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DOES ADAPTATION TO CLIMATE CHANGE PROVIDE FOOD SECURITY? 

A MICRO-PERSPECTIVE FROM ETHIOPIA 

 

Abstract. We examine the driving forces behind farmers’ decisions to adapt to 
climate change, and the impact of adaptation on farmers’ food production. We 
investigate whether there are differences in the food production functions of farm 
households that adapted and those that did not adapt. We estimate a simultaneous 
equations model with endogenous switching to account for the heterogeneity in the 
decision to adapt or not, and for unobservable characteristics of farmers and their 
farm. We compare the expected food production under the actual and counterfactual 
cases that the farm household adapted or not to climate change. We find that the 
group of farm households that adapted has systematically different characteristics than 
the group of farm households that did not adapt. The relationship between production 
and average temperature is inverted U-shaped for farm households that adapted, while 
it is U-shaped for farm households that did not adapt, and vice versa in the case of 
precipitation. We find that adaptation increases food production, however, the impact 
of adaptation on food production is smaller for the farm households that actually did 
adapt than for the farm households that did not adapt in the counterfactual case that 
they adapted. 
 

Keywords: adaptation, climate change, endogenous switching, Ethiopia, food 
security, production, spatial data. 
 

JEL classification: Q18, Q54 
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1. Introduction 

At the core of the ongoing debate regarding the implications of climate change 

in sub-Saharan Africa there is the issue of food security. In this part of Africa, 

millions of small scale subsistence farmers farm land and produce food in extremely 

challenging conditions. The production environment is known to be characterized by 

a joint combination of low land productivity and harsh weather conditions (i.e., high 

average temperature, and scarce and erratic rainfall). These result in very low yields 

of food crops and food insecurity. With low diversified economies and reliance on 

rain-fed agriculture, sub-Saharan Africa’s development prospects have been closely 

associated with climate. For instance, the World Bank reported that droughts and 

floods have reduced Ethiopia’s economic growth by more than a third. Climate 

change is projected to further reduce food production (Rosenzweig and Parry, 1994; 

Parry et al., 2005; Cline, 2007). A plethora of climate models converge in forecasting 

scenarios of increased temperatures for most of this area Dinar et al. 2008).  

The fourth Intergovernmental Panel on Climate Change (2007) states that at 

lower latitude, in tropical dry areas, crop productivity is expected to decrease “for 

even small local temperature increases (1 – 2° C).” In many African countries access 

to food will be severely affected, “yields from rain fed agriculture could be reduced 

by up to 50% by 2020” (IPCC 2007, p.10). Given these gloomy prospects on food 

production, it is no surprise that the identification of both “climate-proofing” 

technologies and adaptation strategies are vital to support food crops yield. These 

strategies can indeed buffer against climate change and play a crucial role in reducing 

the food insecurity of farmers.  

The links between climate change and food security have largely been 

explored focusing on the relation between climate variables and the productivity of 

food crops. Indeed, there is a large and growing body of literature that uses either 
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agronomic models or Ricardian analysis to investigate the magnitude of these impacts 

(see Kurukulasuriya and Rosenthal, 2003; Seo and Mendelsohn, 2008). Agronomic 

models attempt to estimate directly, through crop models or statistical methods, the 

impacts of climate change on crop yields (Gommes et al., 2009). Thus, they rely on 

experimental findings that indicate changes in yield of staple food crops such as 

wheat as a consequence of warming (e.g., Amthor, 2001; Fuhrer, 2003; Gregory et al., 

1999; Reilly et al., 1994; Rosenzweig and Parry, 1994). Then, the results from the 

model are fed into behavioural models that simulate the impact of different agronomic 

practices on farm income or welfare. However, this approach does not consider the 

possible implications of farmers’ adaptation thus overstating losses (Kurukulasuriya 

and Mendelsohn, 2008).   

The Ricardian approach (pioneered by Mendelsohn et al., 1994) purports to 

isolate, through econometric analysis of cross-sectional data, the effects of climate on 

farm income and land value, after controlling for other relevant explanatory variables 

(e.g., factor endowment, proximity to markets, etc.). The Ricardian1 approach 

implicitly incorporates the possibility of the implementation of adaptation strategies 

by farmers. Since it is assumed that farms have been adapting optimally to climate in 

the observed past, the regression coefficients are estimating the marginal impacts on 

outputs of future temperature or precipitation changes already incorporating farmer’s 

adaptive response. Thus, adaptation choices do not need to be modeled explicitly. One 

of the obvious shortcomings of this is that it is a black box that fails to identify the 

key adaptation strategies that reduce the implication of climate on food production. 

Disentangling the productive implications of adaptation to climate change is of 

paramount importance. Besides determining the impact of climatic variables on food 

                                                 
1 This approach is technically convenient and widely adopted in a series of country level 

analyses. (see,  Mendelsohn, 2000; Dinar et al 2008). However, global scale analysis can mask 
tremendous local differences. 
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production, it is necessary to understand the implications of adaptation “in the field.” 

Most importantly, it is necessary to assess whether the farmers that actually did 

implement adaptation measures are indeed getting benefits in terms of an increase in 

the food crop production. This is very central if adaptation measures need to be put in 

place. Moreover, key assumption of the Ricardian is that land markets are working 

properly. Under this circumstance land prices will reflect the present discounted value 

of land rents into the infinite future (Deschenes and Greenstone, 2007). Properly 

working land markets may not be operating in areas of Africa where land property 

rights are not perfectly assigned. (i.e., large areas of Ethiopia are plagued by ill 

defined property rights and tenure insecurity). 

