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Abstract

Reducing emissions of COs today is expected to reduce climate
damages in the future. In this paper, we examine the question of
whether fighting climate change has the additional advantage of re-
ducing the aggregate risk borne by future generations. This raises the
question of the ‘climate beta’, i.e. the elasticity of climate damages
with respect to a change in aggregate consumption. Using the DICE
integrated assessment model, we show that the climate beta is positive
and close to unity, due above all to the effect of uncertainty about tech-
nological progress. In estimating the social cost of carbon, this justifies
using a relatively larger rate to discount expected climate damages. On
the other hand, expected climate damages are themselves made larger
by this effect and overall the NPV of emissions reductions today is
increased by the climate beta.
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1 Introduction

Because most of the benefits of mitigating climate change arise in the distant
future, the choice of the rate at which these benefits should be discounted
is a crucial determinant of our collective willingness to reduce emissions
of greenhouse gases. The discount-rate controversy that has emerged in
the economic literature over the last two decades shows that there is still
substantial disagreement about the choice of this parameter for cost-benefit
analysis. One source of controversy comes from the intrinsically uncertain
nature of these benefits. It is a tradition in economic theory and finance to
adapt the discount rate to the risk profile of the flow of net benefits generated
by the policy under scrutiny. The underlying intuition is simple. If a policy
tends to raise the collective risk borne by the community of risk-averse
stakeholders, this policy should be penalised by increasing the discount rate
by a risk premium specific to this policy. On the contrary, if a policy tends
to hedge collective risk, this insurance benefit should be acknowledged by
reducing the rate at which expected net benefits are discounted, i.e. by
adding a negative risk premium to the discount rate.

This simple idea can easily be implemented through the Consumption-
based Capital Asset Pricing (CCAPM) theory developed by Lucas (1978).
Lucas showed that an investment raises intertemporal social welfare if and
only if its Net Present Value (NPV) is positive, where the NPV is obtained
by discounting the expected cash flow of the investment at a risk-adjusted
rate. This investment-specific discount rate is written as

r=ry+ B,

where 7, is the risk-free rate, 7 is the systematic risk premium and 3 is
the CCAPM beta of the specific investment under scrutiny. It is defined as
the elasticity of the net benefit of the investment with respect to a change
in aggregate consumption. This means that a marginal project, whose net
benefit is risky but uncorrelated with aggregate consumption, should be
discounted at the risk-free rate, because implementing such a project has
no effect at the margin on the risk borne by the risk-averse representative
agent. A project with a positive (resp. negative) [ raises (resp. reduces)
collective risk and should be penalised (resp. favoured) by discounting its
flow of net benefits at a higher (resp. lower) rate.

The objective of this paper is not to offer a new contribution to the debate
about the choice of the risk-free rate, or of the systematic risk premium:
there have been many of these in the recent past (see Kolstad et al., 2014, for



a recent summary). Rather, the aim of this paper is to discuss the CCAPM
beta that should be used to value climate mitigation projects. This ‘climate
beta’ should play an important role in the determination of the social cost
of carbon, just as an asset beta is known to be the main determinant of
the asset price. Indeed, over the last century in the United States financial
markets have exhibited a real risk-free rate and a systematic risk premium
of around 1% and 3% respectively. Thus assets whose CCAPM betas are
respectively 0 and 2 should be discounted at very different rates of 1% and
7% respectively.

In this paper, we use the DICE model (Nordhaus and Boyer, 2000; Nord-
haus, 2008; Nordhaus and Sztorc, 2013) to estimate the climate beta. Before
launching into the technical details, however, it is useful to explore the ar-
guments for a small or large climate beta. Sandsmark and Vennemo (2007)
were the first to examine this question. In their model, the only stochastic
parameter represents the intensity of damages — the loss of GDP — associated
with a particular increase in global mean temperature. Given this set-up,
large damages are simultaneously associated with low aggregate consump-
tion and a large benefit from mitigating climate change. Hence this model
yields a negative correlation between consumption and the climate benefits
of mitigation, i.e. a negative climate beta. Weitzman (2013) extends this
idea of self-protection via emissions reductions to more recent notions of
catastrophic climate change, although he does not work within the conven-
tional CCAPM.

Gollier (2012a) proposes an alternative channel driving the climate beta.
Suppose that the only source of uncertainty is exogenous emission-neutral
technological progress, which determines economic growth. In this context,
under ‘business-as-usual’, rapid technological progress yields at the same
time more consumption, more emissions, a larger concentration of COs in
the atmosphere and a larger marginal benefit from fighting climate change,
provided the damage function is convex (as is classically assumed). Hence
this model yields a positive correlation between consumption and the climate
benefits of mitigation, i.e. a positive climate beta.

In this paper, we attempt to encompass these two stories, as well as other
possible determinants of beta, and we do so in a dynamic model with invest-
ment effects on future consumption. Within a Monte-Carlo simulation of
the DICE model, we introduce eight key sources of simultaneous uncertainty
about the benefits of climate mitigation and about future consumption, and
we measure the climate beta for different maturities of our immediate efforts
to reduce emissions. We show that the positive effect on beta of uncertain
technological progress, emphasised by Gollier, dominates the negative effect



on beta of uncertain climate sensitivity and uncertain damages, the latter
story being emphasised by Sandsmark and Vennemo (2007). Put another
way, emissions reductions actually increase the aggregate consumption risk
borne by future generations. This is in line with Nordhaus (2011), who con-
cluded from Monte-Carlo simulations of the RICE-2011 model that “those
states in which the global temperature increase is particularly high are also
ones in which we are on average richer in the future.” The advantage of our
work is that, as well as offering a strongly empirically grounded character-
isation of key uncertainties in the DICE model, we explicitly compute the
climate beta, with the aim of contributing to the debate about the discount
rate appropriate for climate-mitigation projects.

