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Abstract

Many investments involve both a long time-horizon and risky returns. Making investment decisions

thus requires assumptions about time and risk preferences. Such assumptions are frequently contested,

particularly in the public sector, and there is no immediate prospect of universal agreement. Motivated

by these observations, we develop a theory and method of finding ‘spaces for agreement’. These are

combinations of classes of discount and utility function, for which one investment dominates another (or

‘almost’ does so), so that all decision-makers whose preferences can be represented by such combinations

would agree on the option to be chosen. The theory is built on combining the insights of stochastic

dominance on the one hand, and time dominance on the other, thus offering a non-parametric approach

to inter-temporal, risky choice.
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1 Introduction

When making investment decisions one is frequently confronted with long time-horizons and risky returns.
Therefore assumptions about time and risk preferences are important. Making such assumptions is always
tricky. In the area of public project appraisal they are especially contested, because, on top of the usual
challenges of estimating individual preferences, there are positions to be taken on how to aggregate individual
preferences in order to construct social preferences. Some of these positions are positive in nature, some are
normative.

A particularly good example of a long-run, risky public investment is mitigation of climate change by
reducing emissions of greenhouse gases. Carbon dioxide, the principal greenhouse gas, has a residence time
in the atmosphere stretching into centuries. Moreover the dynamics of the climate system are such that
there is a lag of many decades between abating carbon dioxide emissions and the peak pay-off from doing
so. Together these features make deciding on whether to cut emissions today one of the ultimate examples
of an investment with a long pay-back. At the same time, the impacts of emissions reductions are highly
uncertain, ranging from ineffectual to essential for the survival of humanity (e.g. Weitzman 2009), so it is
also a risky investment par excellence. It comes as perhaps no surprise then that great controversy surrounds
policy proposals to abate emissions, and that this controversy has turned in large measure on positions
taken on time and risk preferences. Compare, for example, the British Government’s Stern Review on the
Economics of Climate Change (Stern, 2007), which advocated immediate and deep cuts in global emissions
based on a distinctive combination of low pure-time discounting and moderate risk aversion, with critiques
of it by Nordhaus (2007) and Weitzman (2007) among others. However, the Stern Review is merely one
of the latest and most prominent manifestations of disagreement about time and risk in project appraisal
(landmarks include Lind et al. 1982, and Portney and Weyant 1999). Other examples of public projects
that have especially long time-horizons and risky returns are radioactive waste disposal and the protection
of wilderness and biological diversity. Matters may usually be easier in the private sector, where the cost of
capital dictates time preference and the ability to hedge risk supports risk-neutral choices, but incompleteness
in financial markets can undermine these conditions and motivate a desire both to smooth cashflows over
time and to avoid risk, for example in research and development.

Our starting point for this paper is that such a debate legitimately exists and will continue for the
foreseeable future. The ingredients for the debate include normative differences and positive uncertainties,
neither of which seems easy to resolve, certainly in the context of public investments. The normative
differences at hand are often framed as between believers in a ‘descriptive’ approach to time and risk,
which relies on appropriate data from markets or other samples of representative individual behaviour,
and adherents to a ‘prescriptive’ approach, where choosing functional form and setting parameter values is
an exercise in philosophical introspection on the part of the researcher. The dichotomy is due to Arrow
et al. (1996) and, since it was suggested, many justifications of both approach have been offered. The
debate endures. Positive uncertainties result from the wealth of relevant but often conflicting data to inform
specification of time and risk preferences, including market transactions, responses to questionnaire surveys
and behaviour in laboratory experiments, at different times, in different places and with respect to different
goods. It may be rather easier to envisage – in principle – how these positive uncertainties could be resolved
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by the collection of more data, but in practice this is likely to take a long time.
Consequently we are in the search for partial rather than complete orderings of choices. We want to

establish a theory and method of identifying whether there exist ‘spaces for agreement’, that is combinations
of classes of discount and utility function, for which one investment dominates another (or ‘almost’ does so),
so that all decision-makers whose preferences can be represented by such combinations would agree on the
option to be chosen.

Why might this be useful? Given disagreement about appropriate specification of time and risk prefer-
ences, our approach does not require decision-makers to make a priori choices of functional form or parameter
values. While this non-parametric approach could be used to inform investment choice in either the public
or private sectors, one of its main uses is likely to be to bring renewed clarity to certain critical and hotly
contested choices in public policy, such as mitigation of climate change. In these areas, the focus on the
debate about time and risk preferences has arguably come at the expense of asking whether in fact there are
some courses of action that both sides could agree to take. In turn, a key question is whether these courses
of action are non-trivial.

The intellectual antecedents of this paper lie in the theory of Stochastic Dominance (Fishburn, 1964;
Hanoch and Levy, 1969; Hadar and Russell, 1969; Rothschild and Stiglitz, 1970) and its offshoots, in partic-
ular Almost Stochastic Dominance (Leshno and Levy, 2002), Time Dominance (Bøhren and Hansen, 1980;
Ekern, 1981) and extensions of dominance analysis to multivariate problems (Levy and Paroush, 1974b;
Atkinson and Bourguignon, 1982; Karcher et al., 1995).

Stochastic Dominance (SD) is a fundament of the theory of decision-making under uncertainty. It is
undoubtedly useful for the sort of problems we have just set out, precisely because it offers a non-parametric
approach to risky choice, whereby one tests for SD relations for whole preference classes. However, the
basic theory of SD is a-temporal. In effect, decisions are made and pay-offs obtained in the same time
period. While extensions have been made to the multiperiod case (Levy, 1973; Levy and Paroush, 1974a),
the decision-maker is not permitted to have temporal preferences, that is to prefer flows of utility in some
periods of time more than in others.1 This is a serious drawback, as it is clear that most decision-makers
are impatient, preferring utility now to utility later on. Time preference is, by contrast, the core focus of
the theory of Time Dominance (Bøhren and Hansen, 1980; Ekern, 1981), which takes the SD machinery and
applies it to cashflows, i.e. instead of working with cumulative distributions over the consequence space of
a decision, one works with cumulative distributions over time. Proponents of the approach make arguments
in its favour that are analogous to those made for SD – one tests for a Time Dominance (TD) relation
for whole preference classes, rather than having to pre-specify and parameterise a discount function. The
drawback of TD, however, is the obverse of SD, namely that the basic theory has been developed for certain,
rather than uncertain, cashflows, and can only be extended to the latter under restrictive assumptions. This
would be done by analysing TD between expected cashflows, having made a risk adjustment to the set of
discount functions under consideration. However, since all cashflows would then be discounted using the
same set of risk-adjusted rates, it would be necessary to assume that all cashflows belong to the same risk
class, for example under the capital asset pricing model they would have to share the same covariance with

1One exception we are aware of is Scarsini (1986), who looked at a special case of utility discounting. We will clarify the
relationship between his paper and ours later.
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the market portfolio. It would also be necessary to assume that any investments being compared are small
(i.e. marginal), since TD assumes common consumption discount rates, which depend on a common growth
rate.

Another drawback of the basic theory of SD is nicely illustrated by a stylised example from Levy (2009)
– try to use SD criteria to rank two prospects, one of which pays out $0.5 with a probability of 0.01 and $1
million with a probability of 0.99, and the other of which pays out $1 for sure. While it would seem that
virtually any investor would prefer the former, SD cannot be established.2 Arguably this paradox betrays the
disadvantage of SD’s generality – within the classes of utility function considered, there are some ‘extreme’
(Leshno and Levy, 2002) or even ‘pathological’ (Levy, 2009) utility functions, according to which the latter
prospect is preferred.3 For this reason Leshno and Levy (2002) derived Almost Stochastic Dominance (ASD),
according to which one compares the area between the cumulative distributions in which SD is violated with
the total area between the distributions. Crucially, the ratio of the former to the latter can be given an
interpretation in terms of restrictions on the class of utility functions, and if the restriction is very small (to
be defined precisely later), an ASD relation can be argued to exist.

This sets the conceptual task for the present paper, which is to unify the theories of SD and TD so that
we have at our disposal a general framework for choosing between risky, inter-temporal prospects, which
admits the possibility of pure-time discounting and makes weak assumptions about the risk characteristics
of the prospects. In addition, we extend the notion of Almost SD to our bi-dimensional time-risk setup,
defining Almost Time-Stochastic Dominance. This provides a way to exclude extreme combinations of time
and risk preferences.

The remainder of the paper is set out as follows. In the next short section we deal with some analytical
preliminaries, in particular we set out the classes of utility and discount function that will be of primary focus.
Combinations of these classes constitute possible spaces for agreement. In Section 3 we establish the theory
of (standard) Time-Stochastic Dominance, while in Section 4 we do the same for Almost Time-Stochastic
Dominance. We offer a simple but realistic practical application in Section 5, noting that we have applied
the theory to a much more complex example of climate-change mitigation in a companion paper (Dietz and
Matei, 2013). Section 6 concludes.