This paper aims to contribute to the literature on climate change on agriculture 

by providing a micro perspective on both the impact of climate change on agriculture 

production, and the issue of adaptation and food security. We rely on a farm level 

survey of 1000 farms carried out in Ethiopia in 2005. The main target of the survey 

was to understand farmers’ responses to climate change. The survey directly 

addressed to the farmers the questions about their perception of a long run change in 

key weather variables such as temperature and precipitation, and what they did to 

adapt to these changes. The sample contains both farms that did and did not adapt plus 

a very large set of control variables.  

Ethiopia is a very interesting case study. A recent mapping on vulnerability 

and poverty in Africa (Orindi et al., 2006; Stige et al., 2006) listed Ethiopia as one of 

the countries most vulnerable to climate change with the least capacity to respond. 

The country’s economy heavily relies upon the agricultural sector, which is mostly 

rainfed. (The agricultural sector accounts for about 40 percent of national GDP, 90 

percent of exports, and 85 percent of employment.) Ethiopia’s vulnerability is indeed 

largely due to climatic conditions. This has been demonstrated by the devastating 
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effects of the various prolonged droughts in the 20th century and recent flooding. The 

productive performance of the agricultural sector has been very low. For instance, 

agricultural GDP and per capita cereal production has been falling over the last 40 

years with cereal yield stagnant at about 1.2 tons per hectare. Direct implication is that 

large areas of Ethiopia are plagued by food insecurity. 

Ethiopian rural households face high weather variability. Significant spatial 

variations exist in agroecological conditions, including topography, soil type, 

temperature, and soil fertility (Hagos et al., 1999). There is existing literature on the 

estimation of the impact of climate change on food production at country, regional 

and global scale (Pearce et al., 1996; McCarthy et al., 2001; Parry et al., 2004; Stern, 

2006). Insights from these studies are crucial in appreciating the extent of the problem 

and designing appropriate mitigation strategies at global or regional level. The 

aggregate nature of these studies, however, makes it very difficult to provide insights 

in terms of effective adaptation strategies at micro or farm household level.2 Micro 

evidence on the impact of climatic change (particularly rainfall and temperature) and 

climate related adaptation measures on crop yield is very scanty.  

Our study tries to fill the gap in the literature by examining the impact of key 

climatic variables on farmers’ decisions to implement adaptation strategies (e.g., 

change crops, plant trees), and how the decision to adapt or not to adapt affects 

agricultural production. The role of information (provided by different sources) on 

climate change is also assessed. Besides farmers’ socio-economic characteristics, we 

also address the role of assets such as machinery and animals on the adaptation 

decision. The use of climatic variables at the micro-level is also investigated. Lack of 

enough variation (spatial variation) on key climatic variables (precipitation and 

                                                 
2 To the best of our knowledge, Temesgen (2006) is the only economic study that attempts to measure 
the impact of climate change on farm profit. This study applies the Ricardian approach where the cost 
of climate variability is imputed from capitalized land value. However, this study was conducted using 
sub-regional (agro-ecology) agricultural data, not farm household level data.  



 9 

temperature) in cross sectional data is one major issue to conduct micro level studies 

on climate change. This can be particularly true in developing countries where one 

meteorological station is set to cover a wide geographic area. To partially fill this gap, 

this study employs the Thin Plate Spline method of spatial interpolation and imputes 

the household specific rainfall and temperature values using latitude, longitude, and 

elevation information of each farm household.3  

In addition, we take into account that the differences in food production 

between those farm households that did and those that did not adapt to climate change 

could be due to unobserved heterogeneity. Indeed, not distinguishing between the 

casual effect of climate change adaptation and the effect of unobserved heterogeneity 

could lead to misleading policy implications. We account for the endogeneity of the 

adaptation decision (that is, for the heterogeneity in the decision to adapt or not to 

adapt to climate change and for unobservable characteristics of farmers and their 

farm) by estimating a simultaneous equations model with endogenous switching by 

full information maximum likelihood estimation. 

Finally, we build a counterfactual analysis, and compare the expected food 

production under the actual and counterfactual cases that the farm household adapted 

or not to climate change. Treatment and heterogeneity effects are calculated to 

understand the differences in food production between farm households that adapted 

and those that did not adapt, and to anticipate the potential effects of changes in 

agricultural policy. To our knowledge, considering the existing literature, this is a 

novel exercise.  

We find that there are significant and non negligible differences in food 

production between the farm households that adapted and those that did not adapt to 

climate change. We find that adaptation to climate change increases food production, 

                                                 
3 See Wahba (1990) for details on the Thin Plate Spline method of climate data interpolation. 
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however, farmers who adapted tend to have a production above the average whether 

they adapt or they don’t, and the impact of adaptation on production is smaller for the 

farm households that actually did adapt than for the farm households that did not 

adapt in the counterfactual case that they adapted. In addition, the relationship 

between production and average temperature and rainfall is of particular interest. We 

follow the current literature and include non linear terms (Mendelsohn et al., 1994). 

We find evidence of an inverted U-shaped relationship between production and 

average temperature for farm households that adapted to climate change, and an U-

shaped relationship for farm households that did not adapt. Different patterns across 

the two groups are also found when the climatic variable is precipitation.  

The next section presents a description of the study sites and survey 

instruments. Sections 3 and 4 outline the empirical model and the estimation 

procedure used. Section 5 presents the results, and Section 6 concludes the paper by 

offering some final remarks.  