In the next section we briefly review beta in the context of Lucas’
CCAPM. Section 3 describes how we set up and run the DICE model in
order to estimate the climate beta, including an explanation of the effect on
beta, in principle, of each of the eight random parameters that we introduce.
Section 4 sets out our results and Section 5 concludes.

2 The CCAPM beta

In this section, we derive the standard CCAPM valuation principles as
in Lucas (1978). Consider a Lucas-tree economy with a von Neumann-
Morgenstern representative agent, whose utility function v is increasing and
concave and whose rate of pure preference for the present is . Her intertem-
poral welfare at date 0 is

Wo=> e "Eu(e)], (1)

t=0

where ¢; measures her consumption at date t. Because ¢; is uncertain from
date 0, it is a random variable. We contemplate an action at date 0, which
has the consequence of changing the flow of future consumption to ¢; + By,
t = 0,1,..., where B; is potentially random and potentially statistically
related to ¢;. Because € is small, the change in intertemporal welfare if the
action is implemented can be measured in monetary terms by

/
NPV = S et pp, ) _ 5~ g 2
;6 tu’(co) t:ZOe t (2)
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The right-hand side of equation (2) can be interpreted as the NPV of the ac-
tion, where, for each maturity ¢, the expected net benefit EB; is discounted
at a risk-adjusted rate r;, which is in turn defined by equation (3). In order
to simplify equation (3), we make three additional assumptions:

1. For all states of nature, the elasticity of the net conditional benefit at
date t with respect to a change in consumption at ¢ is constant, so
that there exists 8; € R such that E [By |c;] = ¢*.

2. Consumption follows a geometric brownian motion with drift p and
volatility o, so that x; = Inc;/co ~ N(ut,o?t).

3. The representative agent has constant relative risk aversion -, so that
W (cr) = ¢ .

This allows us to rewrite equation (3) as follows:

5 1 1 E [e(ﬁt_"/)xt}
T = — Z n W (4)

We now use the well-known property that if z ~ N(a,b?), then for all k € R,
E lexp(kz)] = exp (ka + 0.5k%b?). Applying this result twice in the above
equation implies that

re =0+ (B +0.5820%) — |(Br = N+ 05(8; = 7)%0%] =y + B, (5)
where the risk-free rate ry equals
rp=0+yu—0.57%0?% (6)
and the systematic risk premium equals
T = o’ (7)

Observe that both the risk-free rate ry and the systematic risk premium
m have a flat term structure in this framework. However, the risk-adjusted
discount rate r; may have a non-constant term structure, which is homoth-
etic in the term structure of the CCAPM beta of the action, 5;.

In the remainder of the paper, we are interested in estimating the term
structure (S, B2, ...) of the climate beta. This can be done by observing
that if E [By|c/] = ¢, then B; is nothing other than the regressor of In B
with respect to Inc; :

In By = frlncy + &,



where ¢; and & are independent random variables. 1000 draws of the Monte-
Carlo simulation of the DICE model generate for each maturity ¢ a series
(In Bit, In ¢it)i=1,2,....1000 , from which the OLS estimate of In B; on In ¢; gives
us the climate beta associated with that maturity.

Larger beta implies a relatively higher discount rate, but at the
same time increased expected benefits of mitigation

Before turning to the modelling proper, it is noteworthy that a large climate
beta is not necessarily bad news for those who care about climate change.
Although a large climate beta implies a relatively larger discount rate to
be applied to climate-mitigation projects, it also raises the expected climate
benefit £ B; to be discounted:

NPV = Y e "™EB, = Ze_”tcgtE [eﬁtﬂ Ze ritcfre (Bept0.5670% )t
=0

= S cfrexp [(—rf 1By (u - 702) +0.5820 )t} .
t=0

The NPV of the action is increasing in ; if 3; is larger than v— (u/a?). Over
the last century in the United States, we observed p ~ 2% and o ~ 4%. If we
take v = 2, this implies that y— (u/0?) ~ —10.5. Because most actions yield
benefits with an elasticity with respect to a change in aggregate consumption
larger than —10.5, we conclude that most investment projects see their NPV
increased by an increase in their CCAPM beta. The idea is that the mean
growth rate of consumption has been so much larger than its volatility in the
past that the effect of a larger beta on the expected benefit is much larger
than its effect on the discount rate, thereby generating a positive effect on
NPV.

3 Estimating beta with DICE

We now develop estimates of the beta of COy emissions abatement using
a modified version of William Nordhaus’ well-known DICE model. DICE
couples a neoclassical growth model to a simple model of the climate sys-
tem. Output of a composite good is produced using aggregate capital and
labour inputs, augmented by exogenous total factor productivity (TFP).
However, production also leads to COgy emissions, which are an input to
the climate model, resulting in an increase in the atmospheric concentra-
tion of COq, radiative forcing of the atmosphere and an increase in global



mean temperature. The climate model is coupled back to the economy via a
damage function, which is a reduced-form polynomial equation associating
a change in temperature with a loss in utility, expressed in terms of equiv-
alent output. The damage function in DICE implicitly takes into account
adaptation to climate change, so the planner is left with the possibility of
controlling savings/investment, as usual in a neoclassical growth model, and
the price/quantity of COy emissions abatement.

