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Abstract
We study how market conditions shape aggregate CO2 emission intensity from manufac-

turing. We first develop a multi-product multi-factor model with heterogeneous firms, vari-

able markups, and monopolistic competition in which each product has a specific emission

intensity. Competition affects output shares across heterogeneous firms, product-mix across

heterogeneous products, and technological choice within firm-product lines. We find that in-

creased competition shifts production to cleaner firms, but has ambiguous effects on within-

firm changes in emission intensity via product-mix and technology adoption. Next, using

detailed firm-product emission intensity data from India, we find core-competency products

tend to be cleaner than non-core products; but since market conditions have induced Indian

firms to shift production away from core-competency, product-mix has increased CO2 emis-

sion intensity in India by 49% between 1990-2010. These emission intensity increases are

offset by reductions within firm-product lines and by across-firm share shifts, so aggregate

emission intensity has actually fallen by 50%.
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1 Introduction

A central strategy for slowing the pace of climate change is to reduce the emission intensity
of production within countries, industries, and firms. By now, it is widely acknowledged that
market incentives should play an important role in bringing about these reductions, but our un-
derstanding of how exactly aggregate emission intensity responds to changing market conditions
is relatively incomplete. Research indicates that emission intensity of production depends on
the composition of firms in the industry (Kreickemeier & Richter, 2013; Forslid et al., 2014),
the types of products firms make (Copeland & Taylor, 2003; Shapiro & Walker, 2015), and the
technology with which they make them (Antweiler et al., 2001); but how do each of these factors
respond to market conditions? And how much do each contribute to aggregate changes in emis-
sions? Answering these questions is critical for understanding future trends in emission intensity
and the environmental consequences of market reforms.

In this paper, we study both theoretically and empirically the sources of aggregate emission
intensity growth and the ways in which changing market conditions affect these root sources.
We first build a micro-based model of the economy to study the across-firms and within-firms
channels in general equilibrium. Emissions are a necessary by-product of production, but emis-
sion intensity can be modulated by endogenous choices at the firm level. First, heterogeneous
firms vary in productivity, as well as in average emission intensity. Changes in market forces
change the distribution of market shares across heterogeneous firms, and hence impact aggre-
gate emissions. Second, firms endogenously select the efficiency of the technology they produce
with. Changes in market conditions change the incentive to invest in more efficient, and hence
cleaner, technologies. Finally, firms endogenously select the type and number of products to
produce within the firm. Different products within the firm are produced with different levels
of efficiency, so changes in factor allocations across product lines also affect emission intensity.
We solve the model and derive testable predictions at the firm and firm-product level. The model
also delivers aggregate predictions for the impact of market forces – i.e., competition and trade
liberalization – on emission intensity.

Next, we evaluate the predictions and assess the magnitude of each channel in explaining
aggregate emissions growth in a single country over a specific period – India between 1990 and
2010. This empirical setting offers two key benefits for our purposes. First, the Indian economy
saw a remarkable array of market reforms at this time that dramatically increased the compet-
itiveness of the economy (Goldberg et al., 2010a,b). Second, there exists unusually detailed
production data for a large swath of firms over this period with which we can explore the dif-
ferent micro channels laid out in the model. Additionally, India is a major emitter of CO2 (and
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other greenhouse gases – GHG) that is expected to contribute significantly to emissions growth
over the next century, so the determinants of emission intensity in this country are important in
their own right.

Our empirical exercise is based on a novel panel dataset of Indian firms from the Center for
Monitoring the Indian Economy (CMIE). The key feature of the data is that we observe both
outputs and energy inputs in physical quantities at the product level. This degree of specificity
is highly unusual in production datasets, and is what allows us to track firm-product CO2 inten-
sity over time without assuming a specific structure on production or assuming anything at all
about pricing behavior. The product-specific output data has attracted attention from researchers
precisely because of its specificity in terms of product-line outputs (De Loecker et al., 2012;
Goldberg et al., 2010a,b; Chakraborty, 2012; Lipscomb, 2008), but ours is the first paper to
merge the output data with the product-specific energy input data, and hence compute efficiency
metrics directly from the data.

With these detailed emissions estimates, we first test predictions of the theoretical model. As
predicted by the model, we find that bigger firms have lower emission intensity. Furthermore,
we find a systematic relationship between the sales rank of products within the firm (i.e., core
competency) and the emission intensity of the product. These two facts together imply that if
market forces influence the composition of firms in the industry or products within the firm, they
should also impact industry-average emission intensity. We also find that there is significant
variation in emission intensity of production over time within firm-product line, which indicates
that technological change may explain changes in aggregate emission intensity.

We then decompose aggregate emissions in the Indian economy over 1990-2010 into the tra-
ditional scale, composition (across industries), and technique (within industries) effects (Antweiler
et al., 2001; Levinson, 2009). We find that while scale has nearly quadrupled over the period,
emissions only doubled, so economy-wide emission intensity has fallen drastically (50%). We
confirm these aggregate results with auxiliary data from the nationally representative Annual Sur-
vey of Industries (Figure C.1). Furthermore, we find that industrial composition explains about
56% of the emission intensity reduction, while within-industry effects explain the rest. The
fact that output has shifted away from emission-intensive industries over the period is perhaps
surprising, and runs contrary to the general perception that increased globalization reallocates
dirty production to the developing world, where environmental regulation is weak (Copeland &
Taylor, 2003; Kellenberg, 2009).

