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Abstract  

Aggregate measures that capture multiple aspects of socio-ecological vulnerability in a 

single or small number of vulnerability indices can be used to produce vulnerability maps 

that act as powerful visual tools to identify those areas most susceptible to future 

environmental changes. Such indices are easily communicable and offer valuable guidance 

to policymakers and investors, providing insights as to where more targeted research or 

policy interventions can address current challenges and reduce future risks. However, such 

aggregation inevitably reduces the richness of information provided by the suites of 

individual vulnerability indicators on which the maps are based. This trade-off between 

information richness and information communicability is a constant challenge in the 

quantification and communication of complex phenomena such as socio-ecological 

vulnerability. This paper presents an exploratory analysis using Principal Component 

Analysis (PCA) techniques as a means of creating and comparing spatially-explicit 

aggregate indices of socio-ecological vulnerability. Vulnerability indices are produced for 

the Southern Africa Development Community region based on published biophysical and 

socio-economic data and mapped at a 10 arc minute resolution. The resulting vulnerability 

maps are particularly informative as they indicate the regional spatial variability of four 

statistically independent components of socio-ecological vulnerability. Such information-

rich vulnerability indices represent a potentially useful policy tool for identifying areas of 

greatest concern in terms of both the relative level, and the underlying causes and impacts 

of, socio-ecological vulnerability to environmental changes across broad spatial scales.  

Keywords: vulnerability indices; PCA; climate change; SADC; trade-offs, socio-ecological data.  
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1.  Introduction 

 

The academic literature generally conceptualizes vulnerability as a function of 

exposure, sensitivity and adaptive capacity (Eakin and Luers, 2006, Gallopin, 2006, Yohe and 

Tol, 2002). Exposure is defined as the degree to which a system experiences internal or 

external system perturbations and sensitivity is defined as the degree to which a system is 

affected by those system perturbations (McCarthy et al., 2001).  Adaptive capacity is defined 

as the ability of a system to adjust its behaviour and characteristics in order to enhance its 

ability to cope with external stress (Brooks, 2003). Spatially-explicit vulnerability 

assessments (vulnerability maps) are an increasingly important consideration in 

environmental policy formulation and in climate change and development debates (Metzger 

and Schröter, 2006, Stelzenmüller et al., 2010).  They can act as powerful visual tools that 

help identify those groups and areas most susceptible to harm at a particular point in time, 

allowing more targeted policy and investments that both mitigate current challenges and 

reduce future risks (e.g. Davies et al., 2010; Ericksen et al., 2011). The literature on socio-

ecological systems provides a useful theoretical framing to underpin the development of 

vulnerability maps, in that it ties together both the socio-economic and biophysical 

components of vulnerability, allowing a more comprehensive approach to vulnerability 

assessment (Eakin and Luers, 2006, Berkes and Folke, 2000). Such holistic approaches have 

been applied to vulnerability assessments across a range of socio-ecological systems at a 

variety of scales (e.g. Antwi-Agyei et al., 2012, Fraser and Stringer, 2009, Simelton et al., 

2009).  

Identifying and quantifying the multiple sources and drivers of vulnerability can 

nevertheless be problematic, particularly when seeking to identify and map vulnerability 

across broad spatial scales (Eakin and Luers, 2006, Füssel, 2009, Van Velthuizen et al., 2007).  

Many spatially explicit indicators of sensitivity, exposure and adaptive capacity are 

available, encompassing a wide range of social, biophysical and economic aspects of 

vulnerability. However, these indicators are not necessarily directly comparable when 

attempting to represent multiple sources of vulnerability in a manner that is useful for 
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policy formulation and decision making (Adger, 2006). While each individual indicator may 

be of interest to policy makers seeking to reduce a specific aspect of vulnerability, in 

isolation they do not provide a clear understanding of composite (or aggregate) socio-

ecological vulnerability. For example, population density in agrarian communities may 

either increase or decrease vulnerability (Meyer et al., 1998). High population density in 

agrarian communities may result in a dependence on marginal land for food production. 

These lands can rapidly become unproductive and therefore increase vulnerability to food 

insecurity (Reycraft and Bawden, 2000). Conversely, high population density in similar 

communities in locations with high quality agricultural land may allow intensified 

production and investment in infrastructure to increase food supplies (Boserup, 1965). If 

population density alone is considered as the key vulnerability indicator, the interaction 

with the environmental system and its capacity for agricultural production remains 

unassessed (uncontextualized) and could lead to the development of inappropriate policy. 

To gain a more holistic insight requires an understanding of how multiple, often 

interdependent, indicators of vulnerability, vary in space and time in relation to each other.  

Combining suites of often interdependent indicators into aggregate vulnerability 

indices—where the term index is taken to mean a unitless aggregation of multiple indicators 

of related phenomena—can provide a potentially useful overview of aggregate socio-

ecological vulnerability (Füssel, 2009). However, there is an unavoidable trade-off between 

richness of information and usefulness of that information in policy formulation in moving 

from a large suite of individual indicators to a small number of composite, unitless indices 

(Braat, 1991, Campbell, 1996). The choice of the trade-offs between communicability and 

comprehensiveness largely depends on whether the priority is to guide policy in a particular 

direction or to present results that utilise indicators strictly and yield results that are more 

comprehensively correct and complex but perhaps less straightforward to communicate. 

