacity for wheat include much of western Russia, northern India, southeastern South 

America, and southeastern Africa. In terms of maize, regions with the lowest adaptive capacity include 

the northeastern USA, southeastern South America, southeastern Africa, and central/northern India.  

These results are displayed on the top row of figure three.   

In terms of the socio-economic factors that influenced adaptive capacity in the world’s wheat and maize 

producing regions, the data suggest a number of complex relations. The analysis has not identified 

general relationships between socio-economic characteristics and adaptive capacity. Rather, the analysis 

presented here suggests that many of the socio-economic factors that influence adaptive capacity are 

context-specific.  For instance, the amount of crop land per capita was found to be a significant 

predictor of adaptive capacity in a number of the wheat models. But the income of the country in 

question determines the nature of this relation.  More specifically, data shows that there is often a 

positive relation between cropland per capita and adaptive capacity for wheat harvests but that this 

relation is stronger in some poorer countries than in most rich countries.  One explanation for this result 

is that having access to cropland is more important in determining adaptive capacity in poor parts of the 

world where farmers may adapt to drought by planting larger areas, leaving fields fallow to conserve 

moisture, or reducing planting density to lessen moisture competition between plants (see Dougill et al., 

2010 for a review of these kinds of adaptation strategies as related to pastoral Botswana).  Access to 

land may be less important for farmers in wealthier regions where adaptation may be based around 

access to farm inputs such as purchasing drought tolerant seed varieties.  For the groups of countries 

where the Gini coefficient was found to have a significant effect, results show that the greater the 

inequity in wealth, the lower the adaptive capacity in wheat harvests, suggesting that inequality 

undermines adaptive capacity in the world’s wheat producing areas.  Fertilizer use was found to be most 

often negatively associated with adaptive capacity in cold and temperate regions.  By contrast, fertilizer 

use was, when significant, found to be positively associated with adaptive capacity in tropical and arid 

countries.  This provides some suggestive evidence that increasing fertilizer use in tropical and arid 

countries may help buffer wheat yields from drought but that this same strategy may not have the same 

effect in different ecological zones.  

Results were different when we considered adaptive capacity in maize harvests.  In cases where GDP per 

capita was significant, it generally had a positive relation with adaptive capacity. Data from arid 

countries showed that the size of the rural population was negatively associated with adaptive capacity 

for maize, suggesting that high population densities may hinder adaptation to drought in dry regions. By 

contrast, the analysis presented here provides some evidence that high rural populations help buffer 

maize harvests from the impacts of drought in temperate regions. This may be because arid regions 
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cannot support high population densities and, therefore, the extra people in such regions hurt farmers’ 

ability to adapt to drought. By contrast in temperate regions, the extra people may be used in labour 

intensive adaption strategies.  The size of a country’s Gini coefficient was also observed to have a 

negative relation with adaptive capacity in maize crops for arid regions, but a weaker (and positive) 

relation in temperate regions and a stronger positive relation in tropical countries.    

Such details aside, the general point from this analysis is that the effect of socio-economic variables on 

adaptive capacity depends on the type of region.  Table 3 a and b provide the statistics details for the 

different adaptive capacity models for wheat and maize.  

When the adaptive capacity models were used to project changes in adaptive capacity for the A1B and 

B2 scenarios, results show that regions with the largest declines in wheat and maize adaptive capacity 

are in areas with authoritarian regimes and arid ecosystems. In particular, Russian wheat and South 

American maize farmers are projected to lose adaptive capacity.   Overall, adaptive capacity is projected 

to increase in tropical and cold areas that have high incomes and hybrid regimes or democratic 

governments (e.g. eastern China and central North America). Finally, there were only small changes 

between the 2050s and 2080s and very little in the way of any differences between the A1B and B2 

socio-economic scenarios.  Details on these modeled changes are presented in figure 3.   