Our analysis is based on the 2013 version of the model, which continues
the gradual evolution of the model from previous versions. ‘DICE-2013R’
is extensively described in Nordhaus and Sztorc (2013), so we will limit our
discussion in this section to the modifications we have made. These surround
eight parameters in the model, which we randomise for the purpose of esti-
mating betas. These eight random parameters represent key uncertainties at
all stages in the climate-policy problem from baseline socio-economic devel-
opment and associated emissions, through the climate response to emissions,
to damages and costs of emissions abatement. Our parameter selection is
significantly informed by Nordhaus (2008), in which a similar set of eight
parameters was chosen for randomisation based on a review of earlier studies
with the model. It is also informed by Dietz and Asheim (2012), who modi-
fied Nordhaus’ set to take into account scientific evidence on the temperature
response to radiative forcing, and to allow for the possibility of steep convex-
ity of the damage function.! But we build on both of these previous studies
by providing calibrations of the various probability distributions using the
latest data.

Table 1 summarises the set of random parameters used in this study,
including the data used for calibration. The distributions are assumed inde-
pendent and each is restricted to be either non-negative or non-positive as
appropriate. We implement a CO2 emissions reduction project by removing
one unit of industrial emissions in 2015. This amounts to one gigatonne
of CO2 (GtCO2), and since the atmospheric concentration of COy in 2015

! Anderson et al. (2014) is the most comprehensive example of stochastic modelling in
the DICE framework, randomising all 51 of the model’s parameters as part of a global sen-
sitivity analysis. Their results give reasonable support to our selection: depending on the
measure (e.g. social cost of carbon, atmospheric temperature in 2105, etc.), between 3/8
and 5/10 of the parameters, whose uncertainties most affected the value of the measure,
are in our set. However, these results do not constitute a definitive basis for selecting a
subset of parameters for our study: the problem Anderson et al. (2014) faced is that, for
many of the parameters, there are no meaningful data on which a probability distribution
might be calibrated. Therefore, to ensure consistency, an arbitrary support of +/- 5, 10
or 20% of the best-guess value was imposed on all parameters, even though data indicate
that for some parameters (e.g. climate sensitivity) the support is much wider.



Table 1: Uncertain parameters for simulation of modified DICE-2013R.

Parameter Functional Mean  Standard Source Effect on

form deviation (likely)
Initial growth rate Normal 0.0084 0.0059 Maddison project +
of TFP (per year) and other sources

(see text)

Asymptotic global Normal 10854 1368 United Nations +
population (millions) (2013)
Initial rate of Normal -0.0102 0.0064 1EA (+)
decarbonisation (per year) (2013)
Price of back-stop Log-normal 260 51 Edenhofer et al. +
technology in 2050 (2010)
US$/tCO2(2010 prices)
Transfer coefficient in Normal* 0.06835  0.0202 Ciais et al. (-)
carbon cycle (per decade) (2013)
Climate sensitivity Log- 2.9 14 IPCC (-)
°C per doubling logistic** (2013)
of atmospheric CO9
Damage function Normal 0.0025 0.0006 Tol*** -)
coeflicient .y (% GDP) (2009)
Damage function Normal 0.082 0.028 Dietz and Asheim -)
coefficient a3 (%GDP) (2012)

*Truncated from above at 0.1419. ***Truncated from below at 0.75. ***Including corrigenda published in 2014.

is estimated by DICE to be c. 3167GtCO9, it may indeed be regarded as
a marginal reduction, consistent with the definition of beta given above.
We assume that the marginal propensity to save is exogenous and we use
Nordhaus’ (2013) time series of values, whereby it varies over time, but is
always c. 0.23 — 0.24. We take a Latin Hypercube Sample of the parameter
space, which has the advantage of sampling evenly from the domain of each
probability distribution, with 1000 draws.

Initial growth rate of TFP As a neoclassical growth model, DICE al-
locates to TFP that portion of output that cannot be explained by capital
and labour inputs at their assumed elasticities (0.3 and 0.7 respectively).
It follows (e.g. Barro and Sala-i Martin, 2004) that TFP growth plays a
very significant role in determining GDP growth and therefore future con-
sumption and CO2 emissions (also see Kelly and Kolstad, 2001). As Gollier



(2012a) points out, the effect of variation in TFP growth on beta is positive.
Higher TFP growth serves as a positive shock on output and consumption,
but this in turn leads to higher emissions, higher total damages from climate
change and higher marginal damages, thus higher benefits from emissions
abatement.?

In line with Nordhaus (2008), we choose to randomise a parameter rep-
resenting the initial rate of TFP growth. The equation of motion for TFP
is

A = A1+ i)
where A is TFP and ¢ is the growth rate of TFP. In turn,

gt =g (1464

where §4 is the rate of decline of TFP growth. Since §4 is several times
smaller than g{j‘, uncertainty about the initial growth rate has a lasting
impact. To calibrate a probability distribution over gé‘, we use data on his-
torical TFP growth in the US and UK over the period 1820-2010, compiled
from multiple sources®. Since DICE is an equilibrium model of long-term
growth, we use a rolling 30-year average of annual TFP growth (shorter
rolling averages would overstate the potential for fluctuations). A normal
distribution fits the data best, with mean and standard deviation as reported
in Table 1.