In the context of broad scale vulnerability mapping, we argue that it is difficult for 

policy makers to act on the basis of large numbers of discrete indicators that may be 

mutually contradictory in terms of the areas in which they indicate that vulnerability occurs. 

Therefore, despite complexities that include the large number of possible drivers of 

vulnerability in complex socio-ecological systems and the imperfect data related to the 



7 

 

indicators of vulnerability, there is still considerably utility in generating spatially-explicit 

measures that capture multiple aspects of socio-ecological vulnerability in a single or small 

number of aggregate indices.  Such aggregate indices, imperfect as they will be, can offer 

valuable guidance to policymakers and donor agencies, and provide insights as to where 

more detailed vulnerability assessments should be undertaken. 

The combination of multiple indicators of vulnerability into aggregate vulnerability 

indices is challenging, due to the incommensurability of both the values that these indicators 

represent and the units in which they are measured (Sullivan and Meigh, 2005). For 

example, it is impossible to directly compare infant mortality and soil degradation as these 

two indicators have different units of measurement, although both provide indications of 

vulnerability in agrarian societies. Standardisation of data to a common (comparable) 

unitless scale is generally used to overcome issues of incommensurability when combining 

multiple indicators. Aggregate indices based on standardised and summed indicators of 

socio-ecological vulnerability (e.g. Davies and Midgley, 2010) are useful in identifying 

hotspots where multiple aspects of vulnerability occur. However, the generation of a single 

composite vulnerability index using a standardisation/summation approach, is problematic 

because potentially important information regarding the relations between the original 

variables are obscured in the resulting unitless, aggregated index.  

When mapping socio-ecological vulnerability across large spatial extents (and 

therefore across diverse socio-ecological systems) it is likely that drivers of vulnerability will 

vary considerably across space (Eakin and Luers, 2006). Vulnerability assessments are 

therefore highly context specific (Füssel, 2009, Yohe and Tol, 2002). A 

standardisation/summation based vulnerability index may return similar scores in two 

locations where vulnerability is driven by very different processes (for example, forest loss 

or drought). Therefore policymakers viewing aggregate vulnerability maps have to rapidly 

return to the original indicators to understand and interpret the aggregate vulnerability 

indices. From a policy perspective it is therefore questionable as to whether aggregate 

vulnerability indices convey information in a more useful way than the multiple indicators 

of vulnerability on which they are based.  
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The potential for confusion linked to lack of clarity in the communication of 

information regarding the underlying relations between different drivers of vulnerability is 

important. We suggest that when multiple indicators are used to generate aggregated 

indices of socio-ecological vulnerability at broad spatial scales it would be useful if the 

relations between the original indicators (for example, how they co-vary across space) could 

be communicated in the resulting vulnerability indices, thus striking a balance between 

information richness and communicability.  Retention of clearly communicable information 

regarding the relations of the underlying variables to the resultant aggregate vulnerability 

indices provides vital contextual information regarding the specific sources of vulnerability 

for a given point in space. The contextualization of spatially explicit, aggregate vulnerability 

indices should increase their interpretability and usefulness for policy makers.  

This paper presents an exploratory attempt to use Principal Component Analysis 

(PCA) as a means of creating spatially-explicit aggregate indices of socio-ecological 

vulnerability for the Southern Africa Development Community (SADC) region. A PCA 

approach to the generation of aggregate socio-ecological vulnerability indices utilises a 

purely descriptive, statistical approach to data transformation as a means of overcoming 

incommensurability. In this sense it does not differ greatly from the more common approach 

to overcoming incommensurability of variables through data standardisation. However, we 

argue that PCA-based aggregate vulnerability indices are more informative than those 

derived from standardisation/summation. They can provide both relative vulnerability 

“scores” for a small number of statistically uncorrelated indices, as well as easily interpreted 

and communicated insights into which specific underlying indicators of vulnerability most 

influence those aggregate indices.  

 

2.  Methods  

Principal Component Analysis (PCA) is an analytical tool that uses orthogonal linear 

transformation to reduce the number of variables in statistical analysis by identifying a 

smaller number of uncorrelated proxy variables (principal components) that capture the 

variability in the underlying data. The first principal component (PC) accounts for as much 
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of the total variability in the data as possible, and each succeeding component accounts for 

as much of the remaining variability as possible (Jolliffe, 2002), where the total variability 

within the data is simply the sum of the variances of the observed variables, when each 

variable has been transformed so that it has a mean of zero and a variance of one (Hatcher, 

1997).  For each PC a proxy variable (score) is provided for each data point that represents 

the relative values of the underlying variables associated with that principal component. 

Because the PCs are uncorrelated the scores associated with each PC encapsulate a unique 

aspect of the overall socio-ecological vulnerability represented by the original set of 

vulnerability indicators. Here we conceptualise these PC scores as unitless aggregated 

measures of multiple aspects of socio-ecological vulnerability—vulnerability indices. PCA is 

a non-parametric analysis and is independent of any hypothesis about data probability 

distribution (Abdi and Williams, 2010). 