2 Spaces for agreement

Let us take the task at hand as being to rank two prospects X and Y , both of which yield random cashflows
over time. The underlying purpose is to compare the expected discounted utilities of the prospects at t = 0,
i.e. for prospect X we compute

NPVv,u(X) =

∫ T

0

v(t)EFu(x, t)dt =

∫ T

0

v(t)

∫ b

a

u(x)f(x, t)dxdt,

2Where F 1 and G1 are respectively the cumulative distributions of the former and latter prospects over realisations x, this
is because the first nonzero values of G1(x) − F 1(x) are negative as x increases from its lower bound, yet EF (x) > EG(x).
nth-order SD requires that Gn(x)− Fn(x) ≥ 0, ∀x, EF (x) ≥ EG(x) and there is at least one strict inequality.

3In the example used, one would be u(x) =

 x for x ≤ 1

1 for x > 1
.
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where x is a realisation of the cashflow of prospect X, v is a discount function and u is a utility function.
Both functions v and u are assumed to be continuous and continuously differentiable at least once. We make
the assumptions, characteristic in the dominance literature, that the random cashflows of X and Y are both
supported on the finite interval [a, b], −∞ < a < b < +∞, and that each prospect pays out over a finite,
continuous time-horizon [0, T ]. Therefore we can characterise a probability density function for prospect
X at time t ∈ [0, T ], f(x, t), and a counterpart cumulative distribution function with respect to realisation
x ∈ [a, b], F 1(x, t) =

∫ x
a
f(s, t)ds.

Before characterising Time-Stochastic Dominance (TSD), we need to define classes of utility and discount
functions. Starting with utility functions u : [a, b]→ R, we will focus on two specific classes:

U1 = {u : u′(x) ≥ 0} ,

U2 = {u : u ∈ U1 and u′′(x) ≤ 0} .

As usual then, U1 is the class of utility functions, whereby utility is non-decreasing as a function of con-
sumption, representing nothing more than (weak) non-satiation. It is hard to imagine relevant circumstances
in which the appropriate utility function would not be in U1. U2 is the class of non-decreasing, weakly con-
cave utility functions, which rules out risk-seeking. Whether the appropriate utility function is in U2 is a
little less clear, but it is almost certainly a good description of most individual behaviour, for instance. In
the literature on SD, it is common to proceed further to a third class U3 in which u ∈ U2 and u′′′(x) ≥ 0,
which is a necessary (but insufficient) condition for a particular kind of risk aversion, decreasing absolute
risk aversion. However, we will not work explicitly with U3 in this paper, since we would have to contend
with too many combinations of utility and discount functions. Nevertheless the theory is perfectly capable
of handling it, and we will eventually establish a theorem for TSD of an arbitrarily high order with respect
to both time and risk.

Let us define a corresponding set of discount functions on the time domain, v : [0, T ] → R. The
broadest class of discount functions requires simply that at any point in time more is preferred to less,
V0 = {v : v(t) > 0}. However, V0 is of little interest, since some positive degree of time preference is always
required, however small. Therefore, without compromising the generality of our theory, let us focus our
attention on the first- and second-order restrictions on V0:

V1 = {v : v ∈ V0, and v′(t) < 0}

V2 = {v : v ∈ V1, and v′′(t) > 0} .

V1 is the class of strictly decreasing discount functions, exhibiting positive time preference, while V2 is
the class of strictly decreasing, convex discount functions. Note that V1 and V2 admit both exponential and
hyperbolic discounting as special cases. Exponential discounting has long been the conventional approach
to pure time preference, with debate focusing on the discount rate rather than the functional specification.
However, arguments have been advanced for hyperbolic discounting, including that it is a more appropriate
description of real individual behaviour (Laibson, 1997) and that it can result from the aggregation of

5



heterogeneous individual preferences.4

Combinations of utility and discount functions constitute possible spaces for agreement. V1 × U1 is the
largest possible space for agreement that we consider, encapsulating any decision-maker whose preferences
can be represented by, respectively, a strictly decreasing discount function and a non-decreasing utility
function, in other words any impatient decision-maker with any attitude to risk from seeking to averse.
Presumably virtually all decision-makers belong to this combination of classes. By contrast V2 × U2, for
instance, encapsulates decision-makers whose rate of impatience is non-increasing and who are risk averse
or neutral. Whether there is an actual space for agreement depends of course on whether any dominance
relations can be established between projects, for the combination in question.

Note that in Section 4 we narrow these spaces for agreement further by placing additional restrictions
on V and U with a view to excluding ‘extreme’ combinations of time and risk preferences. Note also that
these classes of time and risk preferences could alternatively be defined via a composite, multi-attribute
function Q(x, t) = v(t) ∗ u(x), on which we could directly impose equivalent restrictions.5 We prefer to keep
them separate, however, in order to make the independent role of time and risk preferences, and TD and SD
procedures respectively, more explicit.

3 Time-Stochastic Dominance

A further piece of notational apparatus will enable us to work in a compact, bi-dimensional form. Denote
the integral over time of the pdf by F1(x, t) =

∫ t
0
f(x,w)dw, while the integral over time of the cdf is

F 1
1 (x, t) =

∫ x
a
F1(s, t)ds =

∫ t
0
F 1(x,w)dw =

∫ t
0

∫ x
a
f(s, w)dsdw

Defining d(z, t) = g(y, t)− f(x, t), we set

Dj
i (z, t) = Gji (y, t)− F

j
i (x, t)

for all x, y, z ∈ [a, b] and all t ∈ [0, T ]. Given information on the first n and m derivatives of the discount
and utility functions respectively, we recursively define:

Dn(z, t) =
∫ t
0
Dn−1(z, w)dw

Dm(z, t) =
∫ z
a
Dm−1(s, t)ds

Dm
n (z, t) =

∫ t
0
Dm
n−1(z, w)dw =

∫ z
a
Dm−1
n (s, t)ds =

∫ t
0

∫ z
a
Dm−1
n−1 (s, w)dsdw,

where i ∈ {1, 2, . . . , n} is the order of TD (i.e. the number of integrations with respect to time) and j ∈
{1, 2, . . . ,m} is the order of SD (i.e. the number of integrations with respect to the probability distribution).
Note that our concept of TD relates to pure time discounting, whereas standard TD relates to discounting
of consumption.

With all of our notation now set out, let us characterise TSD for various combinations of classes of Uj
and Vi.

4Even though those individual preferences are represented by exponential discounting (see Gollier and Zeckhauser, 2005).
5As is commonly done in multivariate dominance analysis, in particular when dealing with utility as a function of two or

more goods (Atkinson and Bourguignon, 1982).
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Definition 1 (Time-Stochastic Dominance of order i, j). For any two risky, inter-temporal prospects
X and Y

X >iT jS Y if and only if ∆ ≡ NPVv,u(X)−NPVv,u(Y ) ≥ 0,

for all (v, u) ∈ Vi × Uj .

In this definition, the ordering >iT jS denotes pure TD of the ith order, combined with SD of the jth

order. For example, >1T1S , which we can shorten to >1TS , denotes pure-time and stochastic dominance of
the first order.

Proposition 1 (First-order Time-Stochastic Dominance). X >1TS Y if and only if

D1
1(z, t) ≥ 0, ∀z ∈ [a, b] and ∀t ∈ [0, T ],

and there is a strict inequality for some (z, t).

Proof. See Appendix 1.

Proposition 1 tells us that any impatient planner with monotonic non-decreasing preferences will prefer
prospect X to prospect Y , provided the integral over time of the cdf of Y is at least as large as the integral
over time of the cdf of X, for all wealth levels and all time-periods, and is strictly larger somewhere. It maps
out a space for agreement, as we can say that all decision-makers with preferences that can be represented
by V1×U1 will rank X higher than Y , no matter what precisely is their discount function or utility function
within these classes.6

Consider the following stylised example, comprising discrete cashflow distributions in discrete time. The
use of discrete data makes the exposition easy, but it is also the form of data that would typically be
encountered in practical applications; for instance such would be the output of a Monte Carlo simulation of
a structural model.

Example 1. Consider prospects X and Y , each of which comprises a cashflow over five periods of time
and in four states of nature with equal probability (i.e. uniform discrete distributed):

Time period
Prospect Probability 0 1 2 3 4

1/4 -2 -3 2 2 1
X 1/4 -1 -2 -2 3 1

1/4 0 -2 -2 5 6
1/4 0 0 -2 4 2

1/4 -5 -3 2 3 7
Y 1/4 -4 -3 2 3 1

1/4 -4 -1 -1 0 1
1/4 -4 0 1 1 6

6Proposition 1 is similar to Theorem 3 in Scarsini (1986). However Scarsini did not consider any other cases, i.e. any other
combinations of time and risk preference.
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Instead of integration with respect to time, use summation. For each additional restriction placed on
the curvature of the discount function, a new round of summation of the cashflows is performed, Xn(t) =∑t
w=0Xn−1(w). On the stochastic dimension we extend the quantile approach of Levy and Hanoch (1970)

and Levy and Kroll (1979). Take X to be an integrable random variable with, for each t ∈ [0, T ], a cdf
F 1(x, t) and an r-quantile function F−1,r(p, t), the latter of which is recursively defined as

F−1,1(p, t) : = inf{x : F 1(x, t) ≥ p(t)},∀t ∈ [0, T ] (1)

F−1,r(p, t) : =
∫ p
0
F−1,1(y, t)dy, ∀p ∈ [0, 1] , ∀t and r ≥ 2.