Asymptotic global population Population growth is important in de-

termining the scale of the economy and hence aggregate CO2 emissions

(again see Kelly and Kolstad, 2001). Therefore an increase in population

growth has the same qualitative effect on beta as an increase in TFP growth;

it increases beta, since the scale effect increases aggregate consumption,

emissions, total climate damages and the marginal benefits of mitigation.
In DICE population grows according to the following equation of motion:

N

Loo\?
Loy =L (==
v =L ()

2Damages in DICE are expressed as a percentage of output and are strictly less than
100% of output for any finite increase in global mean temperature (see below), so the higher
total damages from climate change that would accompany higher output and emissions
after a productivity shock will nonetheless be smaller than the direct gain in output from
the productivity shock.

3Bolt and van Zanden (2013); US Census Bureau; US Bureau of Economic Analysis;
Feinstein and Pollard (1988); Matthews et al. (1982). We would like to acknowledge
the help of Tom McDermott and Antony Millner in collecting these data, although the
resulting estimates are our responsibility.



where L is the population, which converges to the asymptotic global popu-
lation Lo according to the growth rate g".

We use the latest global population projections of the United Nations
(2013) to calibrate a probability distribution over L. According to these
projections, the world population will be at an approximate steady state of
10.85 billion in 2100 on the medium (fertility) variant, within a range of
6.75 billion on the low variant to 16.64 billion on the high variant. This is a
non-probabilistic range, which can be set against an emerging — though not
uncontested (Lutz et al., 2014) — field of probabilistic population forecast-
ing based on Bayesian methods (Raftery et al., 2012). According to these
forecasts, the UN’s low and high variants are very unlikely to eventuate (i.e.
they are suggested to be well outside the 95% confidence interval: Gerland
et al., 2014), because they assume fertility is systematically different to the
medium scenario in all countries. Taking this persective into account, we fit
a normal distribution to the UN population projections, such that the low
variant is three standard deviations away from the mean, with the result
that the high variant is even further from the mean.

Initial rate of decarbonisation While growth in COy emissions is pro-
portional to growth in GDP in integrated assessment models such as DICE,
the proportion is usually assumed to decrease over time due to changes
in economic structure away from carbon-intensive production sectors, and
to decreases in the emissions intensity of output in a given sector. These
are baseline trends, i.e. achieved without the imposition by a planner of a
price/quantity constraint on emissions.

A priori, variation in the rate of decarbonisation has an ambiguous effect
on beta. For a given path of output, an increase in the rate of decarbon-
isation reduces the benefits of mitigation, because it lowers emissions and
hence total and marginal climate damages. But the path of output is not
given; lower damages increase current income and hence they increase capital
investment, future output and consumption, emissions and total damages.
There is therefore no doubt that an increase in the rate of decarbonisation
increases consumption?, but what happens to the benefits of mitigation de-
pends in principle on the balance between the negative effect on marginal
damages of a reduction in emissions intensity and the positive effect on
marginal damages of an expansion in production. However, given that in
DICE capital depreciation is 10% per annum while the savings rate is c.

*Instantaneous damages are a fraction of current output, and investment is a fraction
of output after damages.
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0.23-0.24, in practice it might be thought unlikely that the positive effect
on marginal damages that goes via investment exceeds the negative, direct
effect.

In DICE, ‘autonomous’ decarbonisation is achieved by virtue of a vari-
able representing the ratio of emissions/output, which decreases over time
as a function of a rate-of-decarbonisation parameter:

ENP = 0,(1 — )Yy (8)

where E'NP represents industrial COo emissions, p is the control rate of
emissions set by the planner, Y is annual output, and o is the ratio of
uncontrolled emissions to output, given by

o1 = o(1+g7)
where g% < 0 is the rate of decline of emissions to output, given by
97 =95 (146

with the initial rate of decline of emissions to output being g¢g, subject
itself to a rate of decline of 6° < 0. Similar to TFP, §° is around an
order of magnitude smaller than g¢§, so the latter is key in driving long-run
uncertainty about declining emissions intensity.

To calibrate a distribution over g§ we use data from the International
Energy Agency (IEA, 2013), which provides the ratio of global CO2 emis-
sions from fossil fuels to real global GDP for the period 1971-2011, a period
in which planned emissions reductions (i.e. through p) were trivially small
at the global level. Again, we partly smooth annual fluctuations by tak-
ing a five-year rolling average. The resulting data are fit best by a normal
distribution with mean and standard deviation as reported in Table 1.

Price of the backstop technology While beta is a measure of the cor-
relation of the marginal benefits of emissions abatement with consumption,
and therefore abatement costs do not play a direct role in its calculation,
they nonetheless play an indirect role, since the emissions scenario on which
the mitigation project is undertaken involves non-trivial abatement, even
in the baseline that represents business as usual. Variation in abatement
costs increases beta: an increase in abatement costs, for a given quantity of
abatement, decreases income/consumption, but by decreasing income it also
decreases industrial emissions in the long run, due to the same investment
effect at play in the case of autonomous decarbonisation. This reduces the
benefits of mitigation.

11



In DICE the total cost of abatement as a percentage of annual GDP, A,
is determined by

Ay = 0y 11 9)

where 07 and 6 are coefficients. The time-path of 6; is set so that the
marginal cost of abatement at pu; = 1 is equal to the backstop price at t.
Hence randomising the backstop price is a way to introduce uncertainty into
abatement costs.

We use the findings of an important recent inter-model comparison study
(Edenhofer et al., 2010) to update and characterise uncertainty over the
backstop price. Edenhofer et al. (2010) assess the cost of limiting warming
to below 2degC in five global energy models. A scenario that stabilises
the atmospheric stock of CO2 at 400ppm requires zero emissions by around
2050, so we can use the models’ estimates of marginal abatement costs in
2050 as a measure of the backstop price at that time. Marginal costs range
from $150/tCO2 to $500, with an average of $260, all at today’s prices.
Since the distribution of cost estimates is asymmetric, we use a log-normal
distribution. We set the mean to $260 and posit that the probability of
the lowest and highest estimates is 1/1000. We use a comparable emissions
scenario in DICE to retrieve, for each value of the backstop price in 2050,
the value of the backstop price in 2010, the initial period.