By retaining only those principal components that account for more of the variability 

in the original data than any of the original individual variables, a smaller number of 

independent indices of socio-ecological vulnerability can be generated.  The factor loadings 

of the original vulnerability indicators on the retained principal components—the extent to 

which the variables influence the resulting principal component—can shed light on the 

aspects of socio-ecological vulnerability each principal component index represents. Taken 

together, the PC scores and factor loadings provide information pertaining to the relative 

levels of vulnerability (scores) and the underlying drivers of that vulnerability (factor 

loadings). The indices produced by PCA are unitless measures that can be used to compare 

the relative vulnerability of different regions and for spatially-explicit mapping of multiple 

aspects of socio-ecological vulnerability across broad spatial extents. In this paper, we do not 

assign arithmetic relationships between multiple indicators of sensitivity, adaptive capacity 

and exposure in order to develop aggregate vulnerability indices. Rather we use PCA to 

identify where there may be correlations or spatial discontinuities between these different 

aspects of socio-ecological vulnerability in the SADC region. As with other investigations of 

socio-ecological vulnerability we differentiate between biophysical and socio-economic 

indicators (Füssel, 2009, Yohe and Tol, 2002). 
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The mapping of PCA based vulnerability indices can highlight the spatial patterns of 

different aggregated aspects of socio-ecological vulnerability. The SADC region contains a 

wide range of agro-ecological zones and socio-economic conditions (Stringer et al., 2012) 

allowing us to test the utility of using a PCA approach to vulnerability mapping across 

diverse socio-ecological systems and implying that the methods explored here will be of 

wider value for future up-scaling of such assessments. By studying this region using PCA, 

we aim to develop initial vulnerability indices that can guide more detailed research, as well 

as informing policy development and donor investment. 

The Southern African Development Community (SADC) study area includes: Angola, 

Botswana, Democratic Republic of Congo (DRC), Lesotho, Madagascar, Malawi, 

Mozambique, Namibia, South Africa, Swaziland, United Republic of Tanzania, Zambia and 

Zimbabwe (see  Figure 1). Mauritius and the Seychelles were excluded from the analysis due 

to their small size and the lack of availability of good quality spatially explicit data. The 

SADC region covers four broadly defined ecoregions1, based on Olson et al’s (2001) 

classification:  1) tropical and sub-tropical moist broadleaf forests, 2) tropical and subtropical 

grassland savannah and dry forests, 3) montane grasslands and shrubland and 4) 

drylands—desert, xeric shrubland and Mediterranean woodland and shrubland.  In 

addition to a SADC-wide analysis, a separate PCA analysis was conducted for the drylands 

ecoregion covering much of eastern South Africa, southern Namibia Botswana and 

Madagascar (see Figure 1).  Undertaking SADC region-wide and ecoregion specific PCAs 

allows comparison of the relative vulnerability indices that are produced when comparing 

vulnerability both across several different ecoregions and within a single ecoregion.  

 

[Insert Figure 1 here] 

                                                      

1 An ecoregion is defined as a large area of land or water that contains a geographically distinct 

assemblage of natural communities that share a large majority of their species and ecological 

dynamics, similar environmental conditions, and interact ecologically in ways that are critical for 

their long-term persistence. Ecoregions are sub-categorisations within the broader categorisation of 

biomes. 
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3. Data  

 The data used here is mapped at a spatial resolution of 10 arc minutes (approximately 

18.5 km at the equator). The majority of data covers a time period of 2000-2009, with the 

exceptions of the land degradation data (1990), the aridity index (average from 1960-1990) 

and precipitation indicator average from 1950-2000). The main criteria for inclusion of 

vulnerability indicators in this analysis were that the data should be of high quality, from a 

reputable source, and should have a relatively fine spatial resolution. Much of the available 

biophysical data (e.g. disaster events, water withdrawals) and socioeconomic data (e.g. 

educational and health indexes) are only reported at the national scale, hiding considerable 

spatial variability within nations. The use of such data can be argued to have distorted 

previous attempts at regional vulnerability mapping for the SADC region (Davies et al., 

2010).  For example, rural/urban divides and centres of development based on historical 

precedents or comparative competitive advantages create spatially heterogeneous socio-

economic structures within nations, while geology, climate and typography can vary 

considerably within small spatial extents creating very different environmental patterns. The 

inclusion of national statistics is problematic for the spatially explicit mapping of socio-

economic vulnerability. It would be necessary to assume an even distribution of those 

nationally reported indicators in the absence of evidence that it is satisfactory to do so.  

While some available indicators of aspects of socio-ecological vulnerability were both 

of good quality and at a fine spatial resolution, they were excluded from the analysis as they 

were not equally useful across the different ecoregions present within the SADC study area. 

For example, forest loss may be a good indicator of environmental sensitivity in forest 

ecoregions, yet is of little value in desert ecoregions, where there are no forests to be lost. 

The effect of including ecoregion-specific indicators is to prejudice the resultant relative 

vulnerability indices towards ecoregions in which the indicator is relevant. In addition, 

many of the spatially-explicit variables available represent different aspects of the same 

indicator. For example, there are high quality, spatially-explicit datasets for length of 

growing season, soil quality and climate variability and topological factors such as slope. All 

these variables influence the suitability of land for agricultural production (an important 
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potential source of vulnerability in the largely agrarian societies of the SADC). However, 

these variables interact with each other, often in complicated ways, influencing vulnerability 

in such a way that cannot be captured through a simple arithmetic combination of 

individual factors. Rather than treat these variables as individual indicators,  an aggregate 

indicator of agricultural constraints/suitability provided by  van Velthuizen et al (2007) was 

included instead (see section 3.1 for details) .   