Proposition 2 (1TSD for quantile distributions). X >1TS Y if and only if

H−1,11 (p, t) = F−1,11 (p, t)−G−1,11 (p, t) ≥ 0, ∀p ∈ [0, 1] and t ∈ [0, T ]

and there is a strict inequality for some (p, t).

Proof. See Appendix 1.

Proposition 2 characterises First-order Time-Stochastic Dominance for quantile distributions and it can
further easily be shown to apply to discrete data.7 F−1,11 (p, t) and G−1,11 (p, t) are obtained by first cumulating
the cashflows across time, and then reordering from lowest to highest in each time period. Taking the
difference between them gives us H−1,11 (p, t). Notice that since the quantile distribution function is just the
inverse of the cumulative distribution function, 1TSD requires F−1,11 (p, t)−G−1,11 (p, t) ≥ 0, i.e. the inverse
of the requirement for 1TSD in terms of cumulative distributions.

In the case of Example 1, computing the quantile distributions gives us:

Time period
p 0 1 2 3 4

0.25 3 3 1 4 4
0.5 3 4 2 2 1
0.75 4 3 2 3 0
1 4 4 1 4 3

Therefore by Propositions 1 and 2 X >1TS Y .

Having established First-order TSD, we can proceed from here by placing an additional restriction on
the discount function and/or on the utility function. A particularly compelling case is the assumption of
impatience combined with risk aversion/neutrality – (v, u) ∈ V1 × U2 – since few would be uncomfortable
with the notion of excluding risk-seeking behaviour a priori, especially in the public sector.

7Choose an arbitrary quantile p∗(t) ∈ [0, 1] for any t and denote G−1
1 (p∗, t) = z2(t) and F−1

1 (p∗, t) = z1(t). We need to
show that z1(t) ≥ z2(t) for each t. Assume that z1(t) < z2(t). By definition, x2(t) represents the smallest value for which
equation 1 holds and for this reason z1(t) and z2(t) cannot be located on the same step of the G1

1(z, t) for any t. Therefore
G1

1(z1, t) < G1
1(z2, t). We have that G1

1(z1, t) < G1
1(z2, t) = p∗(t) = F 1

1 (z1, t) < F 1
1 (z2, t). Thus G1

1(z1, t) < F 1
1 (z1, t), which

contradicts the initial assumption. This proves sufficiency, and necessity can be demonstrated in a very similar way.
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Proposition 3 (First-order Time and Second-order Stochastic Dominance). X >1T2S Y if and
only if

D2
1(z, t) ≥ 0, ∀z ∈ [a, b] and ∀t ∈ [0, T ],

and there is a strict inequality for some (z, t).

Proof. See Appendix 1.

It is evident from Proposition 3 and its proof that, in line with the classical approach to SD, restricting the
utility function by one degree corresponds to integrating the bi-dimensional probability distribution D1

1(z, t)

once more with respect to the consequence space.

Example 2. Now consider two different prospects X and Y :

Time period
Prospect Probability 0 1 2 3 4

1/4 -4 -1 2 3 9
X 1/4 -1 -3 2 2 7

1/4 -1 -1 2 0 4
1/4 0 0 2 2 2

1/4 -5 -1 2 2 2
Y 1/4 -2 -3 -1 3 6

1/4 -2 0 0 2 5
1/4 0 0 2 1 8

In this example H−1,11 (p, t) is:

Time period
p 0 1 2 3 4

0.25 1 1 3 3 4
0.5 1 1 2 2 3
0.75 1 0 2 0 2
1 0 0 0 1 -2

While in the first four time periods H−1,11 (p, t) ≥ 0, the opposite is true when p = 1 in the terminal
period. Therefore first-order TSD cannot be established between these two prospects. However, cumulating
once more with respect to the consequence space gives H−1,21 (p, t), which here is:

Time period
p 0 1 2 3 4

0.25 1 1 3 3 4
0.5 2 2 5 5 7
0.75 3 2 7 5 9
1 3 2 7 6 7
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Thus from Proposition 3 and by extension of Proposition 2 we can say that X >1T2S Y . What this
example illustrates is that, when the violation of first-order TSD is restricted to the upper quantiles of F−1,11

and G−1,11 , the additional restriction that u ∈ U2 , which excludes risk-seeking behaviour, makes it disappear,
because relatively greater weight is placed on outcomes with low wealth.

If we want to pursue the further case of (v, u) ∈ V2×U2, representing a risk-averse or risk-neutral planner
with a non-increasing rate of impatience, then integrate D2

1(z, t) once more with respect to time.

Proposition 4 (Second-order Time-Stochastic Dominance). X >2TS Y if and only if

i)D2
1(z, T ) ≥ 0, ∀z ∈ [a, b],

ii)D2
2(z, t) ≥ 0, ∀z ∈ [a, b] and ∀t ∈ [0, T ],

and there is at least one strict inequality.

Proof. See Appendix 1.

The second part of the dominance condition tells us that, in order for X to be preferred to Y by any
decision-maker with preferences consistent with (v, u) ∈ V2 × U2, the cdf of X, integrated twice over time
and once more over the consequence space, must be nowhere larger than its counterpart for Y . Additionally,
First-order Time and Second-order Stochastic Dominance must hold with respect to the difference between
the distributions in the terminal period T .

Example 3. Now consider another two different prospects:

Time period
Prospect Probability 0 1 2 3 4

1/4 -5 -2 2 1 8
X 1/4 -3 -3 2 4 10

1/4 -1 -1 -2 0 0
1/4 0 -2 -1 2 4

1/4 -5 -2 -2 5 0
Y 1/4 -4 -3 -2 5 2

1/4 -2 -3 2 0 7
1/4 0 0 2 3 9

The reader can verify that in this example the condition for first-order TSD of either X or Y is not met.
Further, H−1,21 is:

Time period
p 0 1 2 3 4

0.25 0 0 4 0 0
0.5 1 1 9 0 5
0.75 2 4 8 2 5
1 2 2 3 -3 1

10



Therefore in this case neither is the condition for First-order Time and Second-order Stochastic Domi-
nance met. The next step is to inspect H−1,22 :8

Time period
p 0 1 2 3 4

0.25 0 0 4 4 12
0.5 1 2 11 15 23
0.75 2 6 14 17 29
1 2 4 7 4 5

Thus since H−1,22 ≥ 0, ∀z, t with mostly strict inequalities, and from above H−1,21 ≥ 0, ∀p, X >2TS Y .
The previous cases provide us with the machinery we require to offer a theorem for TSD that is generalised

to the nth order with respect to time and the mth order with respect to risk.

Proposition 5 (nth-order Time and mth-order Stochastic Dominance). X nth-order time and mth-
order stochastic dominates Y if

i)Dj+1
i+1 (b, T ) ≥ 0,

ii)Dj+1
n (b, t) ≥ 0, ∀t ∈ [0, T ],

iii)Dm
i+1(z, T ) ≥ 0,∀z ∈ [a, b],

iv)Dm
n (z, t) ≥ 0, ∀z ∈ [a, b] and ∀t ∈ [0, T ],

with (iv) holding as a strong inequality over some sub interval and where i = {0, . . . , n − 1} and j =

{0, . . . ,m− 1}.

The proof is constructed as a simple extension of the previous analysis. Integrating by parts repeatedly,
we obtain:

NPVEF ,v −NPVEG,v =
n−1∑
i=1

(−1)j+1uj(b)

[
m−1∑
j=0

(−1)jvj(T )Dj+1
i+1 (b, T )

]

+
n−1∑
i=1

(−1)j+1(−1)nuj(b)
∫ T
0
vn(t)Dj+1

n (b, t)dt+

+
m−1∑
j=0

(−1)i(−1)m−1vi(T )
∫ b
a
um(z)Dm

i+1(z, T )dz +

+(−1)m+n+1
∫ b
a

∫ T
0
vn(t)um(z)Dm

n (z, t)dtdz.

From which the statement of the Proposition follows immediately.