 

2. Description of the Study Sites and Survey Instruments 

The rural household survey was conducted on 1000 farm households located 

within the Nile Basin of Ethiopia. The sampling frame considered traditional typology 

of agro-ecological zones in the country (namely, Dega, Woina Dega, Kolla and 

Berha), percent of cultivated land, degree of irrigation activity, average annual 

rainfall, rainfall variability, and vulnerability (number of food aid dependent 

population). The sampling frame selected the weredas in such a way that each class in 

the sample matched to the proportions for each class in the entire Nile basin.4 The 

procedure resulted in the inclusion of twenty villages. Random sampling was then 

used in selecting fifty households from each village.  

                                                 
4 The wereda is an administrative division equivalent to a district. 
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The farming system in the survey sites is very traditional with plough and yolk 

(animals’ draught power). Labor is the major input in the production process during 

land preparation, planting and post harvest processing. The area is almost totally rain-

fed. Only 0.6 percent of the households are using irrigation water to grow their crops. 

Production input and output data were collected for two cropping seasons, i.e., Meher 

(long rainy season), and Belg (the short rainy season) at plot level. However, many 

plots get bi-annual cropping pattern (grow both during Meher and Belg season). Thus, 

we estimated a production function only for Meher cropping season. 

Detailed production data were collected at different production stages (i.e., 

land preparation, planting, weeding, harvesting and post harvest processing). Labor 

inputs were disaggregated as adult male’s labor, adult female’s labor, and children’s 

labor. This approach of collecting data (both inputs and outputs) at different stages of 

production and at different levels of disaggregation should reduce cognitive burden on 

the side of the respondents, and increase the likelihood of retrieving a better 

retrospective data. In this production function, the three forms of labor were 

aggregated as one labor input using adult equivalents.5  

Monthly rainfall and temperature data were collected from all the 

meteorological stations in the country. Then, the Thin Plate Spline method of spatial 

interpolation was used to impute the household specific rainfall and temperature 

values using latitude, longitude, and elevation information of each household. By 

definition, Thin Plate Spline is a physically based 2D interpolation scheme for 

arbitrarily spaced tabulated data. The Spline surface represents a thin metal sheet that 

is constrained not to move at the grid points, which ensures that the generated rainfall 

and temperature data at the weather stations are exactly the same as data at the 

weather station sites that were used for the interpolation. So, in our case, the rainfall 
                                                 
5 We employed the standard conversion factor in the literature in developing countries where an adult 
female and children labor are converted into adult male labor equivalent at 0.8 and 0.3 rates, 
respectively. 
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and temperature data at the weather stations will be reproduced by the interpolation 

for those stations and that ensures the credibility of the method (see Wahba, 1990 for 

details). 

Finally, although a total of forty-eight annual crops were grown in the basin, 

the first five major annual crops (teff, maize, wheat, barley and beans) cover 65 

percent of the plots. These are also the crops that are the cornerstone of the local diet. 

We limit the estimation of the production function to these primary crops. The scale 

of the analysis is at the plot level. The final sample includes 940 farm households, that 

is 2,806 plots, with complete records for the variables of interest. The basic 

descriptive statistics are presented in Table 1, and the variables’ definition in the 

appendix. 

 

[TABLE 1 ABOUT HERE] 

 

In addition, one of the survey instruments was designed to capture farmers’ 

perceptions and understanding on climate change, and their approaches on adaptation. 

Questions were included to investigate whether the farmers have noticed changes in 

mean temperature and rainfall over the last two decades, and reasons for observed 

changes. About 68, 4, and 28 percent perceived mean temperature as increasing, 

decreasing and remaining the same over the last twenty years, respectively. Similarly, 

18, 62 and 20 percent perceived mean annual rainfall increasing, declining and 

remaining the same over the last twenty years, respectively. Overall, increased 

temperature and declining precipitations are the predominant perceptions in our study 

sites. 

In response to long term perceived changes, farm households had undertaken a 

number of adaptation measures. Changing crop varieties, adoption of soil and water 
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conservation measures, and tree planting were major forms of adaptation strategies 

followed by the farm households in our study sites. These adaptation measures are 

mainly yield-related and account for more than 95 percent of the adaptation measures 

followed by the farm households who actually undertook an adaptation measure. The 

remaining adaptation measures accounting for less than 5 percent were water 

harvesting, irrigation, non-yield related strategies such as migration, and shift in 

farming practice from crop production to livestock herding or other sectors. On the 

other hand, about 58 percent and 42 percent of the farm households had taken no 

adaptation measures in response to long term shifts in temperature and precipitation, 

respectively. More than 90 percent of the respondents who took no adaptation 

measure indicated lack of information, land, money and shortages of labour, as major 

reasons for not undertaking any adaptation measure. Lack of information is cited as 

the predominant reason by 40-50 percent of the households.  

 

3. Econometric Model and Estimation Procedure 

We model food production via a representation of the production technology. 

We explored different functional forms. We present the most robust: a quadratic 

specification.6 It has been argued that single output production functions do not 

capture the possibility of switching crops, and therefore the estimated impact of 

climatic variables on production is biased (Mendelsohn et al., 1994). This can be 

particularly relevant when we look at a fairly specialized agriculture such as in the 

U.S.. However, in Ethiopia agriculture is characterised by highly diversified farms 

that grow a large number of different cereal crops. In addition, considering the total 

yields of cereal crops implicitly deals with the alternatives. The production 

environment constraints dramatically the production possibilities for farmers. 

                                                 
6 Econometric results for other specifications are available from the authors upon request. 
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The simplest approach to examine the impact of adaptation to climate change 

on farm households’ food production would be to include in the food production 

equation a dummy variable equal to one if the farm-household adapted to climate 

change, and then, to apply ordinary least squares. This approach, however, might 

yield to biased estimates because it assumes that adaptation to climate change is 

exogenously determined while it is potentially endogenous. The decision to adapt or 

not to climate change is voluntary and may be based on individual self-selection. 