Two aspects of socio-ecological vulnerability were considered in our analysis. First, 

environmental indicators of vulnerability were selected that represented biophysical 

resource scarcity or pressures on natural resources utilised in maintaining the wellbeing of 

SADC populations. Second, socio-economic indicators of vulnerability based on monetary 

and infrastructure poverty and health were considered important as these act as both 

indicators of the current vulnerability of SADC populations to resource scarcity and disease, 

and as indicators of the socio-economic capacity of SADC populations to cope with future 

perturbations or shocks to socio-ecological systems. In both cases, focus was largely on rural 

vulnerability. The indicators of vulnerability included in the analysis are detailed below and 

summarised in Table 1.  

 

3.1 Environmental and Biophysical indicators  

1) AGRICULTURAL CONSTRAINTS: this dataset represents constraints on agricultural 

production at a 10 arc minutes resolution. It combines terrain slope constraints, global agro-

ecological zones, and other biophysical factors that influence agricultural production such as 

soil quality, length of growing period, soil type, climate variability (Van Velthuizen et al., 

2007). This agricultural constraints indicator represents an important source of vulnerability 

for the agrarian dominated ecoregions under investigation. While this aggregate indicator 

includes aspects of climate variability (see indicators 11 and 12 below) the climate variables 

only account for a small proportion of the calculation of agricultural constrains and we 

believe the importance of including this indicator outweighs any potential double counting.  

2) SOIL DEGRADATION: the Global Assessment of Human-induced Soil Degradation 

(GLASOD dataset was used as an indicator of soil degradation based on multiple measures 
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of degradation severity (combining the degree and extent of degradation) within four 

categories: 1 = light, 2 = moderate, 3 = strong, 4 = extreme. The data was in vector format. The 

status of soil degradation was mapped within loosely defined physiographic units based on 

expert judgement for the period 1987-1990 (GLASOD, 1990). 

3) HANPP (human appropriation of net primary production). HANPP is an indicator of the 

pressure of human activity on ecosystems and reports the percentage of primary vegetative 

production within an ecosystem that is appropriated by humans. These data were obtained 

from a recent and comprehensive assessment of global appropriation conducted by Haberl 

et al. (2007) with a resolution of 5 arc minutes. The authors used the Lund–Potsdam–Jena 

(LPJ) dynamic global vegetation model (Gerten et al., 2005, Sitch et al., 2003) to calculate 

NPP0 (potential net primary production), and a combination of vegetation modelling, 

agriculture and forestry statistics, alongside GIS data on land use, land cover and soil 

degradation, to calculate NPPact (actual net primary production) and HANPP (see Haberl et 

al., 2007 for details). Note that only HANPP was used directly in the PCA; NPPact was used 

to create the POPNPP dataset (see below). 

4) POPNPP: this dataset was based on NPPact (see above) and the Gridded Population of 

the World (GPWv3) land area grid for the year 2000. The GPWv3 dataset has a resolution of 

2.5 arc-minutes. A proportional allocation gridding algorithm, utilizing more than 300,000 

national and sub-national administrative units, is used to assign population values to grid 

cells (CIESIN et al., 2005). GPWv3 is produced by the Columbia University Center for 

International Earth Science Information Network (CIESIN) in collaboration with the United 

Nations Food and Agriculture Programme (FAO) and the Centro Internacional de 

Agricultura Tropical (CIAT). NPPact was divided by population density to give an indicator 

of the available net primary production per capita for the year 2000. As such, POPNPP 

differs from HANPP as it is an indicator of one aspect of the per capita carrying capacity of 

ecosystems (the productivity of the system) rather than an indicator of the current pressure 

on that aspect of carrying capacity. 

5) ARIDITY: This uses the global aridity map produced by Zomer et al (2008) for the year 

2000, with a spatial resolution of 30 arc seconds. The data represents deficit over 
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atmospheric water demand through a standardized Aridity Index of mean annual 

precipitation divided by mean annual evapotranspiration. The Aridity Index was based on 

data from 1960–1990, at a resolution of 30 arc seconds Water availability was seen as a key 

limitation to agricultural production and areas of water scarcity are likely to be 

disproportionally vulnerably to changes in climate.  

6) PRECIPITATION CV:  the coefficient of variation of annual rainfall was taken from the 

Global Historical Climatology Network (GHCN), the FAO, and CIAT. This dataset provides 

an indicator of the annual variability in rainfall at a resolution of 5 arc minutes based on data 

for the years 1950-2000 (Hijmans et al., 2005).  

 

3.2 Socio-economic indicators  

7) INFANT MORTALITY: Global Sub-national Infant Mortality Rates consist of estimates of 

infant mortality rates for the year 2000 with a nominal resolution of 2.5 arc minutes. The 

infant mortality rate is defined as the number of children who die before their first birthday 

for every 1,000 live births. This dataset is produced by the Columbia University Center for 

International Earth Science Information Network (CIESIN, 2005a). 