4 Almost Time-Stochastic Dominance

In practice, the usefulness of (standard) dominance analysis can be limited, since even a very small violation
of the conditions for dominance is sufficient to render the rules unable to order investments. As the example in

8H−1,2
2 (p, t) = [F−1,2

2 (p, t)−G−1,2
2 (p, t)] =

p∑
w=0

[F−1,1
2 (w, t)−G−1,1

2 (w, t)]
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the Introduction showed, if a violation exists in particular at the lower bound of the domain of the cumulative
distribution functions, then no amount of restrictions will make it vanish. Put another way, the downside of
a flexible, non-parametric approach is that the broad classes of preference on which the dominance criteria
are based include a small subset of ‘extreme’ or ‘pathological’ functions, whose implications for choice would
be regarded by many as perverse.9 Leshno and Levy (2002) recognised this problem in the context of SD
and developed a theory of Almost Stochastic Dominance (ASD), according to which restrictions are placed
on the derivatives of the utility function, so that extreme preferences are excluded.10 Dominance relations
between risky prospects are then characterised for ‘almost’ all decision-makers.

It is obvious that standard TSD faces the same practical constraints as standard SD. In this section we
therefore extend our theory to ‘Almost TSD’, excluding extreme combinations of time and risk preferences
so that prospects can still be ranked. In particular, by extending the theory to our bi-dimensional time-risk
setup, we define and characterise Almost First-order TSD and Almost First-order Time and Second-order
Stochastic Dominance. In doing so, the attention of the analysis shifts subtly to asking; how many preference
combinations must be excluded in order to obtain a ranking? Put another way, how much smaller is the
space for agreement? In general, the less that need be excluded, the better.11

Let us start with Almost First-order TSD. Our basic approach is analogous to Leshno and Levy (2002)
in that we measure the violation of 1TSD in terms of sets of realisations and time-periods, relative to the
non-violation of 1TSD, and give this relative measure of violation meaning by linking it with a restriction
on time and risk preferences. To see this, begin by defining the set of realisations z ∈ [a, b] for all t where
there is a violation of First-order TSD as S1

1 :

S1
1(D1

1) =
{
z ∈ [a, b], ∀t ∈ [0, T ] : D1

1(z, t) < 0
}
.

We also explicitly define S1,T as the subset of S1
1 when t = T , i.e. the difference between the single-

dimensional cumulative distributions over the consequence space at time T :

S1,T (D1
1) =

{
z ∈ [a, b] : D1

1(z) < 0
}
.

Definition 2 (Almost First-order Time-Stochastic Dominance). X dominates Y by Almost First-
order Time-Stochastic Dominance, denoted X >A1TS Y, if and only if

i)
∫ ∫

S1
1
−D1

1(z, t)dzdt ≤ γ1
∫ T
0

∫ b
a

∣∣D1
1(z, t)

∣∣ dzdt and
ii)
∫
S1,T −D1

1(z, T )dz ≤ ε1T
∫ b
a

∣∣D1
1(z, T )

∣∣ dz.
9What is ‘extreme’ is clearly subjective, an obvious difficulty faced by the ASD approach. However, Levy et al. (2010) offer

an illustration of how to define it using laboratory data on participant choices when faced with binary lotteries. Extreme risk
preferences are marked out by establishing gambles that all participants are prepared to take. By making the conservative
assumption that no participant has extreme risk preferences, the least and most risk-averse participants mark out the limits,
and preferences outside these limits can be considered extreme.

10Tzeng et al. (2012) showed that Leshno and Levy’s theorem for Almost Second-order Stochastic Dominance is incorrect
and re-define the concept. They also extend the results to higher orders.

11We could also characterise Almost Second-order TSD, but when the attention moves in this approach to measuring and
interpreting violations of standard classes of function, there is much less to be gained in placing the additional, categorical
restriction on time preferences that this entails, going from a first order to a second order with respect to time as outlined in
Section 2. Put another way, these can be seen in some respects as alternative methods of restricting preferences.
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Proposition 6 (A1TSD). X >A1TS Y if and only if, for all (v, u) ∈ (V1 × U1)(γ1) and u ∈ U1(ε1T ),
NPVv,u(X) ≥ NPVv,u(Y ).

Proof. See Appendix 1.

The definition of Almost First-order TSD contains two measures of the violation of standard First-order
TSD. γ1 measures the cumulative violation of the non-negativity condition on D1

1 over all t, relative to the
total volume enclosed between the distributions over all t, while ε1T measures the violation of the same
condition at time T only, relative to the total area enclosed between the distributions at that time. For
the sake of an easy exposition, let us explain the latter violation measure first, ε1T . It has in fact the same
interpretation in terms of utility as the corresponding violation measure in Leshno and Levy (2002). The
difference is that in our bi-dimensional framework it matters over what time-period the violation is measured,
and here it is for t = T . Adapting their theorem to our context, for every 0 < ε1T < 0.5, define the following
subset of U1:

U1(ε1T ) =

{
u ∈ U1 : u′(z) ≤ inf[u′(z)]

[
1

ε1T
− 1

]
, ∀z ∈ [a, b], t = T

}
.

U1(ε1T ) is the set of non-decreasing utility functions with the added restriction that the ratio between
maximum and minimum marginal utility is bounded by 1

ε1T
− 1, i.e. extreme concavity/convexity is ruled

out. It is easiest to see what this restriction entails in the case of u ∈ U1(ε1T ), where u′′(z) is monotonic.
Then we are restricting how much (little) marginal utility members of the class of functions give to low
wealth levels at the same time as restricting how little (much) marginal utility they give to high wealth
levels. Further narrowing the scope to the very common case of utility functions with constant elasticity of
marginal utility, the restriction is on the absolute value of the elasticity – |u

′′(z)z
u′(z) | – such that it cannot be

large negative or large positive, and the larger is ε1T the smaller |u
′′(z)z
u′(z) | must be. Of course this is merely

an illustration – the set of utility functions U1(ε1T ) is much larger than the constant-relative-risk aversion
functions alone. In the limit as ε1T approaches 0.5, the only function in U1(ε1T ) is linear utility, where
u′′(z) = 0. Conversely as ε1T approaches zero, U1(ε1T ) coincides with U1.

γ1 is defined in terms of the product of the marginals of the discount and utility functions as follows:

(V1 × U1)(γ1) =
{v ∈ V1, u ∈ U1 : −v′(t)u′(z) ≤

inf[−v′(t)u′(z)]
[

1
γ1
− 1
]
,∀z ∈ [a, b], ∀t ∈ [0, T ]}

(V1×U1)(γ1) is the set of all combinations of decreasing pure time discount function and non-decreasing
utility function, with the added restriction that the ratio between the maximum and minimum products of
[−v′(t)u′(z)] is bounded by 1

γ1
−1. The supremum (infimum) of [−v′(t)u′(z)] is attained when v′(t) < 0 is the

infimum (supremum) of its set and u′(z) ≥ 0 is the supremum (infimum) of its. Bounding the ratio between
maximum and minimum v′(t) amounts to excluding preferences exhibiting a very large change in impatience
over time. Therefore the combinations of preferences that we are excluding here comprise extreme concavity
or convexity of the utility and discount functions somewhere on their respective domains. Note that the
bounds on [−v′(t)u′(z)] are established with respect to all realisations and all time-periods.
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All decision makers exhibiting the non-extreme combination of preferences expressed by the discount and
utility functions (v, u) ∈ (V1 × U1)(γ1) and u ∈ U1(ε1T ) will prefer X to Y if and only if the condition in
Proposition 6 is satisfied.

Moving now to Almost First-order Time and Second-order Stochastic Dominance, parcel out for all t
the subset of realisations S2

1 where D2
1 < 0, i.e. where the condition for standard First-order Time and

Second-Order Stochastic Dominance is violated:

S2
1(D2

1) =
{
z ∈ [a, b], ∀t ∈ [0, T ] : D2

1(z, t) < 0
}
.

Further explicitly define S2,T as the subset of S2
1 when t = T :

S2,T (D2
1) =

{
z ∈ [a, b] : D2

1(z) < 0
}
.

And in this case we also need to define a subset of realisations where D2
1(b, t) < 0, for any t where z = b:

S1,b(D
2
1) =

{
z = b, t ∈ [0, T ] : D2

1(t) < 0
}
.

Definition 3 (Almost First-order Time and Second-order Stochastic Dominance). X Almost
First-order Time and Second-order Stochastic Dominates Y, denoted X >A1T2S Y if and only if

i)
∫ ∫

S2
1
−D2

1(z, t)dzdt ≤ γ1,2
∫ T
0

∫ b
a

∣∣D2
1(z, t)

∣∣ dzdt,
ii)
∫
S2,T −D2

1(z, T )dz ≤ ε2T
∫ b
a

∣∣D2
1(z, T )

∣∣ dz,
iii)

∫
S1,b

D2
1(b, t)dt ≤ λ1b

∫ T
0

∣∣D2
1(b, t)

∣∣ dt, : and
iv)D2

1(b, T ) ≥ 0

Proposition 7 (A1T2SD). X >A1T2S Y if and only if, for all (v, u) ∈ (V1 × U2)(γ1,2), u ∈ U2(ε2T ) and
v ∈ V1(λ1b),

NPVv,u(X) ≥ NPVv,u(Y ).