Farmers that adapted may have systematically different characteristics from the 

farmers that did not adapt, and they may have decided to adapt based on expected 

benefits. Unobservable characteristics of farmers and their farm may affect both the 

adaptation decision and the food production, resulting in inconsistent estimates of the 

effect of adaptation on food security. For example, if only the most skilled or 

motivated farmers choose to adapt and we fail to control for skills, then we will incur 

in an upward bias. We account for the endogeneity of the adaptation decision by 

estimating a simultaneous equations model with endogenous switching by full 

information maximum likelihood (FIML). 

We specify the selection equation for climate change adaptation as  

(1) *
i iA η= +iZ α  with 

*1 0

0
i

i

if A
A

otherwise

 >
= 


, 

that is farmers will choose to adapt (Ai = 1) if A* > 0, 0 otherwise, where A* 

represents the expected benefits of adapting with respect to not adapting, Z is a vector 

of variables that determine the decision to adapt or not to climate change, such as the 

farmer head’s characteristics (e.g., age, gender, education, marital status, and if he has 

an off-farm job), the farm household’s characteristics (e.g., farm household size, 

access to credit, soil fertility, and erosion level), the presence of assets (e.g., 

machinery and animals), climatic factors such as precipitation and average 
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temperature, information about climate change, and formal and informal institutions 

such as formal agricultural extension, and farmer-to-farmer extension.7 

To account for selection biases we adopt an endogenous switching regression 

model of food production where farmers face two regimes (1) to adapt, and (2) not to 

adapt defined as follows 

(2a) Regime 1: 1 1 1i i iy if Aε= + =1i 1X β  

(2b) Regime 2: 2 2 0i i iy if Aε= + =2i 2X β  

where yi is the quantity produced per hectare in regimes 1 and 2, Xi represents a 

vector of inputs (e.g., seeds, fertilizers, manure, and labour), assets (e.g., machinery 

and animals), soil’s characteristics (e.g., age, gender, education, marital status, farm 

size, soil fertility and erosion level), and climatic factors such as precipitation and 

temperature.8  

Finally, the error terms are assumed to have a trivariate normal distribution, 

with zero mean and covariance matrix ΣΣΣΣ, i.e., '
1 2 1( , , ) ( , )Nε ε η 0 Σ�  with 

2

2

2
1 1

2
2

. .

.

.

η

η

η

σ
σ σ
σ σ

 
 Σ =  
 
 

,  

where 2
ησ  is the variance of the error term in the selection equation (1), (which can be 

assumed to be equal to 1 since the coefficients are estimable only up to a scale factor), 

2
1σ  and 2

2σ  are the variances of the error terms in the production functions (2a) and 

(2b), and 1ησ  and 2ησ  represent the covariance of ηi and ε1i and ε2i. Since y1i and y2i 

are not observed simultaneously the covariance between ε1i and ε2i is not defined 

                                                 
7 Experience is approximated by age and education. 
8 It could be argued that one could use land values or farm revenues as dependent variable and specify 
the analysis in terms of Ricardian analysis. It should be noted, however, that the implementation of the 
Ricardian analysis requires functioning markets (i.e., prices for land or products). This is not 
necessarily an available information in some developing countries. Markets for land may not work 
properly. Subsistence farms may operate in a context where food is produced for household 
consumption, and market prices for food crops are characterized by large variations. 
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(Maddala, 1983, p. 224). An important implication of the error structure is that 

because the error term of the selection equation (1) ηi is correlated with the error 

terms of the production functions (2a) and (2b) (ε1i and ε2i), the expected values of ε1i 

and ε2i condidional on the sample selection are nonzero: 

[ ]1 1 1 1

( )
| 1

( )i i iE A η η
φε σ σ λ= = =
Φ

i

i

Z α
Z α

, and [ ]2 2 2 2

( )
| 0

1 ( )i i iE A η η
φε σ σ λ= = − =
− Φ

i

i

Z α
Z α

, 

where φ(.) is the standard normal probability density function, Φ(.) the standard 

normal cumulative density function, and 1

( )

( )i

φλ =
Φ

i

i

Z α
Z α

, and 2

( )

1 ( )i

φλ = −
− Φ

i

i

Z α
Z α

. If the 

estimated covariances 1ˆ ησ  and 2ˆ ησ  are statistically significant, then the decision to 

adapt and the quantity produced per hectare are correlated, that is we find evidence of 

endogenous switching and reject the null hypothesis of absence of sample selectivity 

bias. This model is defined as a “switching regression model with endogenous 

switching” (Maddala and Nelson, 1975). 

An efficient method to estimate endogenous switching regression models is by 

full information maximum likelihood estimation (Lee and Trost, 1978).9 The 

logarithmic likelihood function given the previous assumptions regarding the 

distribution of the error terms is 

( )

1
1 1

1 1

2
2 2

2

(3) ln ln ln ln ( )

(1 ) ln ln ln 1 ( ) ,

N
i

i i i
i

i
i i

L A

A

εφ σ θ
σ

εφ σ θ
σ

=

  
= − + Φ  

  

  
+ − − + − Φ  

  

∑
 

                                                 
9 An alternative estimation method is the two-step procedure (see Maddala, 1983, p. 224 for details). 
However, this method is less efficient than FIML, it requires some adjustments to derive consistent 
standard errors (Maddala, 1983, p. 225), and it shows poor performance in case of high 
multicollinearity between the covariates of the selection equation (1) and the covariates of the food 
production equations (2a) and (2b) (Hartman, 1991; Nelson, 1984; and Nawata, 1994).  
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where 
( )

2

/
, 1,2

1

j ji j

ji

j

j
ρ ε σ

θ
ρ

+
= =

−
iZ α

, with jρ  denoting the correlation coefficient 

between the error term ηi of the selection equation (1) and the error term εji of 

equations (2a) and (2b), respectively.  