3.3 Vulnerability “hotspots” 

When the outputs of the hydrological and adaptive capacity models are taken together, data suggest 

there are perhaps five wheat and three maize growing regions likely to be both exposed to worse 

droughts and a reduced capacity to adapt.  We refer to these areas as “vulnerability hotspots.”   For 

wheat, these are: southeastern USA, southeastern South America, the northeastern Mediterranean, and 

parts of central Asia.  For maize, our analysis suggests that vulnerability hotspots are: southeastern 

South America, parts of southern Africa, and the northeastern Mediterranean (see figure 4).  
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 Figure 3a. Modeled adaptive capacity levels for the 2000s and the % change in adaptive capacity by the 2050s 

(based on SRES A1B and B2 scenarios). The top row refers to the baseline levels of adaptive capacity in the 2000s 

for wheat (left) and maize (right). The colours display the interquartile range. In all cases red indicates low adaptive 

capacity and green high adaptive capacity. (Note: These maps do not include all regions where wheat and maize 

are produced as we did not find significant results for our adaptive capacity models for all parts of the globe.)
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Figure 3b. Modeled adaptive capacity levels for the 2000s and the % change in adaptive capacity by the 2080s 

(based on SRES A1B and B2 scenarios). The top row refers to the baseline levels of adaptive capacity in the 2000s 

for wheat (left) and maize (right). The colours display the interquartile range. In all cases redindicates low adaptive 

capacity and green high adaptive capacity. (Note: These maps do not include all regions where wheat and maize 

are produced as we did not find significant results for our adaptive capacity models for all parts of the globe. 
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 Figure 4. Vulnerability hotspots for wheat (triangle), and maize (circle) defined in terms of areas where adaptive 

capacity and soil moisture are both projected to be low and decline in the 2050s. The top row refers to the baseline 

adaptive capacity of each region where colors are displayed as interquartile range, withvalues for wheat (on the 

left): < 0.3112 (red), 0.3113-0.3310 (orange), 0.3311-0.3510 (yellow), 0.3511-0.4054 (light green), >0.4054 (dark 

green). For maize (on the right) values are: <0.2926 (red), 0.2927 - 0.3234 (orange), 0.3235 - 0.3434 (yellow), 

0.3435 - 0.3760 (light green), > 0.3760 (dark green), with red indicating low adaptive capacity and green high 

adaptive capacity. The second row refers to the percent change in adaptive capacity by the 2050s. The bottom row 

refers to chances in soil moisture by the 2050s. In both the bottom two rows red = a 25% reduction in adaptive 

capacity or soil moisture relative to the baseline, orange = 10-25% reduction, yellow = -10% - +10% change, light 

green = 10-25% increase, and dark green = >25% increase. Models are run for the A1B SRES scenario (please see 

table 2 for details). Note: These maps do not include all regions where wheat and maize are produced as we did not 

find significant results for our adaptive capacity models for all parts of the globe.  
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Discussion and Conclusion 

In terms of empirical results, the following observations stand out: (1) Results from the hydrological 

model project significant drying in many parts of the world overt the 21
st

 century.  (2) Results from the 

adaptive capacity models show that regions with the lowest overall adaptive capacity for wheat include 

much of western Russia, northern India, southeastern South America, and southeastern Africa. In terms 

of maize, regions with the lowest adaptive capacity include the northeastern USA, southeastern South 

America, southeastern Africa, and central/northern India.  (3) When taken together, this study identifies 

five wheat and three maize growing regions likely to be both exposed to worse droughts and a reduced 

capacity to adapt.  For wheat, these are: southeastern USA, southeastern South America, the 

northeastern Mediterranean, and parts of central Asia.  For maize, our analysis suggests that 

vulnerability hotspots are: southeastern South America, parts of southern Africa, and the northeastern 

Mediterranean. 

More generally, while there are a number of challenges with adopting the approach used here, this 

paper represents an important step in the body of research currently attempting to assess where 

harvests are vulnerable to climate change.  Therefore, this paper should be seen as contributing 

explicitly to the work of those scholars who use a mixture of socio economic and environmental 

variables to map current patterns of vulnerability.  Representing this body of literature are Pandey et al.  