Proof. See Appendix 1.

Notice that the definition of Almost First-order Time and Second-order Stochastic Dominance has a
similar structure to Proposition 5. It contains three measures of the violation of strict dominance, as well as
the requirement that D2

1(b, T ) ≥ 0, i.e. that the difference between the undiscounted mean values of projects
X and Y respectively is at least zero. First, γ1,2 measures the relative violation of the non-negativity
condition on D2

1 over all t. It is equivalent to the following restriction on combined time and risk preferences:

(V1 × U2)(γ1,2) =
{v ∈ V1, u ∈ U2 : v′(t)u′′(z) ≤

inf[v′(t)u′′(z)]
[

1
γ1,2
− 1
]
, ∀z ∈ [a, b], ∀t ∈ [0, T ]}

.

The set (V1 × U2)(γ1,2) represents all combinations of decreasing pure time discount functions and non-
decreasing, weakly concave utility functions, with the added restriction that the ratio between the maximum
and minimum of [v′(t)u′′(z)] is bounded by 1

γ1,2
− 1. The supremum (infimum) of [v′(t)u′′(z)] is attained

when v′(t) < 0 and u′′(z) ≤ 0 are the suprema (infima) of their respective sets, and these sets are defined
with respect to all realisations and time-periods.
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Second, ε2T measures the relative violation of the non-negativity condition on D2
1 at time T only. As per

Leshno and Levy (2002), for every 0 < ε2T < 0.5,

U2(ε2T ) =

{
u ∈ U2 : −u′′(z) ≤ inf[−u′′(z)]

[
1

ε2T
− 1

]
, ∀z ∈ [a, b], t = T

}
.

U2(ε2T ) is the set of non-decreasing, weakly concave utility functions with the added restriction that the
ratio between maximum and minimum u′′(z) is bounded by 1

ε2T
− 1. Therefore large changes in u′′′(z) with

respect to z are excluded, where only realisations at time T are considered.
Third, we need to measure a violation of the non-negativity condition on the integral with respect to

time of D2
1(b, t). We denote this λ1b and it is equivalent to restricting time preferences as follows:

V1(λ1b) =

{
v ∈ V1 : −v′(t) ≤ inf[−v′(t)]

[
1

λ1b
− 1

]
, z = b, ∀t ∈ [0, T ]

}
.

V1(λ1b) is the set of decreasing pure time discount functions with the added restriction that the ratio
between maximum and minimum v′(t) is bounded by 1

λ1b
− 1. Hence large changes in v′′(t) are excluded.

Example 4. Consider the following two prospects:

Time period
Prospect Probability 0 1 2 3 4

1/4 -5 -3 0 4 7
X 1/4 0 -3 1 2 10

1/4 0 -2 1 3 9
1/4 0 0 0 1 1

1/4 -5 -1 0 3 9
Y 1/4 -4 -2 -1 0 1

1/4 -2 -3 1 1 5
1/4 -2 -1 -1 2 1

In this example H−1,11 is:

Time period
p 0 1 2 3 4

0.25 0 -2 -1 3 8
0.5 4 3 4 3 4
0.75 2 3 3 4 8
1 2 3 4 4 5

First-order TSD cannot be established between these two prospects. Moreover it can easily be shown
that the occurrence of the violation in the lowest quantile of H−1,11 , in early time periods, means that the
violation will persist despite infinitely repeated cumulation with respect to time and/or the consequence
space. However, it is quite evident from the tables that X performs better than Y most of the time, so let
us inspect this example within the framework of Almost TSD:
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A1TSD A1T2SD
γ1 ε1T γ2 ε2T γ1b

0.04 0 0.02 0 0

The small violations reflect what is intuitively obvious from H−1,11 (p, t), namely that only a small restric-
tion on the combination of classes of discount and utility functions is required in order for dominance to be
established, since F < G most of the time in most quantiles.

5 Practical application

In this section we show how the TSD criteria might be applied in practical contexts. These examples are
adapted from an exercise in a well-known textbook on appraisal of public-sector projects (Boardman et al.,
2010).

The municipality of New City is considering building a recreation centre. There is an up-front cost of
constructing the centre, as well as annual operating costs including staffing and maintenance, which are
assumed to be constant in real terms. Analysts have made an estimate of the benefits of the recreation
centre in its first year of operation, as well as forecasting real growth of these benefits in future years due
to increases in incomes and population. After twenty years of operation, New City plans to sell the land on
which the centre has been built. This is the project’s scrap value.

Suppose the municipality is presented with a menu of three alternatives (A-C) for the recreation centre,
as tabulated in Appendix 2 (these are our extensions to the original exercise). In each of these alternatives,
the costs and benefits of building the recreation centre are uncertain, with the various uncertainties charac-
terised by probability distributions. The analyst runs a Monte Carlo simulation, yielding discrete cashflow
distributions in discrete time.

Example 1. Consider Options A and B for the recreation centre. These two options are identical in
every respect, except that Option A has higher mean construction costs, as well as a higher variance around
these costs.

The analyst uses the data in Appendix 2 to perform a Monte Carlo simulation of the cashflows from
Options A and B, sampling 1000 times from the probability distributions specified. For each alternative, the
resulting set of cashflows is first cumulated across time and then reordered from lowest to highest in each time
period in order to obtain F−1,11 (p, t), which represents Option B, and G−1,11 (p, t), which represents Option A.
Taking the difference between these two quantile distributions gives us H−1,11 (p, t), which is plotted in Figure
1. Visual inspection confirms that H−1,11 (p, t) ≥ 0 ∀p ∈ [0, 1] and t ∈ [0, 20]. Therefore, by Propositions 1
and 2, B >1TS A by all impatient decision makers with monotonic non-decreasing preferences, and Option
A can be excluded from the efficient set due to its higher costs.

Example 2. Now compare Option B with Option C. Option C has higher mean benefits, but higher
operating costs. Analysts also have reason to believe that the mean benefits and operating costs of Option C
are correlated (for example, the variable costs of the recreation activities offered by C depend more strongly
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Figure 1: H−1,11 (p, t) for Options A and B compared, where F−1,11 (p, t) represents Option B and G−1,11 (p, t)

represents Option A.
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Figure 2: H−1,11 (p, t) for Options B and C compared, where F−1,11 (p, t) represents Option C and G−1,11 (p, t)

represents Option B.
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on demand/use of the facilities), while in Option B (and A for that matter) it is considered a reasonable
approximation to treat them as independently distributed.

Figure 2 plots H−1,11 (p, t), where F−1,11 (p, t) represents Option C and G−1,11 (p, t) represents Option B.
While positive in the majority of circumstances, it can be seen that there are violations in this case (shaded
red). Therefore First-order TSD cannot be established between these two alternatives. Where can we go from
here? One option is to place an additional restriction on the discount function, inspecting whether we can
establish Second -order Time and First-order Stochastic dominance. H−1,12 (p, t) is obtained by cumulating
the cashflows from each alternative twice with respect to time, reordering these twice-cumulated cashflows
from lowest to highest in each time period, and taking the difference between the resulting distributions
F−1,12 (p, t) and G−1,12 (p, t). However, we will not be able to establish strict TSD in this way. The reason is
that a violation of First-order TSD exists in year 1, due to the higher operating costs of Option C, which are
relatively more important initially, before benefits growth has its effect. This violation will therefore persist
despite cumulation with respect to time (indeed it will persist despite infinitely repeated cumulation across
time).
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Figure 3: H−1,21 (p, t) for Options B and C compared.
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Instead, let us place an additional restriction on the class of utility functions, limiting the possible space
for agreement to risk-averse decision-makers. We inspect whether Option C First-order Time and Second -
order Stochastic dominates B. This is achieved by cumulating H−1,11 (p, t) with respect to the consequence
space, giving H−1,21 (p, t). Figure 3 shows that this is positive everywhere, so we can say that C >1T2S B.

The property of this example, which makes it possible to establish that C >1T2S B, is that the violations
of First-order TSD fall predominantly at medium to high quantiles and, critically, not at the very lowest
quantiles. That is to say, H−1,11 (p, t) is more likely to be negative when F−1,11 (p, t) and G−1,11 (p, t) are
both high. Cumulation with respect to the consequence space can therefore eliminate the violation. The
correlation between the higher operating costs and higher mean benefits of Option C relative to Option B
is an important factor in producing this effect. With the additional restriction that u ∈ U2, which excludes
risk-seeking behaviour, relatively greater weight is placed on outcomes where the net benefits of the projects
are low, where there is at the same time no large violation of First-order TSD.

Let us re-consider the choice between Options B and C. Instead of seeking to establish strict TSD by
placing an additional restriction on the utility function, instead quantify Almost First-order TSD of Option
C over Option B. After all, Figure 2 showed that the violation of First-order TSD appeared to be small
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relative to the total volume enclosed between F−1,11 (p, t) and G−1,11 (p, t). Doing the necessary calculations as
explained in Section 4, γ1 = 0.0008 and ε1T = 0, which confirms what is visually apparent. We can identify
a space for agreement that C >A1TS B. Moreover we can say on the strength of very low γ1 and zero ε1T
that those who do not prefer Option C to B have an extreme combination of time and risk preferences.