8) MALNUTRITION: The Global Sub-national Prevalence of Child Malnutrition dataset 

consists of estimates of the percentage of children under the age of 5, who are underweight 

based on weight-for-age z-scores that are more than two standard deviations below the 

median of the NCHS/CDC/WHO International Reference Population (CIESIN, 2005b). Data 

are reported for the most recent year with sub-national information available at the time of 

development (1990-2002) with a resolution of 5 arc minutes. 

9) IRRIGATION: Grid with percentage of area equipped for irrigation with a spatial 

resolution of 5 arc minutes for the year 2000. This dataset is developed in the framework of 

the AQUASTAT programme of the Land and Water Development Division of the Food and 

Agriculture Organization of the United Nations and the Johann Wolfgang Goethe 

Universität, Frankfurt am Main, Germany (Siebert et al., 2007). The map resolution was 10 

arc minutes and the values were transformed so that high values represent areas that are not 

equipped for irrigation. 
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10) INFRASTUCTURE POVERTY: This dataset combines the LandScan 2004 population 

dataset (Oakridge National Laboratory, 2004) and the Night Time Lights dataset (Elvidge et 

al., 1997) to present a high resolution (30 arc seconds) poverty map (Elvidge et al., 2009) . 

The infrastructure poverty index is calculated by dividing the LandScan 2004 population 

count by the average visible band digital number from the lights. In areas where population 

is present but no lights were detected the full population count is passed to the index. The 

concept of the poverty index is to create a grey-scale image that is adjusted to lower values 

in abundantly lit areas where economic activity is high. High poverty index values occur in 

areas with high LandScan population count and dim (or no) lighting (Elvidge et al., 2009). 

11) POVERTY: This dataset was developed as a part of the “Geographic Domain Analysis to 

Support the Targeting, Prioritization, and Design of a CGIAR Mega-Project (MP) Portfolio”. 

It was constructed by the Center for Tropical Agriculture (CIAT), the Center for International 

Earth Science Information Network (CIESIN), the International Food Policy Research 

Institute (IFPRI), and the World Bank. The global poverty map was constructed using more 

than 24,000 sub-national data points for the developing world, creating the first ever sub-

national poverty map of the developing world (the percentage of people with incomes of 

less than $2.00 (PPP) per day). The data represents the year 2005 and had a spatial resolution 

of 10 arc minutes (Wood et al., 2010).   

12) TRAVEL TIME: Travel Time to Major Cities is a dataset developed by the European 

Commission and the World Bank in creates an urban/rural population gradient around large 

cities. The data has a resolution of 30 arc seconds and provides and indicator of the 

remoteness/connectivity to markets and infrastructure based on minutes of land based travel 

necessary to reach cites of greater than 50,000 inhabitants for the year 2000. (World Bank, 

2009) The map was produced for the World Bank’s Development report 2009: Reshaping 

Economic Geography. 

 

[Insert table 1 here] 
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Where necessary, all spatially-explicit data sets were re-projected in ArcGIS (ESRI, 

2006) from their original coordinate systems to World Geodetic System (WGS) 1984 global 

projection system. Vector/polygon data was converted to raster data at the same spatial 

resolution as the original data sets (all the original data, with the exception of country 

boundaries and ecoregions were, provided as gridded datasets). Hawth’s tools (Beyer, 2004) 

was used in ArcGIS to create  10 arc minute vector grid squares (approximately 18.5 km at 

the equator) across the entire SADC study area.  A 10 arc minute spatial resolution for the 

PCA analysis was chosen as it represented the maximum spatial resolution of datasets 

utilised in the analysis. A finer spatial resolution would have resulted in relative 

vulnerability indices implying a greater resolution than could be provided from the original 

spatial data. A coarser resolution (to match the 20 arc minute resolution of the coarsest 

dataset utilised in the analysis) would have resulted in a loss of spatial detail provided by 

many of the datasets that had a resolution of 5 arc minutes.  

The Zonal Statistic Tool within ArcGIS’s Spatial Analyst was then used to calculate the 

mean values for each spatially-explicit vulnerability indicator for each of the 10 arc minute 

analysis grid squares. When the resolution of the vulnerability indicator is finer than 10 arc 

minutes and a PCA analysis grid square falls on the border between terrestrial land masses 

and water bodies, the zonal statistics tool can distort the reported value of vulnerability by 

averaging the value from the terrestrial and water based cells. This “edge effect” reduces the 

indicator scores returned for costal grid squares.  To avoid this, edge analysis grid squares 

that crossed coastal boundaries and large water bodies were removed from the analysis, 

reducing the number of grid squares from 30,942 to 30,677. 

 

3.3. PCA analysis 

All PCAs were undertaken using the Minitab statistical program (Minitab, 2010) 

Pairwise correlation tests were applied in an attempt to reduce the initial set of metrics to a 

smaller subset of non-highly correlated metrics (Lausch and Herzog, 2002, Schindler et al., 

2008). As none of the twelve vulnerability metrics were highly correlated (for all pairwise 

Spearman’s correlations p < 0.80) all twelve vulnerability metrics were retained in the PCA 
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analysis. The Kaiser-Mayer-Olkin (KMO) sampling adequacy test values were > 0.5 and 

Bartlett’s sphericity tests returned P ≤ 0.05 for all PCA analyses, suggesting that the variables 

were suitable for PCA analysis (Hair et al. 2006). 