In addition, for the model to be identified it is good practice in empirical 

analysis to use as exclusion restrictions not only those automatically generated by the 

nonlinearity of the selection regression but also other variables that directly affect the 

selection variable but not the outcome variables. The specification chosen for the food 

production equations (2a) and (2b), which follows common practice in the agricultural 

economics literature (see for example, Coelli and Battese, 1996 and Solis et al., 2007, 

among others), allows us to use as exclusion restrictions the variables related to the 

information sources, and the farmer and farm household’s characteristics. 

 

4. Conditional Expectations, Treatment and Heterogeneity Effects 

The aforementioned endogenous switching regression model can be used to 

compare the expected food production of the farm households that adapted (a) with 

respect to the farm households that did not adapt (b), and to investigate the expected 

food production in the counterfactual hypothetical cases (c) that the adapted farm 

households did not adapt, and (d) that the non-adapted farm household adapted. The 

conditional expectations for food production in the four cases are presented in Table 2 

and defined as follows 

(4a) 1 1 1( | 1)i i iE y A ησ λ= = +1i 1X β  

(4b) 2 2 2( | 0)i i iE y A ησ λ= = +2i 2X β   

(4c) 2 2 1( | 1)i i iE y A ησ λ= = +1i 2X β   

(4d) 1 1 2( | 0)i i iE y A ησ λ= = +2i 1X β  . 
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[TABLE 2 ABOUT HERE] 

 

Cases (a) and (b) along the diagonal of Table 2 represent the actual 

expectations observed in the sample. Cases (c) and (d) represent the counterfactual 

expected outcomes. 

In addition, following Heckman et al. (2001), we calculate the effect of the 

treatment “to adapt” on the treated (TT) as the difference between (a) and (c), 

(5) 1 2 1 2 1( | 1)- ( | 1) ( )i i i i iTT E y A E y A η ησ σ λ= = = = + −1i 1 2X (β -β ) ,  

which represents the effect of climate change adaptation on the food production of the 

farm households that actually adapted to climate change. Similarly, we calculate the 

effect of the treatment on the untreated (TU) for the farm households that actually did 

not adapt to climate change as the difference between (d) and (b), 

(6) 1 2 1 2 2( | 0) - ( | 0) ( )i i i i iTU E y A E y A η ησ σ λ= = = = + −2i 1 2X (β -β ) . 

We can use the expected outcomes described in (4a)-(4d) to calculate also the 

heterogeneity effects. For example, farm households that adapted may have produced 

more than farm households that did not adapt regardless of the fact that they decided 

to adapt but because of unobservable characteristics such as their skills. Adapting 

Carter and Milon (2005) to our case, we define as “the effect of base heterogeneity” 

for the group of farm households that decided to adapt as the difference between (a) 

and (d),  

(7) 1 1 1 1 1 2( | 1) - ( | 0) = ( )i i i i i iBH E y A E y A ησ λ λ= = = + −1i 2i 1i(X - X )β . 

Similarly for the group of farm households that decided not to adapt, “the 

effect of base heterogeneity” is the difference between (c) and (b),  

(8) 2 2 2 2 1 2( | 1) - ( | 0) = ( )i i i i i iBH E y A E y A ησ λ λ= = = + −1i 2i 2i(X - X )β . 
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Finally, we investigate the “transitional heterogeneity” (TH), that is if the 

effect of adapting to climate change is larger or smaller for the farm households that 

actually adapted to climate change or for the farm household that actually did not 

adapt in the counterfactual case that they did adapt, that is the difference between 

equations (5) and (6) (i.e., (TT) and (TU)). 

 

5. Results 

Table 3 reports the estimates of the endogenous switching regression model 

estimated by full information maximum likelihood.10 The first column presents the 

estimation by ordinary least squares of the food production function with no switching 

and with a dummy variable equal to 1 if the farm household decided to adapt to 

climate change, 0 otherwise. The second, third and fourth columns present, 

respectively, the estimated coefficients of selection equation (1) on adapting or not to 

climate change, and of the food production functions (2a) and (2b) for farm 

households that did and did not adapt to climate change.11 

 

[TABLE 3 ABOUT HERE] 

 

The results of the estimation of equation (1) suggest that information about 

future climate change, and access to formal and informal institutions significantly 

increase the likelihood that farm households adapt (Table 3, column (2)). Farm 

households with access to credit are found to be more likely to adapt to climate 

change. The role of information also seems very important. We found that farmers 

that were informed about the implication of climate change (both via media and 

                                                 
10 We use the “movestay” command of STATA to estimate the endogenous switching regression model 
by FIML (Lokshin and Sajaia, 2004).  
11 The estimated coefficients of the exclusion restrictions represented by the information sources and 
the farmer head and farm household’ characteristics are jointly significantly different from zero (χ2 
(18) = 110.780; p-value = 0.000). 
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specific extension services) are more likely to adapt. More general extension services 

also play an important role in determining farmers’ decisions to adapt. Both formal 

agricultural extension and farmer-to-farmer extension increase the probability of 

adaptation. In addition, farmers that have a job outside the farm or agricultural 

machinery are more likely to implement adaptation strategies.  

Not surprisingly, climatic variables play a very important role in determining 

the probability of adaptation. Rainfall in the long rainy season displays an inverted U-

shape behaviour. A similar pattern is identified when we look at the rainfall level 

during the Belg short rainy season. However, in the latter case the linear coefficient 

while positive is not statistically significant. 