6 Conclusions

In this paper we have proposed a theory of Time-Stochastic Dominance for ordering risky, intertemporal
prospects. Our theory is built by unifying the insights of Stochastic Dominance (SD) on the one hand with
those of Time Dominance (TD) on the other hand. Like these earlier theories, the approach is non-parametric
and allows orderings to be constructed only on the basis of partial information about preferences. But our
approach generalises the application of simple SD to intertemporal prospects, by permitting pure temporal
preferences, just as it generalises the application of simple TD to risky prospects, by avoiding the need to
make strong assumptions about the characteristics of the prospects (prospects may belong to different risk
classes and cashflows may be large/non-marginal).

Like other dominance criteria, a possible practical disadvantage of (standard) Time-Stochastic Dominance
is that it may not exist in the data, despite one prospect paying out more than another most of the time, in
most states of nature. Various approaches can be taken to dealing with this. Our choice has been to extend
the notion of Almost SD pioneered by Levy and others to our bi-dimensional time-risk setup giving rise to
Almost TSD.

The theory can in principle be applied to any investment problem involving multiple time-periods and
uncertainty about pay-offs, however, given the involving nature of the analysis, we suggest that it might prove
most useful in the case of some highly contentious public-investment decisions, where there is disagreement
about appropriate rates of discount and risk aversion. An example might be the mitigation of climate change,
and this is considered in the companion paper Dietz and Matei (2013).
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A Appendix 1

A.1 Proof of Proposition 1

Sufficiency:
We want to prove that

D1
1(z, t) ≥ 0 =⇒ NPVv,u(X) ≥ NPVv,u(Y )

for all t and z for all u ∈ U1, v ∈ V1.

Assume that z is bounded from below and above, a ≤ z ≤ b. This implies that for z < a, F 1(x, t) =

G1(y, t) = D1(z, t) = 0 for all t ∈ [0, T ], while similarly for z > b, D1(z, t) = G1(y, t)− F 1(x, t) = 1− 1 = 0

for all t ∈ [0, T ].
Denote by

∆ ≡ NPVv,u(X)−NPVv,u(Y ) =
∫ T
0
v(t)EFu(x)dt−

∫ T
0
v(t)EGu(y)dt

=
∫ T
0
v(t)

∫ b
a
f(x, t)u(x)dxdt−

∫ T
0
v(t)

∫ b
a
g(y, t)u(y)dydt

=
∫ T
0
v(t)

∫ b
a
− d(z, t)u(z)dzdt.

Integrating by parts with respect to z we obtain:

∆ =
∫ T
0
v(t)

[
u(z)(−)D1(z, t)|ba −

∫ b
a

(−)D1(z, t)u′(z)dz
]
dt.

The first term in the square brackets is equal to zero (recall that for z = b, we have D1(b, t) = 1− 1 = 0

for all t and for z = a we have D1(a, t) = 0 for all t). Therefore, we are left with

∆ =
∫ T
0
v(t)

[
−
∫ b
a

(−)D1(z, t)u′(z)dz
]
dt

=
∫ T
0

∫ b
a
v(t)D1(z, t)u′(z)dzdt. (1.1)

Integrating by parts with respect to t we have:

∆ =
∫ b
a

[
D1

1(z, t)v(t)|T0 −
∫ T
0
D1

1(z, t)v′(t)dt
]
u′(z)dz

=
∫ b
a

[
D1

1(z, T )v(T )−
∫ T
0
D1

1(z, t)v′(t)dt
]
u′(z)dz, (1.2)

as D1
1(z, 0) = G1

1(y, 0)− F 1
1 (x, 0) = 0 for all z ∈ [a, b].

From our initial assumption about the bounding of z, we know that D1
1(z, t) ≥ 0 and v(T ) ≥ 0. Hence

for all u ∈ U1 and v ∈ V1, NPVv,u(X) ≥ NPVv,u(Y ).
Necessity:
We have to prove that

NPVv,u(X) ≥ NPVv,u(Y ) =⇒ D1
1(z, t) ≥ 0

for all u ∈ U1, v ∈ V1 for all t and z.

Starting from Eq. 1.1, let (z̃, t̃) be the smallest (in the lexicographic sense) pair (z, t) such that D1
1(z̃, t̃) <

0. We will show that there is a utility function ũ ∈ U1 and a discount function ṽ ∈ V1 for which our supposition
implies that NPVv,u(X) < NPVv,u(Y ), thus contradicting the original assumption.
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Supposing that a violation D1
1(z̃, t̃) < 0 does exist, since D1

1 is continuous it will also exist in the range
z̃ ≤ z ≤ z̃ + ε. Define the following utility function:

ũ(z) =


z̃ z < z̃

z z̃ ≤ z ≤ z̃ + ε

z̃ + ε z > z̃ + ε

noting that ũ(z) /∈ U1, strictly speaking, but that it can be approximated arbitrarily closely by a function
that does belong to U1 (see Fishburn and Vickson 1978, p. 75).

Similarly define the following discount function:

ṽ(t) =

{
1 + pe−pt if 0 ≤ t ≤ t̃
0 + pe−pt t̃ < t ≤ T,

which again is discontinuous but can be approximated arbitrarily closely by some ṽ ∈ V1.
Substituting these functions into Equation 1.2 we obtain

∆ =
∫ z̃+ε
z̃

[∫ t̃
0
D1(x, t)dt+ p

∫ T
0
e−ptD1(x, t)dt

]
dz

=
∫ z̃+ε
z̃

[
D1

1(z, t)|t̃0 + p
∫ T
0
e−ptD1(z, t)dt

]
dz

=
∫ z̃+ε
z̃

[
D1

1(z, t̃) + p
∫ T
0
e−ptD1(z, t)dt

]
dz.

In the limit as p→ 0, p
∫ T
0
e−ptD1(z, t)dt = 0, therefore for a sufficiently small p, D1

1(z̃, t̃) < 0 implies that
NPVv,u(X) < NPVv,u(Y ), contradicting the initial assumption and showing it is necessary that D1

1(z̃, t̃) ≥ 0

for all z ∈ [a, b] and t ∈ [0, T ].

A.2 Proof of Proposition 2

We need to prove that the following holds:

H−11 (p, t) = F−11 (p, t)−G−11 (p, t) ≥ 0, ⇐⇒ D1
1(z, t) = G1

1(z, t)− F 1
1 (z, t) ≥ 0

∀p ∈ [0, 1] and t ∈ [0, T ] ∀z ∈ [a, b] and ∀t ∈ [0, T ]

Given that F 1
1 (z, t) ≤ G1

1(z, t) is an optimal decision rule for all (v, u) ∈ V1 ×U1, if the above expression
holds, so will F−11 (p, t) ≥ G−11 (p, t).

Assume first that F 1
1 (z, t) ≤ G1

1(z, t) for all z ∈ [a, b] and all t ∈ [0, T ]. This means that for an arbitrary
x∗(t) we have F 1

1 (x∗, t) = p∗1(t) ≤ G1
1(x∗, t) = p∗2(t). In this way, for given t x∗ will represent both the p∗th1

quantile of distribution F and the p∗th2 quantile of distribution G.
Since, by assumption, F and G are monotonic increasing functions of z, the quantile functions are mono-

tonic increasing functions of p ∈ [0, 1]. Therefore, knowing that p∗1(t) ≤ p∗2(t) and due to the monotonicity of
the quantile function, G−11 (p∗1, t) ≤ G−11 (p∗2, t). Remembering that x∗(t) = G−11 (p∗2, t) = F−11 (p∗1, t), it follows
that G−11 (p∗1, t) ≤ F−11 (p∗1, t).

We conclude that, for every t ∈ [0, T ] , the condition F 1
1 (z, t) ≤ G1

1(z, t), ∀z ∈ [a, b] implies F−11 (p, t) ≥
G−11 (p, t) ∀p.. The analogous logic can be applied to show the reverse condition also holds, that is for a given
t, F−11 (p, t) ≥ G−11 (p, t) will imply F 1

1 (z, t) ≤ G1
1(z, t).
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A.3 Proof of Proposition 3 and Proposition 4

Sufficiency:
Starting with the expression derived in the previous proof

∆ =
∫ T
0
v(t)

∫ b
a
u′(z)D1(z, t)dzdt,

we continue by integrating again with respect to z:

∆ =
∫ T
0
v(t)

[
u′(z)D2(z, t)|ba −

∫ b
a
u′′(z)D2(z, t)dz

]
dt

=
∫ T
0
v(t)u′(b)D2(b, t)dt−

∫ T
0
v(t)

∫ b
a
u′′(z)D2(z, t)dzdt.