Transfer coefficient in the carbon cycle There are numerous uncer-
tainties, many of them large, about the behaviour of the climate system in
response to carbon emissions (e.g. IPCC, 2013). In the structure of DICE’s
simple climate model, these can be grouped into (i) uncertainties about the
carbon cycle, which render estimates of the atmospheric stock of COy for a
given emissions scenario imprecise, and (ii) uncertainties about the relation-
ship between the stock of atmospheric COs and global mean temperature.

The atmospheric stock of carbon in DICE is driven by the sum of indus-
trial emissions from (8) and exogenous emissions from land-use. A system
of three equations represents the cycling of carbon between three reservoirs,
the atmosphere M AT | a quickly mixing reservoir comprising the upper ocean
and parts of the biosphere MYP and the lower ocean MO:

MAY = Byt + ouMPT + ¢ MPP
Mtlff = 12 MM + oo MUP + pao MO

12



Mﬁg = g M T + 33 MO

where total emissions of CO2 to the atmosphere are F, and the cycling of
COg2 between the reservoirs is determined by a set of coefficients ¢;;, that
govern the rate of transport from reservoir j to k per unit of time. We follow
Nordhaus’ (2008) uncertainty analysis by randomising ¢12, the coefficient for
the transfer of carbon from MAT to MUP. However, we make use of the lat-
est scientific findings from the IPCC’s Fifth Assessment Report (Ciais et al.,
2013) to calibrate ¢19. In particular, ¢12 may be calibrated by inspecting
evidence on the percentage of a pulse of CO2 emissions that remains in the
atmosphere after 100 years. According to the standard parameterisation of
DICE-2013R, this would be ¢. 36%, but the evidence from multiple climate
models collected by Ciais et al. (2013) suggests a mean of 41%, with 54% at
+2 standard deviations and 28% at -2 standard deviations. We calibrate ¢12
accordingly, however to ensure the DICE carbon cycle maintains physically
consistent behaviour at all values of ¢12, we must set the lower bound at
31% removed. Table 1 provides details.

Variation in ¢12 also has an ambiguous a priori effect on beta. Con-
sider a decrease in ¢19, which means that more COy emissions remain in
the atmosphere. Under these circumstances, if to begin with we take the
path of ‘potential output’ as given, more atmospheric CO2 means increased
total damages, hence consumption is reduced and the marginal benefits of
mitigation are increased. This would reduce beta. However, the investment
effect means that the path of potential output is not given; reduced income
at a particular point in time due to greater damages results in lower in-
vestment, which depresses future output. This reduces future consumption
too, but because it reduces future CO2 emissions there is a countervailing,
negative effect on the benefits of mitigation. As before, we might expect this
countervailing investment effect to be small in comparison with the direct
positive effect on the marginal benefits of mitigation.

Climate sensitivity Studies that deploy stochastic versions of DICE have
overwhelmingly fixed on the climate sensitivity parameter as a means of
rendering uncertain the temperature response to atmospheric COy. Cli-
mate sensitivity is the increase in global mean temperature, in equilibrium,
that results from a doubling in the atmospheric stock of CO2 from the pre-
industrial level. In simple climate models, it is indeed critical in determining
how fast and how far the planet is forecast to warm in response to emissions.

13



Variation in climate sensitivity has an ambiguous — but likely negative — ef-
fect on beta, with the causal mechanisms being very similar to those at play
in the carbon cycle. Higher climate sensitivity means higher damages, lower
consumption and higher benefits of mitigation for given output, but with
lower income comes lower investment, lower future output and therefore a
counter-balancing negative effect on future emissions that tends to reduce
the benefits of mitigation.
The equation of motion of temperature in DICE is given by:

F
Ti1 =T + k1 | Fig1 — QXTCOz (T}) — ko (Tt - TtLO)

where Fi1 is radiative forcing, which depends on the atmospheric stock of
COa2, Frxco, is the radiative forcing resulting from a doubling in the atmo-
spheric stock of COs from the pre-industrial level, S is climate sensitivity,
TLO is the temperature of the lower oceans, k; is a parameter determining
speed of adjustment and ks is the coefficient of heat loss from the atmosphere
to the oceans. Calel et al. (forthcoming) contains a detailed explanation of
the physics behind this equation.

The latest IPCC report (IPCC, 2013) provides a subjective probability
distribution for the climate sensitivity, which is the consensus of the panel’s
many experts. According to this distribution, S is ‘likely’ to be between
1.5 and 4.5degC, where likely corresponds to a subjective probability of
anywhere between 0.66 and 1. It is ‘extremely unlikely’ to be less than
1degC, where extremely unlikely indicates a probability of < 0.05, while it
is ‘very unlikely’ to exceed 6degC, where this denotes a probability of < 0.1.
Dietz and Stern (2015) find that a log-logistic function has the appropriate
tail shape to fit these data® (taking the midpoints of the IPCC ranges), and
set the scale and shape parameters of the distribution such that the mean S
is 2.9degC, and the standard deviation is 1.4degC. In addition, we truncate
the distribution from below at 0.75degC in order to again ensure that the
DICE climate model exhibits physically consistent behaviour.