The choice of principal components to be retained from the PCAs was in part based on 

subjective judgment and interpretability of the components (Srivastava, 2002). Additional 

retention criteria were based on Kaiser’s rule of thumb that the Eigenvalues of the 

component should be > 1.0, the proportion of the variation in the original variables 

explained by the component and the shape of the scree and loading plots (Griffith et al., 

2000). The scores from the retained principal components were used as unitless indicators of 

aspects of the relative socio-ecological vulnerability of each 10 arc minute analysis grid 

square. The aspect of socio-ecological vulnerability represented by each principal 

component was defined by the relative loadings of each individual vulnerability indicator 

on that component. For example, if a principal component was heavily positively loaded on 

indicators of infrastructure poverty (irrigation, travel time night time lights) then the 

resulting vulnerability index based on the scores associated with that principal component 

would be regarded as an indicator of infrastructure poverty. For ease of comparison, the 

principal component scores (and therefore vulnerability indices) were standardised to 

values between 0-1, where 0 represents the least vulnerable and 1 the most vulnerable grid 

square.  

 

4. Results 

Section 4.1 presents the PCA results for the whole SADC region, covering all four broad 

ecoregions, while section 4.2 presents the PCA results from the SADC dryland ecoregion 

analysis. Section 4.3 combines the multiple relative socio-ecological vulnerability indices 

presented in 4.1 and 4.2 into single socio-ecological vulnerability indices for both the SADC-

wide and dryland specific analyses. 

 

4.1 SADC analysis 
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Four principal components were retained in PCA for the whole of the SADC region. Each 

had an eigenvalue > 1 and together these first four principal components accounted for 64% 

of the variation in the original 12 variables included in the analysis.  The loading of each 

variable for the retained principal components are detailed in Table 2, with the heaviest 

loadings highlighted.  

 

[Insert table 2 around here] 

The first principal component was heavily loaded on INFANT MORTALITY, POVERTY, 

AGRICULTURAL CONSTRAINTS and MALNUTRITION. The second component was 

loaded heavily on HANPP (human appropriated net primary productivity), SOIL 

DEGRADATION and IRRIGATION. The third component was loaded on POPNPP, 

INFRASTRUCTURE POVERTY and TRAVEL TIME and the fourth component on 

PRECIPITATION CV, MALNUTRITION AND ARIDITY. (Note, MALNUTRITION is 

mentioned twice as one variable can load on several principal components). The loadings of 

the 12 indicators allowed identification of four spatially discrete aspects of socio-ecological 

vulnerability based on the way in which the indicators co-varied across space. For ease of 

interpretability we termed these spatially-discrete aspects of socio-ecological vulnerability 

“Poverty and health vulnerability” (PC1), “biophysical pressure vulnerability” (PC2), 

“infrastructure poverty and population pressure vulnerability” (PC3) and “climate and 

malnourishment vulnerability” (PC4). It should be noted that these do not represent precise 

categories, rather they show the dominant indicators that define each of the four retained 

principal components and therefore the 4 discrete indices of relative socio-ecological 

vulnerability found in this research. The spatial distributions of these for proxy indicators of 

aspects of socio-ecological vulnerability for the SADC region are shown in Figure 2. 

 

[Insert figure 2 around here] 

 



19 

 

Figure 2 indicates that there are strong regional differences in the sources of socio-ecological 

vulnerability across the SADC region. Poverty and health vulnerability (PC1) dominate in 

the DRC, Angola, Mozambique and Tanzania, while biophysical pressures (PC2) are highest 

in the eastern and southern coastal regions of South Africa and the afforested eastern side of 

Madagascar. Infrastructure poverty and population pressure vulnerability (PC3) is highest 

in the urbanized area of South Africa and the desert regions of Namibia and Botswana. 

Climate and malnourishment vulnerability (PC4) dominates in the eastern states of Malawi, 

Mozambique, and Tanzania as well as the dryland regions of western Angola and the dry 

western side of Madagascar. PC4 also indicates high climate and malnourishment 

vulnerability in the densely populated region of South Africa encompassing Johannesburg 

and Pretoria.  

 

4.2 SADC drylands ecoregion analysis 

For the PCA limited to the SADC drylands ecoregion four principal components 

were also retained. Each of the retained components had an eigenvalue > 1 and again these 

first 4 principal components accounted for 64% of the variation in the original 12 variables 

included in the analysis. However, the loading on each of the four retained PCAs was 

different from those found for the SADC analysis. The loading of each variable for the 

retained principal components for the SADC drylands ecoregion is detailed in Table 3, with 

the heaviest loadings highlighted. The four retained principal components can broadly be 

described as: poverty and primary productivity vulnerability (PC1); health, malnourishment 

and climate vulnerability (PC2); infrastructure poverty and soil degradation vulnerability 

(PC3) and biophysical pressure vulnerability (PC4). In the SADC drylands ecoregion, 

poverty and primary productivity vulnerability was highest on the western coast of South 

Africa and southern Botswana.  Health, malnourishment and climate vulnerability was 

highest in Madagascar and Botswana. While infrastructure poverty and soil degradation 