(2011) who use a range of variables to construct an adaptive capacity index to assess water resource 

systems in Nepal.  Gbetibou and Ringler (2009)’s work is similar. They use a vulnerability framework to 

conduct a sub-national climate vulnerability assessment in South Africa.  Ericksen et al.’s (2011) work is, 

in our opinion, the most ambitious and comprehensive of these studies.  They use a large range of 

indicators to compile a series of vulnerability maps for the global tropics.  In each of the studies cited 

here, socio-economic variables such as GDP, rural population density, access to water, etc., are included 

in vulnerability assessments.  But in each of these studies, the relation between these variables and 

vulnerability is assumed to remain the same regardless of the social, ecological or political context.  Also, 

none of these studies attempt to model future patterns of vulnerability.  Our paper, therefore, builds on 

the foundation established by these scholars but here we have tried to test the significance of different 

socio-economic variables in different “types” of food producing region.  We then used this knowledge as 

the basis for some preliminary models to identify where adaptive capacity may change in the future.  

This does not mean that regions projected by our results to have declining levels of soil moisture but 

also high levels of adaptive capacity are resilient to drought (e.g. according to our results, the central 

USA is likely to experience worse droughts but has a relatively high adaptive capacity).   There may be a 

host of other factors not included in this assessment that may yet undermine food crop production in 

such areas.  For example, this analysis did not consider the effects of available ground water on adaptive 

capacity and one likely reason that farmers in the Great Plains of the USA and Northern China have been 

able to adapt to drought over the past 20 years (which is the period used to create the adaptive capacity 

models presented here) is that they had access to ground water for irrigation.  If, however, these 

resources become unavailable in the future (and evidence is mounting that the water table is dropping 

in both the US (Sophocleous, 2005) and northern China (Foster et al., 2004)), then farmers in these 

regions may find themselves unable to cope with large-scale droughts in the future.  Including an 
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assessment of ground water resources and ground water management, therefore, represents a logical 

next step in this research.   

Consequently, the results of this analysis should not be seen as providing a definitive assessment of the 

vulnerability of crops to drought.  Rather, by linking hydrological and socio-economic assessments 

together, we have provided a way of identifying different types of vulnerability.  The areas projected by 

our models as likely to have low adaptive capacity in the future should be targeted by policy aimed at 

creating the socio-economic conditions that will enable farmers to adapt.  Such interventions, of course, 

would need to be guided by an understanding of local on-the-ground conditions and here our analysis 

provides a preliminary level of insight.  For example, our results suggest that helping farmers access 

fertilizer may be more effective in helping promote adaptive capacity to drought in arid and tropical 

regions than temperate or cold regions.   In contrast, the areas identified as likely to lose soil moisture 

may be vulnerable due to being exposed to future climatic change.  In such regions, an appropriate 

policy response may be to find ways of better conserving water.  Therefore, both the hydrological and 

adaptive capacity model results should be seen as ways of highlighting at-risk areas and providing an 

initial level of guidance on interventions:  any specific programs or policies should be developed in 

participatory ways with local farmers (Fraser et al., 2011a; Tywyman et al., 2011).    

Finally, by integrating socio-economic and biophysical models, this study represents an attempt to 

overcome a significant limitation in current ways of projecting climate change impacts.  Currently, our 

best tools to anticipate the effect of new climate patterns are driven by downscaled global circulation 

models.  These computer models provide a reasonable way of identifying regions that are, in the future, 

likely to be exposed to climate change.  However, it has proven challenging to capture the socio-

economic context in which a climate change event occurs into these models.  The chapter on agriculture 

and food in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change highlights 

this challenge in that it provides a sophisticated review of the way crops respond to changing moisture, 

carbon dioxide fertilization, and temperature (Easterling et al., 2007).  The chapter also provides a brief 

review of adaptive capacity but while it argues that the social context of farming is very important, the 

conclusions of the chapter focus almost entirely on the ways crops respond to climate.   As a result, our 

study provides a methodological template that demonstrates one way of integrating biological and 

socio-economic factors into a single integrated assessment of how cereal crops may be vulnerable to 

droughts in the future.   
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