Damage function coefficients as and o3 Damages are one of the most
contestable elements of IAMs (see most recently Pindyck, 2013; Stern, 2013)
and, by virtue of its accessibility and simplicity in this regard, DICE has
become the common means to give expression to competing views. Much
of the debate stems from the inability to constrain a reduced-form damage

5That is, the log-logistic function has the lowest root-mean-square error of any distri-
bution fitted.
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function at global mean temperature increases of more than 3degC, due to
the lack of underlying studies. Antipodes in the literature are given by the
traditional quadratic form of Nordhaus (2008; 2013) at one end, and at the
other end the damage function with an additional term in Weitzman (2012),
which is nearly to the seventh power.

Our damage function takes the following form:

D; = 1/ (1 + o Ty + OéQTt2 + (Oéth)7)

where D is aggregate damages as a percentage of GDP and «y, ¢ € {1,2,3}
are coefficients. We specify both as and ag as random parameters (a3 = 0
as usual). The former coefficient enables us to capture uncertainty about
damages that is represented by the spread of data points provided by the
existing literature at warming of between 2 and 3degC. In particular, we use
the literature review of Tol (2009) to calibrate ag, which gives it a mean
of 0.0025 and a standard deviation of 0.0006. s is also equivalent to the
stochastic parameter in the model proposed by Sandsmark and Vennemo
(2007). The coefficient a3 may be calibrated so as to capture the difference
in subjective beliefs of modellers about how substantial damages may be at
higher temperatures. We follow Dietz and Asheim (2012) in specifying a
normal distribution for ag that spans existing suggestions, in that at three
standard deviations above the mean total damages approximate Weitzman
(2012), while at three standard deviations below the mean they approxi-
mately reduce to standard quadratic damages. Further details can again by
found in Table 1.

An increase in damages reduces consumption and increases the benefits
of mitigation for a given path output gross of climate damages, which de-
creases beta. However, we must once again be mindful of the investment
effect that could reduce future output (gross of climate damages), emissions
and therefore benefits of mitigation, so the overall qualitative effect of an
increase in damages on beta cannot be determined a priori, although we
might suppose it to be negative.

4 Results

Using the 1000 draws of the Monte Carlo simulation as the source of varia-
tion, we can calculate the instantaneous consumption beta of CO3 emissions
abatement. As a function of time, we can then plot its term structure.
Define the benefits of emissions abatement as its avoided damages, in
particular as the difference in consumption with and without removing
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1GtCO4. Since the marginal propensity to save is exogenous in our model,
the benefits of abatement B are then given by

B, = Cy — CREF
By=s(1-Dy)Y; —s(1— DFEF) v,REF

where C denotes consumption, REF denotes reference outcomes before
1GtCO4 is removed, and s is the marginal propensity to save. Note that
output here is net of abatement costs from (9).

Beta is then the covariance between the natural logarithm of reference
consumption and the natural logarithm of benefits, divided by the variance
of reference consumption:

cov {ln CREF n Bt}

var [ln CFPF]

B =

(10)

The discussion above gives us reason to suppose that, in a dynamic model,
the beta of CO2 emissions abatement might depend on the path of growth
and emissions. Many of the parameter choices we have already described
will impact on this, for instance the initial growth rate of TFP and the
initial rate of decarbonisation. But one set of exogenous variables that we
must still choose is the set of emissions control rates, {y:} in (8). Therefore
in Figure 1 we plot the term structure of beta for two different emissions-
control scenarios. The first scenario corresponds to the baseline in DICE-
2013R, ‘business as usual’. According to this scenario, y; rises gradually from
4% in 2015 to 14% in 2100 and 54% in 2200. The point made previously
about emissions abatement being non-trivial even in the baseline is amply
illustrated by these numbers. The second scenario is an example of a path
in which emissions reductions are deep: it is the so-called ‘Lim2T’ scenario
from DICE-2013R, in which the planner seeks to limit global warming to
no more than 2degC. In Lim2T, u; is already 33% in 2015 and it hits the
maximum of 100% in 2060.

The headline result is that on both emissions scenarios beta is positive:
overall, given the various uncertainties we specify, there is a positive corre-
lation between consumption and the benefits of emissions abatement. The
magnitude of beta is quite similar on what are two very different emissions

SWhile the different assumptions we make in this study about, for example, climate
sensitivity mean that Lim2T is no longer guaranteed to deliver warming equal to 2degC,
for the purpose of estimating beta it is a perfectly good example of a stringent mitigation
scenario.
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paths, albeit the term structure has a somewhat different profile. If 1GtCOq
is removed from the baseline, beta starts at 1.15 and falls monotonically but
in two distinct stages to 0.83 in 2230. If 1GtCOs is removed from Lim2T
instead, beta also starts at 1.15, falls to a minimum of just below 1.01 in
2125, before nudging back up fractionally by the end of the horizon.

What is behind these results? We can use two methods of answering this
question. First, we can regress the components of beta, i.e. In C’tREF and
In B, on the full set of uncertain parameters. This should tell us about the
relative effects of the different parameters when they vary simultaneously.
Second, we can repeat the basic analysis, but focus on each parameter in-
dividually. In particular, we hold the parameter in focus to a single value
equal to its mean in Table 1, while allowing the other seven parameters to
vary according to their distributions. This demonstrates the effect of elimi-
nating uncertainties one by one. The dual of such an analysis would be to
look at each random parameter in turn, holding the other seven parameters
at a single value, however doing so can, for some parameters, lead to very
low variances in In ¥ and unrealistically large absolute values of beta.