Now integrating by parts with respect to time t,

∆ = u′(b)v(t)D2
1(b, t)|T0 − u′(b)

∫ T
0
v′(t)D2

1(b, t)dt−

−
∫ b
a
u′′(z)v(t)D2

1(z, t)|T0 +
∫ b
a
u′′(z)

∫ T
0
v′(t)D2

1(z, t)dtdz.

∆ = u′(b)v(T )D2
1(b, T )− u′(b)

∫ T
0
v′(t)D2

1(b, t)dt−

−
∫ b
a
u′′(z)v(T )D2

1(z, T )dz +
∫ b
a
u′′(z)

∫ T
0
v′(t)D2

1(z, t)dtdz.

From this last expression we can extract the conditions for dominance with respect to V1 ×U2 presented
in Proposition 3. That is, D2

1(z, t) ≥ 0 for all z ∈ [a, b] and all t ∈ [0, T ] is a sufficient condition for
NPVv,u(X) ≥ NPVv,u(Y ) for all {v, u} ∈ V1 × U2.

Integrating by parts once more with respect to time, we get the dominance conditions for second-order
TSD for all {v, u} ∈ V2 × U2:

∆ = u′(b)v(T )D2
1(b, T )−

∫ b
a
u′′(z)v(T )D2

1(z, T )dz − u′(b)v′(t)D2
2(b, t)|T0 +

+u′(b)
∫ T
0
v′′(t)D2

2(b, t)dt+
∫ b
a
u′′(z)v′(t)D2

2(z, t)dz|T0 −

−
∫ b
a
u′′(z)

∫ T
0
v′′(t)D2

2(z, t)dtdz.

∆ = u′(b)v(T )D2
1(b, T )−

∫ b
a
u′′(z)v(T )D2

1(z, T )dz − u′(b)v′(T )D2
2(b, T ) +

+u′(b)
∫ T
0
v′′(t)D2

2(b, t)dt+
∫ b
a
u′′(z)v′(T )D2

2(z, T )dz −

−
∫ b
a
u′′(z)

∫ T
0
v′′(t)D2

2(z, t)dtdz.

From here it is easy to note that the following assumptions

i) D2
1(z, T ) ≥ 0 for all z ∈ [a, b]

ii) D2
2(z, t) ≥ 0 for all z ∈ [a, b] and all t ∈ [0, T ]
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imply that

NPVEF ,v ≥ NPVEG,v for all (v, u) ∈ V2 × U2.

This completes the sufficiency part of Proposition 4.
Necessity :
Consider the increasing and concave utility function defined by

ũ(z) :=

{
z − z̃ for a ≤ z < z̃

0 for z̃ ≤ z ≤ b

and let Ũ ∈ U2 be a suitable approximation of ũ. The proofs of necessity are similar to the proofs of
necessity of the previous proposition and are therefore omitted.

A.4 Proof of Proposition 6

Sufficiency:
We want to prove that

X >A1TS Y

⇒ NPVv,u(X) ≥ NPVv,u(Y )

∀v ∈ (V1 × U1)(γ1) and ∀u ∈ U1(ε1T )

Going back to

∆ =
∫ b
a
D1

1(z, T )v(T )dz −
∫ b
a

∫ T
0
D1

1v
′(t)u′(z)dtdz

= v(T )
∫ b
a
u′(z)D1

1(z, T )dz +
∫ b
a

∫ T
0

(−)D1
1v
′(t)u′(z)dtdz

= E + Γ.

Separate the range [a, b] at time T between the part S1,T , where D1
1(z, T ) < 0, and the complementary

part S1,T , where D1
1(z, T ) ≥ 0:

E = v(T )
∫ b
a
u′(z)

[
D1

1(z, T )
]
dz

= v(T )
∫
S1,T u

′(z)D1
1(z, T )dz + v(T )

∫
S1,T u

′(z)D1
1(z, T )dz ≥ 0.

Note that the integral over the range S1,T is negative and the integral over S1,T is positive. In order
for E ≥ 0, the area where D1

1(z, T ) < 0 must be ε1T smaller than the total area enclosed between the two
distributions. This restriction can be obtained from the proof of Almost First-order Stochastic Dominance
by Leshno and Levy (2002), simply by requiring that the utility function belong to the subset U1(ε1T ), where
the subscript indicates that the bounds on maximum and minimum marginal utility are established with
respect to period T specifically.

Turning to Γ, separate [a, b] for all t into S1
1 , defined over ranges where D1

1(z, t) < 0, and S1
1 , the range

over which D1
1(z, t) ≥ 0, so that we obtain

Γ =
∫ ∫

S1
1

[
D1

1(z, t)
]

(−v′(t)u′(z)) dzdt+∫ ∫
S1
1

[
D1

1(z, t)
]

(−v′(t)u′(z)) dzdt ≥ 0.
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The first element of Γ is negative and is minimised when the product of the marginals of the discount
and utility functions [−v′(t)u′(z)] is maximised, while the second element is positive and minimised when
[−v′(t)u′(z)] is minimised. Hence denoting infz∈[a,b]∀t {−v′(t)u′(z)} =θ and supz∈[a,b]∀t {−v′(t)u′(z)} = θ,
the minimum value of Γ is

Γ∗ = θ
∫ ∫

S1
1

[
D1

1(z, t)
]
dzdt+ θ

∫ ∫
S1
1

[
D1

1(z, t)
]
dzdt ≥ 0.

It follows that, for a given combination of discount and utility functions, Γ ≥ 0 if Γ∗ ≥ 0, which can be
rewritten as

sup[−v′(t)u′(z)] ≤ inf[−v′(t)u′(z))]

∫ ∫
S1
1
D1

1(z, t)dzdt∫ ∫
S1
1
D1

1(z, t)dzdt

Let (v, u) ∈ (V1 × U1)(γ1), then by definition of (V1 × U1)(γ1), we know that

[−v′(t)u′(z)] ≤ sup[−v′(t)u′(z)] ≤ inf[−v′(t)u′(z)]
[

1

γ1
− 1

]
,

which implies Γ∗ ≥ 0 and therefore NPVv,u(X) ≥ NPVv,u(Y ).
Necessity:
Begin by assuming the opposite of necessity, i.e. that NPVv,u(X) < NPVv,u(Y ), for all functions

(v, u) ∈ (V1 × U1)(γ1) and for all u ∈ U1(ε1T ), implies X >A1TS Y . We will prove that this cannot be the
case.

Suppose that
i)
∫ ∫

S1
1
[−D1

1(z, t)]dzdt > γ1
∫ T
0

∫ b
a

∣∣D1
1(z, t)

∣∣ dzdt and
ii)
∫
S1,T [−D1

1(z, T )]dz > ε1T
∫ b
a

∣∣D1
1(z, T )

∣∣ dz.
Let θ and θ be two positive real numbers such that γ1 = θ

θ+θ
. Consider the pair of functions (v, u) ∈

(V1 × U1)(γ1) and where u ∈ U1(ε1T ), whose product has the following properties:

v′(t)u(b) = 0,

v(T )u′(z) = 0,

v′(t)u′(z) = −θ on S1
1 and

v′(t)u′(z) = −θ on S1
1 .

In other words, the product of v and u is a function proportional to

v(t)u(z) = zt− bt− zT + bT.

It follows then that

NPVv,u(X)−NPVv,u(Y )

= θ
∫ ∫

S1
1

[
D1

1(z, t)
]
dzdt+ θ

∫ ∫
S1
1

[
D1

1(z, t)
]
dzdt

=
∫ ∫

S1
1

[
D1

1(z, t)
]
dzdt− θ

θ + θ

∫ T
0

∫ b
a

∣∣D1
1(z, t)

∣∣ dzdt
≥ 0,
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which contradicts the initial assumption and proves that

NPVv,u(X) ≥ NPVv,u(Y ) ⇒ X >A1TS Y.

∀ (v, u) ∈ (V1 × U1)(γ1) and ∀u ∈ U1(ε1T )

A.5 Proof of Proposition 7

Sufficiency:
We want to prove that

X >A1T2S Y

⇒ NPVv,u(X) ≥ NPVv,u(Y )

∀ (v, u) (V1 × U2)(γ1,2), ∀u ∈ U2(ε2T ) and ∀v ∈ V1(λ1b)

Integrate the previous expression for ∆ once more with respect to z, obtaining

∆ = v(T )
[
u′(z)D2

1(z, T )|ba −
∫ b
a
u′′(z)D2

1(z, T )dz
]

+

+
∫ T
0
− v′(t)

[
u′(z)D2

1(z, t)
]
|badt−

∫ T
0
− v′(t)

∫ b
a
u′′(z)D2

1(z, t)dzdt ≥ 0

v(T )u′(b)D2
1(b, T ) + u′(b)

∫ T
0
− v′(t)D2

1(b, t)dt−
−v(T )

∫ b
a
u′′(z)D2

1(z, T )dz +
∫ T
0

∫ b
a

(−v′(t)) (−u′′(z))D2
1(z, t)dzdt ≥ 0

(6.1)

v(T )u′(b)D2
1(b, T ) + Λ + E + Γ ≥ 0.