We now turn on the productive implications of adaptation. The simplest 

approach to investigate the effect of adaptation on food production consists in 

estimating an OLS model of food production that includes a dummy variable equal to 

1 if the farm household adapted, 0 otherwise (Table 3, column (1)). This approach 

would lead us to conclude that farm households that adapted to climate change 

produce more than those that did not adapt, and in particular, about 129 Kg more per 

hectare ceteris paribus (the coefficient on the dummy variable adaptation is positive 

and significant at the 1 percent level). This approach, however, assumes that 

adaptation to climate change is exogenously determined while it is a potentially 

endogenous variable. The estimation via OLS would yield biased and inconsistent 

estimates. In addition, OLS estimates do not explicitly account for potential structural 

differences between the production function of farmers who adapted to climate 

change and the production function of farmers that did not adapt. 

The estimates presented in the last two columns of Table 3 account for the 

endogenous switching in the food production function. Both the estimated coefficients 

of the correlation terms jρ  are not significantly different from zero (Table 3, bottom 
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row). Although we could not have known it a priori, this implies that the hypothesis 

of absence of sample selectivity bias may not be rejected.  

However, the differences in the food production equation coefficients between 

the farm households that adapted and those that did not adapt illustrate the presence of 

heterogeneity in the sample (Table 3, columns (3) and (4)). The food production 

function of farm households that adapted to climate change is significantly different 

(at the 1 percent level) from the production function of the farm household that did 

not adapt. Consistent with predictions of economic theory, inputs such as seeds, 

fertilizers, manure and labour are significantly associated with an increase in the 

quantity produced per hectare by the farm households that adapted to climate change. 

However, mainly labour and fertilizers seem to significantly affect the food 

production of the farm households that did not adapt.  

Another interesting difference between the farm households that did and those 

that did not adapt concerns the effect of temperature and precipitations on the quantity 

produced per hectare. The results of the impact of climate change on production are 

consistent with previous studies (Mendelshon et al., 1994). We find evidence of non 

linearity for both rainfall and temperature. Differently from  the existing literature, we 

analyze the impact of climatic variables for the two different groups. When we 

distinguish between farmers that adapted versus farmers that did not adapt and we 

control for the different rainy season, we can unearth very interesting and distinct 

patterns. We find that the relationship between production and average temperature is 

inverted U-shaped for farm households that adapted to climate change, while it is U-

shaped for farm households that did not adapt, and vice versa in the case of 

precipitations. This highlights the existence of a threshold in both groups.  

Calculating the elasticities (evaluated at sample means) we find that the 

estimated impact of Meher rainfall is positive for both groups. However, the impact is 
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stronger for the farmers that did not adapt (0.37%) with respect to the farmers that did 

adapt (0.24%). This seems to indicate that the implementation of the adaptation 

strategies successfully delivered relatively less reliance on the most important rainfall 

season, Meher. Results are different for rainfall during the short rainy season (Belg 

season). The coefficient estimates for the group of non adapters are statistically not 

significant.  

The estimation of the impact of temperature reveals again the existence of non 

linearity and non negligible qualitative differences between the two groups. The 

impact of temperature on the group of adapters is positive. An increase of 1 percent in 

temperature is associated with an increment in production of 0.84 percent. The same 

increase in temperature has a quite large detrimental effect of food productivity of the 

non adapters (-0.44%). This indicates that the former group managed to support their 

productivity in the face of changing climate. The latter group, instead, are adversely 

affected by an increase average temperature. 

Finally, Table 4 presents the expected quantity produced per hectare under 

actual and counterfactual conditions. Cells (a) and (b) represent the expected quantity 

produced observed in the sample. The expected quantity produced per hectare by farm 

households that adapted is about 1,134 Kg, while it is about 863 Kg for the group of 

farm households that did not adapt. This simple comparison, however, can be 

misleading and drive the researcher to conclude that on average the farm households 

that adapted produced about 271 Kg (that is 31 percent) more than the farm 

households that did not adapt.  

 

[TABLE 4 ABOUT HERE] 
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The last column of Table 4 presents the treatment effects of adaptation on food 

production described in section 5. In the counterfactual case (c), farmers who actually 

adapted would have produced about 27 Kg (that is about 2.4 percent) more than if 

they did not adapt. In the counterfactual case (d) that farmers that did not adapt 

adapted, they would have produced about 230 Kg (that is about 27 percent) more than 

if they did not adapt. These results imply that adaptation to climate change increases 

food production, however, the transitional heterogeneity effect is negative, that is the 

effect is smaller for the farm household that actually did adapt with respect to those 

that did not adapt. In addition, the last row of Table 4, which adjusts for the potential 

heterogeneity in the sample, shows that farmers who decided to adapt tend to have 

benefits above the average whether they adapt or they do not, but they are better off 

adapting than not adapting.  

 

6. Conclusions 

The objectives of this paper were to analyse the driving forces behind farmers’ 

decisions to adapt to climate change, and to investigate the productive implications of 

this decision. We used a unique database, where climatic information were 

disaggregated per season and available at the farm level to estimate a simultaneous 

equations model with endogenous switching to account for unobservable factors that 

influence food production and the decision to adapt or not to adapt.  

The analysis of the determinants of adaptation highlighted very interesting 

results. Access to credit and information has a positive effect on the probability of 

adaptation. Developing credit markets allow farmers to make important investments 

(i.e., soil conservation measures) that can support farm productivity. In general, 

information on climate change and extension services also play an important role in 

determining farmers decisions to adapt. Both formal agricultural extension and 
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farmer-to-farmer extension increase the probability of adaptation. In addition, rainfall 

displays an inverted U-shape behaviour, that is after a certain threshold level rain 

adaptation becomes less necessary. 