The results of our regression analyses can be found in Tables 2 and 3.
Table 2 regresses In C’tREF on the random parameters for a sample of five
time-periods across the modelling horizon, while Table 3 does the same for
In B;. In both cases, notice that the overall fit of the model is very good. On
one level this is unsurprising, since the eight random parameters constitute
the only source of variation in the dependent variable. However, it might
still have been true that the simple, linear model of main effects that we
specify is a poor fit of the data, indicating that second- or higher-order
interactions are key. This is not the case.

Looking at the coefficient estimates, where all the parameters have been
standardised to aid interpretation, the Tables show all but one of the pa-
rameters have the effect on beta that we anticipated. In particular, a one
standard-deviation increase in TFP growth has a large, positive and highly
statistically significant effect on both In CFEF and In By, thus exerting a
large positive effect on beta. An increase in population growth also has a
positive and significant effect on In C*¥F and In By, but its standardised
coeflicients are substantially smaller. Working against TFP and population
growth, increases in climate sensitivity, o and ag have a negative and sig-
nificant effect on In CFF¥ | while having a positive and significant effect on
In By, thus reducing beta. Increasing climate sensitivity has a particularly
large effect on In By, but tempering this is the fact that none of these three
parameters has an effect on In C*PF that is anything like as substantial as
TFP growth. This explains clearly why beta is positive overall. Increasing
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Table 2: OLS regression of In (CtREF ) on the set of random parameters.

2020 2065 2115 2165 2215
constant 4.120 4.864 5.298 5.595 5.722
(0) (0) (0.001)  (0.004)  (0.008)
Initial growth rate 0.062*%**  (0.362***  0.613***  0.767***  0.86%**
of TFP (0) (0) (0.001)  (0.004)  (0.009)
Asymptotic global 0.024***  0.096***  0.118***  0.117%%*  (.112%**
population (0) (0) (0.001) (0.004) (0.008)
Initial rate of 0 -0.002%**  _0.013***  _0.043*** _0.083***
decarbonisation (0) (0) (0.001) (0.004) (0.008)
Price of back-stop 0 0 0 0.001 0
technology in 2050 (0) (0) (0.001)  (0.004)  (0.008)
Transfer coefficient in 0* 0.002%*F*  0.005%**  0.013%F*  (0.021%**
carbon cycle (0) (0) (0.001) (0.004) (0.008)
Climate sensitivity QFk* -0.007%%*  _0.029%**  _0.083***  _0.149***
(0) 0) (0.001)  (0.004)  (0.008)
Damage function -0.001%**  -0.004***  -0.011%**  -0.02%*F*  -0.028***
coefficient as (0) (0) (0.001)  (0.004)  (0.008)
Damage function 0 0 -0.004%F*  _0.027F**  _0.056%**
coefficient as (0) (0) (0.001) (0.004) (0.008)
R? 0.999 0.999 0.998 0.969 0.915
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Table 3: OLS regression of In (B;) on the set of random parameters.

2020 2065 2115 2165 2215
constant -8.263 -5.419 -4.801 -4.595 -4.507
(0.003)  (0.009)  (0.013)  (0.015)  (0.017)
Initial growth rate 0.062%**  0.387***  0.675%F*  0.868%**  (.962%**
of TFP (0.003)  (0.011)  (0.015)  (0.017)  (0.019)
Asymptotic global — 0.019%%F  0.095%**  (.121%**  (.123***  (.115%**
population (0.003)  (0.009)  (0.013)  (0.015)  (0.016)
Initial rate of 0.003 0.038***  0.069*** 0.08%** 0.053%+*
decarbonisation (0.003) (0.01) (0.014) (0.016) (0.018)
Price of back-stop 0.004 0.009 0.01 0.012 0.015
technology in 2050 (0.003)  (0.009)  (0.013)  (0.015)  (0.016)
Transfer coefficient in ~ 0.006**  -0.087*** -0.139*** _0.136*** -0.102%**
carbon cycle (0.003) (0.009) (0.013) (0.015) (0.016)
Climate sensitivity 0.09%*F*  0.434***  0.676***  0.795%**  (.793***
(0.003)  (0.009)  (0.013)  (0.015)  (0.017)
Damage function 0.252%**  0.236*%F*  0.206%*F*  0.176%FF  (0.155%H*
coefficient (0.003)  (0.009)  (0.013)  (0.015)  (0.016)
Damage function 0.002 0.016* 0.112%**  (0.198%**  (.211***
coefficient as (0.003)  (0.009)  (0.013)  (0.015)  (0.016)
R? 0.901 0.818 0.849 0.86 0.844
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the initial rate of decarbonisation and the transfer coefficient in the carbon
cycle have statistically significant effects on In C**F and In B, but they are
small in one or both cases. Increasing the transfer coefficient in the carbon
cycle reduces beta, while increasing the initial rate of decarbonisation also
reduces beta, because it exerts a negative effect on In B; (since the rate of
decarbonisation is negative, interpretation of the regression coefficients re-
quires the signs to be reversed). This is the only case in which the dynamic,
‘investment’ effect outweighs the direct effect. The price of the backstop
technology does not have a significant effect on either element.

These analyses also help us explain why beta has a slightly different
term structure on the Lim2T emissions scenario than it has on the baseline.
On Lim2T the atmospheric concentration of COy is much lower than on
the baseline, so the effects of climate sensitivity, as and a3 on In CFEF
and particularly In B; are lower, meaning that the effect of TFP growth
comes out still more strongly. Consequently beta does not decline after the
beginning of the next century.