Hence in the case of Almost First-order Time and Second-order Stochastic Dominance four elements
must be non-negative. v(T )u′(b)D2

1(b, T ) must simply be non-negative. The remaining three elements must
be non-negative overall, but can be partitioned into a region of violation and a region of non-violation, with
three respective restrictions on the relative violation.

Define the set of realisations where D2
1(b, t) < 0, for any t where z = b as S1,b and its complement as

S1,b, so that

Λ = u′(b)
∫
S1,b

(−v′(t))D2
1(b, t)dt+ u′(b)

∫
S1,b

(−v′(t))D2
1(b, t)dt.

The integral over S1,b is negative while the integral over its complement S1,b is positive. Therefore, in
an analogous fashion to the proof of Proposition 6, in order for Λ ≥ 0 the area where D2

1(b, t) < 0 must be
λ1b smaller than the total area enclosed between the two distributions, where the restriction is obtained by
requiring that any discount function v belong to V1(λ1b).

E is similar to E in the previous proof. By restricting the utility function to belong to the subset U2(ε2T ),
we obtain the requirement that in period T the area where D2

1(z, T ) < 0 cannot be larger that ε2T multiplied
by the total area between the two distributions.

Moving to Γ, define an interval of violation and its complement in the usual way:

Γ =
∫ ∫

S2
1

(−v′(t)) (−u′′(z))D2
1(z, t)dzdt+

∫ ∫
S2
1

(−v′(t)) (−u′′(z))D2
1(z, t)dzdt.
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Again following the proof of Proposition 6 define infz∈[a,b]∀t {v′(t)u′′(z)} = ϑand supz∈[a,b]∀t {v′(t)u′′(z)} =

ϑ, so that the minimum Ω is

Γ
∗

= ϑ
∫ ∫

S2
1
D2

1(z, t)dzdt+ ϑ
∫ ∫

S2
1
D2

1(z, t)dzdt.

Both elements of Γ are relatively larger than the corresponding elements of Γ
∗
.

We are looking for a set of preferences (V1 × U2)(γ1,2) for which Γ
∗ ≥ 0, which are

sup[v′(t)u′′(z)] ≤ inf[v′(t)u′′(z)]

∫ ∫
S2
1

[
D2

1(z, t)
]
dzdt∫ ∫

S2
1

[F 2
1 (z, t)−G2

1(z, t)] dzdt

sup[v′(t)u′′(z)] ≤ inf[v′(t)u′′(z))]

∫ ∫
S2
2

[
G2

1(z, t)− F 2
1 (z, t)

]
dzdt∫ ∫

S2
2

[F 2
1 (z, t)−G2

1(z, t)] dzdt

By letting (v, u) ∈ (V1 × U2)(γ1,2), then, by definition of (V1 × U2)(γ1,2), we know that

[v′(t)u′′(z)] ≤ sup[v′(t)u′′(z)] ≤ inf[v′(t)u′′(z)]

[
1

γ1,2
− 1

]
,

which implies that Ω∗ ≥ 0 holds and therefore, NPVv,u(X) ≥ NPVv,u(Y ).
Necessity:
Starting from Eq. 6.1 and using the increasing and concave utility function defined in proving necessity

in Proposition 4, the proof proceeds in just the same fashion as for Proposition 6 and is therefore omitted.

B Appendix 2
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Option A
Assumptions:

Mean Std. deviation
Annual Growth Rate of Benefits 4.0% 0.5%

Construction Cost $24,000,000 $4,000,000
Annual Operations Cost $750,000 $250,000

First Year Benefit $1,200,000 $400,000
Scrap Value $4,000,000 $1,333,333

Construction Operational Annual Scrap Annual
Cost Cost Benefit Value Net Bens

Year 0 $24,000,000 $0 $0 $0 -$24,000,000
1 $0 $750,000 $1,200,000 $0 $450,000
2 $0 $750,000 $1,248,000 $0 $498,000
3 $0 $750,000 $1,297,920 $0 $547,920
4 $0 $750,000 $1,349,837 $0 $599,837
5 $0 $750,000 $1,403,830 $0 $653,830
6 $0 $750,000 $1,459,983 $0 $709,983
7 $0 $750,000 $1,518,383 $0 $768,383
8 $0 $750,000 $1,579,118 $0 $829,118
9 $0 $750,000 $1,642,283 $0 $892,283

10 $0 $750,000 $1,707,974 $0 $957,974
11 $0 $750,000 $1,776,293 $0 $1,026,293
12 $0 $750,000 $1,847,345 $0 $1,097,345
13 $0 $750,000 $1,921,239 $0 $1,171,239
14 $0 $750,000 $1,998,088 $0 $1,248,088
15 $0 $750,000 $2,078,012 $0 $1,328,012
16 $0 $750,000 $2,161,132 $0 $1,411,132
17 $0 $750,000 $2,247,577 $0 $1,497,577
18 $0 $750,000 $2,337,481 $0 $1,587,481
19 $0 $750,000 $2,430,980 $0 $1,680,980
20 $0 $750,000 $2,528,219 $4,000,000 $5,778,219
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Option B
Assumptions:

Mean Std. deviation
Annual Growth Rate of Benefits 4.0% 0.5%

Construction Cost $15,000,000 $3,000,000
Annual Operations Cost $750,000 $250,000

First Year Benefit $1,200,000 $400,000
Scrap Value $4,000,000 $1,333,333

Construction Operational Annual Scrap Annual
Cost Cost Benefit Value Net Bens

Year 0 $15,000,000 $0 $0 $0 -$15,000,000
1 $0 $750,000 $1,200,000 $0 $450,000
2 $0 $750,000 $1,248,000 $0 $498,000
3 $0 $750,000 $1,297,920 $0 $547,920
4 $0 $750,000 $1,349,837 $0 $599,837
5 $0 $750,000 $1,403,830 $0 $653,830
6 $0 $750,000 $1,459,983 $0 $709,983
7 $0 $750,000 $1,518,383 $0 $768,383
8 $0 $750,000 $1,579,118 $0 $829,118
9 $0 $750,000 $1,642,283 $0 $892,283

10 $0 $750,000 $1,707,974 $0 $957,974
11 $0 $750,000 $1,776,293 $0 $1,026,293
12 $0 $750,000 $1,847,345 $0 $1,097,345
13 $0 $750,000 $1,921,239 $0 $1,171,239
14 $0 $750,000 $1,998,088 $0 $1,248,088
15 $0 $750,000 $2,078,012 $0 $1,328,012
16 $0 $750,000 $2,161,132 $0 $1,411,132
17 $0 $750,000 $2,247,577 $0 $1,497,577
18 $0 $750,000 $2,337,481 $0 $1,587,481
19 $0 $750,000 $2,430,980 $0 $1,680,980
20 $0 $750,000 $2,528,219 $4,000,000 $5,778,219
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Option C
Assumptions:

Mean Std. deviation
Annual Growth Rate of Benefits 4.0% 0.5%

Construction Cost $15,000,000 $3,000,000
Annual Operations Cost $1,000,000 $333,333

First Year Benefit $1,500,000 $500,000
Scrap Value $4,000,000 $1,333,333

Construction Operational Annual Scrap Annual
Cost Cost Benefit Value Net Bens

Year 0 $15,000,000 $0 $0 $0 -$15,000,000
1 $0 $1,000,000 $1,500,000 $0 $500,000
2 $0 $1,000,000 $1,560,000 $0 $560,000
3 $0 $1,000,000 $1,622,400 $0 $622,400
4 $0 $1,000,000 $1,687,296 $0 $687,296
5 $0 $1,000,000 $1,754,788 $0 $754,788
6 $0 $1,000,000 $1,824,979 $0 $824,979
7 $0 $1,000,000 $1,897,979 $0 $897,979
8 $0 $1,000,000 $1,973,898 $0 $973,898
9 $0 $1,000,000 $2,052,854 $0 $1,052,854

10 $0 $1,000,000 $2,134,968 $0 $1,134,968
11 $0 $1,000,000 $2,220,366 $0 $1,220,366
12 $0 $1,000,000 $2,309,181 $0 $1,309,181
13 $0 $1,000,000 $2,401,548 $0 $1,401,548
14 $0 $1,000,000 $2,497,610 $0 $1,497,610
15 $0 $1,000,000 $2,597,515 $0 $1,597,515
16 $0 $1,000,000 $2,701,415 $0 $1,701,415
17 $0 $1,000,000 $2,809,472 $0 $1,809,472
18 $0 $1,000,000 $2,921,851 $0 $1,921,851
19 $0 $1,000,000 $3,038,725 $0 $2,038,725
20 $0 $1,000,000 $3,160,274 $4,000,000 $6,160,274
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