(PC3) and biophysical pressure (PC4) vulnerability was highest in the central regions of 

South Africa and Namibia, only the coastal Cape region of South Africa had consistently low 

measures across all four aspects of relative vulnerability.    
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[Insert table 3 around here] 

 

4.3 Combined vulnerability indices 

Because the scores associated with the retained principal components produced in 

the PCA are unitless, it becomes possible to combine the resulting vulnerability indices into 

a single relative vulnerability index. As there are no a priori assumptions regarding the 

relative importance of the different aspects of vulnerability captured by the retained PCA 

scores, a simple average value for each 10 arc minute grid was taken to create a single 

relative vulnerability indices that capture approximately 64% of the variation in the original 

12 indicators of vulnerability for both the SADC wide and SADC drylands ecoregion 

analysis (Figure 3). 

 The combined relative vulnerability index for the SADC region suggests that socio-

ecological vulnerability is relatively low in western South Africa, Botswana and Namibia 

and is highest in the more densely populated areas of eastern South Africa, Malawi, Angola, 

Mozambique, Madagascar and DRC. In general, relative vulnerability was highest in areas 

of, or surrounding areas of, relative high population density. However, a quite different 

pattern of relative vulnerability can be seen when comparing the results for the drylands 

ecoregion in the ecoregion only and the region-wide analysis. The analysis suggests higher 

relative vulnerability in the central western Namibia and South Africa in the drylands 

analysis than in the region-wide analysis. Given that the PCA based indicators of socio-

ecological vulnerability are relative measures, the spatial extent over which the analysis is 

undertaken is likely to have a considerable influence on the resulting indices. In particular, 

an analysis across ecoregions tends to identify differences between ecoregions while 

minimising the difference in relative vulnerability within ecoregions. 

 

5. Discussion and Conclusion 
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 All spatially-explicit vulnerability assessment maps yield outputs that reflect the 

datasets and methods underpinning the analysis, and are contingent upon considerations 

such as the choice of indicators retained, the aggregation of datasets, the spatial resolution of 

the data and analysis, and any weighting of indicators that is employed in the analysis. 

Moreover, there are significant normative assumptions inherent in any attempt to identify 

aggregate socio-ecological vulnerability, not least in the initial choice of the suite of 

individual indicators of vulnerability that are selected for aggregation and the interpretation 

of individual indicators (Eakin and Luers, 2006, Füssel, 2009).  

 The choice of indicators used in this exploratory research was in a large part 

determined by the limited availability of high resolution, spatially explicit datasets for 

southern Africa. There are important indicators of socio-ecological vulnerability (such as 

civil unrest, inequality, local governance issues) for which data were not available. It should 

also be noted that vulnerability is often regarded as a context-specific term defined in regard 

to specific exogenous or endogenous perturbations/threats (Dilley and Boudreau, 2001, Smit 

and Wandel, 2006b) whereas here socio-ecological vulnerability has been defined in a more 

generalised form. Finally vulnerability is a dynamic concept and spatial mapping of 

vulnerability provides a static “snapshot” description of vulnerability at a particular point in 

time. Therefore as socio-ecological conditions change, new vulnerability maps will be 

required to reflect changes. For these reasons considerable care must be taken when 

interpreting the maps presented here and when comparing these maps to other created 

using different data and methods. Nevertheless, despite the caveats noted above we argue 

that given the data that were available and given the difficulty in modelling future socio-

ecological conditions, these maps provide a useful “first pass” in assessing broad scale socio-

ecological vulnerability.  

 Although our results share some similarities with other recent regional vulnerability 

assessments (e.g. Davies et al., 2010), they also exhibit some important differences to these 

and other assessments (e.g. Simelton et al., 2012, Ericksen et al., 2011). For example, the 

Regional Climate Change Programme’s (RCCP) vulnerability mapping for Southern Africa 

(Davies et al., 2010) and our combined socio-ecological vulnerability indices (Figure 4) both  

indicate relatively low levels of vulnerability in western South Africa and Namibia and high 
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levels of relative vulnerability in northern Mozambique, Angola and eastern and southern 

DRC. However, the RCCP analysis indicates considerably higher vulnerability in Zambia 

and Zimbabwe than indicated in the analysis presented here. This discrepancy is in part due 

to the different modelling approaches and data used in the two mapping exercises. For 

example, the RCCP considered indicators of adaptive capacity, sensitivity and exposure to 

climate variability and extremes separately and produced projected vulnerability maps 

looking forward up to the year 2050, whereas we identified 12 key variables and assessed 

current vulnerability. Nevertheless both sets of maps can be useful to policymakers and 

development aid donors, particularly when it comes to identifying hotspots of high 

vulnerability at a glance (Liu et al., 2008). Such indications can illuminate those locations 

where there is a need for further, urgent, in-depth case study based research to supplement 

and understand the detail of relationships between different indicators of vulnerability at 

smaller scales. Regional vulnerability maps should thus be considered a starting point for 

further analysis: they can contribute towards and inform policy, but should not be 

considered prescriptive or end points of vulnerability assessment in themselves. 