Figure 2 comprises a panel of eight charts, each of which plots the term
structure of beta when uncertainty about a single parameter is removed.
For the sake of brevity, we focus on the baseline scenario. By far the largest
difference in the term structure of beta is created when uncertainty about
TFP growth is removed. Without it, beta starts at around only 0.6 and
falls to a minimum of -2.14 in 2180. This confirms that uncertainty about
TFP growth is pivotal in producing an overall positive beta. By contrast,
when TFP uncertainty is included, eliminating other uncertainties makes
relatively little difference to beta. It is possible only to discern the effect of
climate sensitivity on depressing beta later in the modelling horizon (that
is, when uncertainty about climate sensitivity is eliminated, beta holds up
at around 1.05-1.1, rather than falling to 0.83), and the effect of ay on initial
values of beta.
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Figure 2: The term structure of ; on the baseline scenario as a function of
N — 1 random parameters.
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5 Conclusions

In this paper we have sought to obtain empirically grounded estimates of the
climate beta, by bringing together in the DICE model a number of important
potential determinants of the covariance of the marginal benefits of climate
mitigation with consumption. Naturally the validity of our estimates are,
however, affected by the well-known weaknesses shared by all integrated
assessment models (e.g. Pindyck, 2013; Stern, 2013).

We find that the climate beta is positive and close to unity throughout
the next two centuries and that this holds on two fundamentally different
emissions paths, business-as-usual and a path that involves deep cuts with
the aim of keeping the global mean temperature below 2degC. The over-
whelming driver of these results is uncertainty about technological progress
across the whole economy — total factor productivity. Rapid TFP growth is
simultaneously associated with higher marginal benefits of emissions reduc-
tions and higher consumption. Uncertainty about climate sensitivity and
aspects of the damage function provide a countervailing effect that tends to
reduce beta, but it is dwarfed by the effect of TFP uncertainty.

Our results patently depend on how TFP uncertainty is calibrated, but
they are consistent with previous studies looking at the relative importance
of productivity assumptions (Kelly and Kolstad, 2001; Nordhaus, 2011).
And, while the structure of DICE assumes multiplicative damages, which
contribute a positive, direct relationship between absolute consumption and
the absolute benefits of emissions reductions (Weitzman, 2013), it is impor-
tant to remember that we allow for fat-tailed climate sensitivity and, unlike
Nordhaus (2011), for large convexity of the damage function, two of the
principal sources of risk of catastrophic climate damages, which contribute
to low or negative beta.

Understanding the implications of these findings for climate-change eco-
nomics requires understanding the dual role played by beta in determining
the NPV of mitigation, as set out in Section 2. It is most straightforward to
observe that positive beta implies the future benefits of marginal emissions
reductions today should be discounted at a relatively higher rate. How much
higher?

Two approaches can be followed to answer this question, with radically
different conclusions. Both approaches use the CCAPM rule stating that
the risk-adjusted discount rate is the sum of terms, the first being a risk-free
rate and the second being the product of beta and the systematic risk pre-
mium (equations (5), (6) and (7)). The first approach consists in using the
systematic risk premium that has been observed in markets, for instance in
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the United States over the last century, which has been around 3% (see Gol-
lier (2012b), chapter 12). For a project with approximately a unit beta, this
means the efficient discount rate for that project should be three percentage
points higher than the risk-free rate. The second approach is model-based
rather than market-based; one uses the CCAPM formula 7 = y0? to esti-
mate the risk premium, where o? is the volatility of consumption growth
estimated in DICE. According to our simulations, 02 = 0.3 on average over
the period 2015-2230, so we obtain a risk premium of only 0.6 percentage
points if we accept a coefficient of relative risk aversion v = 2, which much
of the existing literature would suggest (Kolstad et al., 2014). This leads
to a much smaller impact of the positive climate beta on the risk-adjusted
climate discount rate.

The large discrepancy between these two recommendations may be ex-
plained in part by the fact that our modelling incompletely captures aggre-
gate consumption risk in the real world; we smooth some of the year-to-year
volatility in historical productivity growth for the purposes of estimating
trend growth (as described in Section 3), and the only novel risk we incor-
porate is climate change. More generally, however, the discrepancy may be
seen as a manifestation of the well-known “equity premium puzzle”. Three
decades of research on this financial puzzle suggests that the model-based
CCAPM approach fails to capture many dimensions of the real world, in
particular the existence of structural uncertainties and fat tails (Weitzman,
2007). Although including these dimensions in our model is beyond the
reach of this paper — a new concept of beta will need to be developed to
accommodate these features — we are inclined to accept this position. We
then conclude that a large positive climate beta is important for discounting
the future benefits of mitigating climate change.

Is this bad news for those who believe, like us, that climate change
should be a primary source of concern for humanity today? Not at all: it
is good news, as it will raise the NPV of the future benefits of reducing
emissions today. Remember that the climate beta is the elasticity of ex-
pected marginal benefits with respect to changes in consumption. Because
our modelling suggests consumption growth will be substantial over the next
two centuries, the large elasticity that we estimate in this paper also means
that the expected marginal benefit will be large. In short, a large beta im-
plies at the same time a larger expected benefit, and a higher rate at which
to discount it, with an ambiguous overall effect. However, we have shown
in Section 2 in the Gaussian framework that log NPV is quadratic in beta,
with a minimum at v — (u/0?), which is negative whether one estimates
it with a market- or model-based approach. This implies that the NPV of
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climate mitigation, i.e. the social cost of carbon, is increasing in beta over
its relevant domain. Thus, although it yields a relatively large discount rate
for climate-mitigation projects, a large climate beta is good news for those
who think that we should do more to reduce carbon emissions.
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