Finally, we can draw three main conclusions from the results of this study on 

the effects of climate change adaptation on food security. First, the group of farm 

households that did adapt has systematically different characteristics than the group of 

farm households that did not adapt. These differences represent sources of variation 

between the two groups that the estimation of an OLS model including a dummy 

variable for adapting or not to climate change cannot take into account. Second, 

adaptation to climate change increases food production, however, farmers who 

decided to adapt tend to have a production above the average whether they adapt or 

they do not. Last but not least, the impact of adaptation on food production is smaller 

for the farm households that actually did adapt than for the farm households that did 

not adapt in the counterfactual case that they adapted. These results are particularly 

important to design effective adaptation strategies to cope with the potential impacts 

of climate change. 

 

[TABLE  A1 ABOUT HERE] 
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Appendix  

Table A1 - Variables’ Definition 

Variable name Definition 

Dependent variables  
adaptation dummy =1 if the farm household adapted to climate change, 0 otherwise 
quantity produced per hectare quantity produced per hectare (kg) 

Explanatory variables  

Belg rainfall precipitation rate in Belg, short rain season (mm) 
Meher rainfall precipitation rate in Meher, long rain season (mm) 
average temperature average temperature (oC) 
highly fertile dummy =1 if the soil has a high level of fertility, 0 otherwise 
infertile dummy =1 if the soil is infertile, 0 otherwise 
no erosion dummy=1 if the soil has no erosion, 0 otherwise 
severe erosion dummy=1 if the soil has severe erosion, 0 otherwise 
machinery  dummy =1 if machineries are used, 0 otherwise 
animals  dummy=1 if farm animal power is used, 0 otherwise 
labour labour use per hectare (adult days) 
seeds seeds use per hectare (kg) 
fertilizers fertilizers use per hectare (kg) 
manure  manure use per hectare (kg) 
literacy  dummy =1 if the household head is literate, 0 otherwise 
male  dummy =1 if the household head is male, 0 otherwise 
married  dummy =1 if the household head is married, 0 otherwise 
age age of the household head 
household size household size 
off-farm job dummy =1 if the household head took a off-farm job, 0 otherwise 
relatives number of relatives in a village 
access to credit  dummy =1 if the household has access to formal credit, 0 otherwise 
gold  dummy =1 if the household has gold 
government extension  dummy =1 if the household head got information/advice from government 

extension workers, 0 otherwise 
farmer-to-farmer extension  dummy =1 if the household head got information/advice from farmer-to-

farmer extension, 0 otherwise 
radio information  dummy =1 if the household head got information from radio, 0 otherwise 
neighborhood information  dummy =1 if the household head got information from the neighborhood, 0 

otherwise 
climate information  dummy =1 if extension officers provided information on expected rainfall 

and temperature, 0 otherwise 
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Table 1 – Descriptive Statistics  

Variable name Total sample 
Farm households that 

adapted 
Farm households that 

did not adapt 

 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Dependent variables       
adaptation 0.689 0.463 1 0 0 0 
quantity produced per 
hectare 

1,050.012 1,197.891 1,134.052 1,356.076 863.524 699.301 

Explanatory variables       

Belg rainfall 323.132 160.666 307.796 150.141 357.036 177.223 
Meher rainfall 1,111.298 294.790 1,145.737 284.731 1,035.163 302.434 
average temperature 17.739 2.029 17.165 1.771 19.007 1.990 
highly fertile 0.280 0.449 0.257 0.437 0.332 0.471 
infertile 0.158 0.365 0.172 0.377 0.128 0.335 
no erosion 0.482 0.500 0.470 0.499 0.508 0.500 
severe erosion 0.104 0.305 0.114 0.318 0.081 0.273 
machinery  0.019 0.136 0.024 0.152 0.007 0.084 
animals  0.874 0.332 0.887 0.316 0.843 0.364 
labour 100.972 121.284 105.837 133.437 90.176 87.657 
seeds 114.875 148.668 125.633 163.930 91.001 103.473 
fertilizers 60.587 176.739 62.028 177.907 57.398 174.184 
manure  197.668 830.518 254.215 951.228 72.425 437.147 
literacy  0.488 0.500 0.523 0.500 0.410 0.492 
male  0.926 0.263 0.931 0.253 0.912 0.283 
married  0.927 0.260 0.930 0.255 0.920 0.271 
age 45.704 12.536 46.236 11.914 44.527 13.747 
household size 6.597 2.190 6.763 2.138 6.230 2.258 
off-farm job 0.249 0.433 0.286 0.452 0.169 0.375 
relatives 16.420 43.540 19.489 51.215 9.448 13.216 
access to credit  0.260 0.439 0.308 0.462 0.154 0.361 
gold  0.378 0.485 0.454 0.498 0.208 0.406 
government extension  0.608 0.488 0.761 0.426 0.269 0.444 
farmer-to-farmer extension  0.515 0.500 0.660 0.474 0.196 0.397 
radio information  0.306 0.461 0.383 0.486 0.138 0.345 
neighborhood information  0.317 0.465 0.319 0.466 0.311 0.463 
climate information  0.422 0.494 0.563 0.496 0.111 0.314 
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Table 2 - Conditional Expectations, Treatment and Heterogeneity Effects 

 Decision Stage  

Sub-samples To Adapt Not to Adapt Treatment Effects 

Farm households that adapted (a) 1( | 1)i iE y A =  (c) 2( | 1)i iE y A =  TT 

Farm households that did not adapt (d) 1( | 0)i iE y A =  (b) 2( | 0)i iE y A =  TU 