Using a Principal Components Analysis technique based on high resolution spatial 

datasets helps to highlight the spatial arrangement of different aspects of socio-ecological 

vulnerability. Our PCA based assessment of the socio-ecological vulnerability of the SADC 

region indicates that different aspects of vulnerability are spatially discrete, with different 

regions characterised by different types of vulnerability. From a policy perspective such 

relatively contextualised, “information rich” vulnerability indices may prove useful as they 

provide a compromise between the rich, often potentially confusing, and difficult to 

interpret detailed information provided by a large suite of individual vulnerability 

indicators and easy to visualize but potentially “information poor” aggregate vulnerability 

indices. Our analysis also suggests that there is a need to carefully consider scale when using 

PCA to generate aggregate vulnerability indices. Analyses at multiple spatial scales are 

likely to reveal different patterns of vulnerability. Multiple scale PCA analyses of socio-

ecological vulnerability represent a useful policy tool for identifying areas of concern in 

terms of both the relative level, and the underlying causes and impacts of socio-ecological 

vulnerability across broad spatial scales.  
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Figures 

 

Figure 1. SADC study area (ecoregions based on Olson et al (2001)) 
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Figure 2. Principal components of relative socio-ecological vulnerability for the SADC region 
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Figure 3. Principal components of relative socio-ecological vulnerability for the SADC desert ecoregion 
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Figure 4. Combined indices of relative socio-ecological vulnerability for the SADC region and SADC drylands ecoregion 
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Tables 

Table 1. Summary of spatially explicit datasets used in PCA of socio-ecological vulnerability 

Dataset name Data description Year dataset 

represents 

Data source 

INFANT 

MORTALITY 

Infant mortality rate 2000 (CIESIN, 2005a) 

POVERTY 

Percentage of the population living 

in poverty 

2005 (Wood et al., 2010) 

AGRICULTURAL 

CONSTRAINTS 

Constraints on agricultural 

production 

2000  

HANPP 

Human appropriation of net 

primary production 

2000 (Haberl et al., 2007) 

SOIL 

DEGRADATION 

Severity of soil degradation 1987-1990 (GLASOD, 1990) 

IRRIGATION 

Percentage of land not equipped 

for irrigation 

1990-2002 (Siebert et al., 2007) 

POPNPP 

Available net primary production 

per capita 

2000 (Haberl et al., 2007) 

and (CIESIN et al., 

2005) 

INFRASTRUCTURE 

POVERTY 

Infrastructure poverty, based on  

night-time lights per capita 

2000 (Elvidge et al., 

2009) 

TRAVELTIME 

Travel time to nearest city with a 

population greater than 50,000 

2000 (World Bank, 2009) 

PRECIPITATION CV 

Annual coefficient of variation in 

precipitation 

1950-2000 (Hijmans et al., 

2005) 

MALNOURISH 

Percentage of children under 5 

suffering from malnutrition 

2000 (CIESIN, 2005b) 

ARIDITY 
Index of aridity 2000 (Zomer et al., 2008) 
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Table 2. Retained principal components for the spatial analysis of socio-ecological 

vulnerability in SADC 

  PC1  PC2  PC3  PC4  

INFANT MORTALITY 0.409 -0.178 0.041 0.257 

POVERTY 0.341 0.243 -0.143 0.187 

AGRICULTURAL CONSTRAINTS 0.29 -0.13 0.104 -0.28 

HANPP 0.037 0.512 -0.079 0.104 

SOIL DEGRADATION -0.164 0.388 -0.266 0.062 

IRRIGATION -0.077 0.321 -0.088 0.102 

POPNPP -0.044 0.192 0.667 0.093 

INFRASTRUCTURE POVERTY -0.012 0.248 0.632 0.161 

TRAVELTIME 0.038 -0.45 0.165 -0.113 

PRECIPITATION CV -0.167 -0.168 -0.077 0.754 

MALNOURISH 0.382 -0.072 -0.067 0.388 

ARIDITY -0.448 -0.183 0.005 0.155 

Eigenvalue 3.7108 2.0596 1.3216 1.1691 

Proportion 0.285 0.158 0.102 0.09 

Cumulative 0.285 0.444 0.546 0.635 

       

 

  

 

 



33 

 

Table 3. Retained principal components for the spatial analysis of socio-ecological 

vulnerability in the SADC drylands ecoregion 

PC1 PC2 PC3 PC4 

ARIDITY 0.452 -0.03 0.127 0.124 

POVERTY 0.406 -0.047 0.066 0.094 

TRAVELTIME 0.277 0.212 -0.231 -0.286 

AGRICULTURAL CONSTRAINTS 0.049 -0.039 -0.484 -0.658 

INFANT MORTALITY -0.054 0.52 -0.025 -0.049 

MALNOURISH -0.174 0.513 0.067 0.127 

PRECIPITATION CV 0.095 0.477 0.003 0.121 

IRRIGATION 0.204 0.284 0.151 0.137 

INFRASTRUCTURE POVERTY -0.086  0.076 0.531 -0.444 

SOIL DEGRADATION -0.24 -0.252 0.31 0.083 

POPNPP 0.043 -0.047 -0.529 0.444 

HANPP -0.438 -0.026 0.008 0.014 

Eigenvalue 3.5378 2.3911 1.3949 1.032 

Proportion 0.272 0.184 0.107 0.079 

Cumulative 0.272 0.456 0.563 0.643 

 

 

 

 

 

 