Heterogeneity effects BH1 BH2 TH 

Notes: (a) and (b) represent observed expected production quantities; (c) and (d) represent counterfactual 
expected production quantities. 
Ai = 1 if farm households adapted to climate change; Ai = 0 if farm households did not adapt; 
Y1i: quantity produced if the farm households adapted; 
Y2i: quantity produced if the farm household did not adapt; 
TT: the effect of the treatment (i.e., adaptation) on the treated (i.e., farm households that adapted); 
TU: the effect of the treatment (i.e., adaptation) on the untreated (i.e., farm households that did not adapt); 
BHi: the effect of base heterogeneity for farm households that adapted (i = 1), and did not adapt (i = 2); 
TH = (TT - TU), i.e., transitional heterogeneity. 
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Table 3 – Parameters Estimates of Climate Change Adaptation and Food Production 
Equations 
 
 (1) (2) (3) (4) 

Endogenous Switching Regressiona 

Model OLS  Adaptation = 1 
(Farm households 

that adapted) 

Adaptation = 0 
(Farm households 
that did not adapt) 

Dependent Variable 
Quantity 

produced per 
hectare 

Adaptation 
1/0 

Quantity produced 
per hectare 

Quantity produced 
per hectare 

Adaptation 1/0 128.827***     
 (38.564)    
Climatic factors     
Belg rainfall -0.869 0.001 -2.122* 0.286 
 (0.631) (0.001) (1.125) (0.865) 
squared Belg rainfall/1000 0.001 -0.004*** 3.624** -1.588 
 (0.0009) (0.002) (1.672) (1.334) 
Meher rainfall  -0.249 0.003*** -2.059*** 1.552*** 
 (0.431) (0.001) (0.721) (0.572) 
squared Meher rainfall/1000 0.0001 -0.001** 0.885*** -0.559** 
 (0.0002) (0.000) (0.321) (0.264) 
average temperature 123.439 -1.074*** 599.811*** -394.848** 
 (115.237) (0.235) (163.427) (178.579) 
average temperature 2 -3.487 0.023*** -16.359*** 9.862** 
 (3.033) (0.006) (4.592) (4.612) 
Soil characteristics     
highly fertile  168.831***  -0.213*** 207.874*** 70.622 
 (48.937) (0.074) (64.814) (47.007) 
infertile -76.136 0.0004 -145.678* 1.062 
 (52.020) (0.094) (75.520) (67.872) 
no erosion 24.687 0.122* 54.142 -17.956 
 (40.235) (0.070) (58.284) (45.757) 
severe erosion 17.363 -0.010 62.780 -50.087 
 (70.091) (0.116) (90.957) (84.347) 
Assets     
machinery  -131.841 0.822** -148.538 -157.177 
 (106.704) (0.365) (174.534) (250.053) 
animals  160.334***  0.007 173.922** 150.768** 
 (39.554) (0.094) (86.903) (60.208) 
Inputs     
labour  3.017***   3.316*** 3.866*** 
 (0.442)  (0.447) (0.481) 
squared labour /100 -0.120***   -0.127*** -0.431*** 
 (0.029)  (0.035) (0.076) 
seeds  1.952***   2.509*** -0.014 
 (0.403)  (0.327) (0.490) 
squared seeds /100 0.069***   0.044** 0.349*** 
 (0.018)  (0.022) (0.091) 
fertilizers  0.683**   0.486* 0.752*** 
 (0.296)  (0.281) (0.241) 
squared fertilizers/100 -0.011*  -0.003 -0.021*** 
 (0.007)  (0.009) (0.007) 
manure 0.302***   0.281*** 0.064 
 (0.083)  (0.064) (0.121) 
squared manure /100 -0.003***   -0.003*** 0.002 
 (0.0007)  (0.001) (0.003) 
Farmer head and  farm 
household characteristics 

    

literacy   0.097   
  (0.071)   
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male   0.137   
  (0.158)   
married   -0.240   
  (0.168)   
age  0.007**   
  (0.003)   
household size  0.053***   
  (0.016)   
off-farm job   0.226***   
  (0.083)   
relatives   0.004*   
  (0.002)   
access to credit   0.246***   
  (0.080)   
gold   0.050   
  (0.076)   
Information sources     
government extension   0.465***   
  (0.080)   
farmer to farmer extension   0.410*** 

(0.081) 
  

radio information   0.335***   
  (0.088)   
neighborhood information   -0.099 

(0.079) 
  

climate information   0.479***   
  (0.089)   
constant -634.053 8.884*** -3,852.883*** 3,413.311* 
 (1125.473) (2.247) (1,354.133) (1,752.811) 

i
σ    

1154.398 594.731 
   (18.602) (14.191) 

j
ρ    

-0.039 -0.046 
   (0.117) (0.094) 
Notes: aEstimation by full information maximum likelihood. 

Standard errors in parentheses. The number of observations is 2,806. 
i

σ denotes the square-root of the variance 

of the error terms εji in the outcome equations (2a) and (2b), respectively; 
j

ρ  denotes the correlation coefficient 

between the error term ηi of the selection equation (1) and the error term εji of the outcome equations (2a) and 
(2b), respectively. * Significant at the 10% level; ** Significant at the 5% level; *** Significant at the 1% level. 
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Table 4 – Average Expected Production per Hectare; Treatment and Heterogeneity 
Effects 
 

 Decision Stage  

Sub-samples To Adapt Not to Adapt Treatment Effects 

Farm households who adapted (a) 1,134.056 (c) 1,107.508 TT = 26.547 

Farm households who did not adapt (d) 1,091.406 (b) 862.678 TU = 228.723 

Heterogeneity effects BH1 = 42.65 BH2= 244.83 TH = -202.176 

See notes of Table 2.  

 