Next, we decompose the within-industry effect into three components – across-firm com-
positional shifts (reallocation), across-product compositional shifts (product-mix), and within
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firm-product changes over time (technology). This decomposition is novel to the literature, as
ours is the only data in which these three components can be separated. We find that across-
firm reallocation explains 58% of the total aggregate reduction. However, these reductions are
offset by a significant increase in emission intensity due to product-mix adjustments within the
firm. That is, continuing firms shift production towards “dirtier” varieties, which increases ag-
gregate emission intensity by 49%. At the firm level, two countervailing forces are at play.
While product mix changes make firms dirtier, technology upgrading within-firm-product lines
reduces aggregate emission intensity by 35%. Additionally, we find that both the across-firm and
across-product effects are driven mostly by intensive margin changes (i.e., continuing firms and
continuing products) as opposed to either firm or product entry/exit. These aggregate effects are
consistent with predictions from the model, whereby increased competition favors larger, more
productive firms, but has an ambiguous effect on reallocations across products within the firm.

Altogether, the results indicate that market forces significantly impact the emission intensity
of production, even absent environmental regulation.1 The process of globalization and market
reforms in the developing world significantly influence emission intensity, as firms internalize
the global externality via input costs. This point is critically important for discussions of carbon
leakage, in which usually only the scale and across-industry effects are considered. By contrast,
our results indicate that within-industry impacts of increased foreign demand are quite important
as well. Furthermore, as this globalization process is likely to continue, emission intensity is
likely to change significantly, even if climate negotiations are ineffective.

Our paper contributes to several strands of literature. First, our work relates to a growing lit-
erature regarding the impacts of market forces such as competition and trade liberalization on the
emission intensity of production. This literature tends to focus on across-firm reallocations and
technological upgrading (Forslid et al., 2014; Cui et al., 2012; Jing Cao & Zhou, 2013; Galdeano-
Gómez, 2010; Gutiérrez & Teshima, 2011; Martin, 2012; Cherniwchan, 2013; Holladay, 2015).
Ours is the first to introduce formally the product-mix mechanism and provide empirical evi-
dence of the relative magnitudes of the different channels. One paper of particular importance
for our work is Shapiro & Walker (2015), which also seeks to explain the root causes of emission
intensity reductions in production – emissions of local pollutants in the US, in their case. Shapiro
& Walker (2015) find that regulation – not trade/competition – explains the majority of emission
intensity reductions in the US over the last 40 years. The main difference between our work and
theirs that could account for the difference in findings is that we investigate a different context,

1There was no overall regulation of CO2 in India during the period. To the possibility of co-benefits from regu-
lating related pollutants, Greenstone & Hanna (2014) find that local pollution regulations were relatively inefficient
in reducing emissions in India, hence any indirect impact on CO2 emissions was likely minimal.
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in which environmental regulation played almost no role.
Second, our paper contributes both theoretically and empirically to literatures that empha-

size the importance of within-firm endogenous choices in explaining industry dynamics (Olley
& Pakes, 1996; Verhoogen, 2008; Lileeva & Trefler, 2010; Eckel & Neary, 2010; Bernard et al.,
2011; De Loecker, 2011; Bernard et al., 2010; Mayer et al., 2014; Collard-Wexler & De Loecker,
2015; Bloom et al., 2016). On the theory side, our model can be thought of as a generalization
of the Mayer et al. (2014) multi-product trade model. The key feature of Mayer et al. (2014)
(henceforth MMO) is that multi-product firms endogenously tailor product scope and sales to
market conditions, which thus determine firm-average (total factor) productivity. We general-
ize this framework by adding a second factor of production, and by allowing firms to adopt a
productivity-enhancing technology at the firm-product level (similarly to Bustos (2011) and Cui
et al. (2012)).2 Our model is thus the first to treat both technological adoption and product-mix
simultaneously, while preserving the parsimony and tractability of the original MMO model.

Finally, our paper contributes to a growing literature that investigates the determinants of
productivity growth in India. A few papers merit particular discussion. In an influential paper,
Hsieh & Klenow (2009) find a striking degree of inefficiency in the allocation of resources across
firms in India. Our finding that increased competition has lead to increased market share for more
productive firms is in line with the historical misallocation of resources. Harrison et al. (2014)
and Tewari & Wilde (2014) investigate the role of product reservation regulation in thwarting
aggregate productivity growth, finding that firms that moved into previously-reserved product
categories after the reservation policy ended grew significantly. We find direct support for the
claim that product-mix matters for productivity, and thus illuminate the micro-channel posited
by these papers. Goldberg et al. (2010b) also studies product-line dynamics in the Indian context
(also using data from CMIE). We go further then Goldberg et al. (2010b) by studying both the
intensive and extensive margins of product-mix, and by computing efficiency at the firm-product
level and relating these metrics to our model of production. Finally, three recent papers study the
impacts of regulation and market failures on emission intensity in India (Greenstone & Hanna,
2014; Duflo et al., 2013; Allcott et al., 2014). We see our work as connected to these efforts in
that we illuminate the micro channels through which policies/market failures impact firm-level
and aggregate emission intensity.

2The one-factor model of MMO already explains several chanels of aggregate emission intensity dynamics, if
firms’ technologies and input shares are fixed. For example, if there is no technological upgrading within firm-
product line, and if there is little or no factor substitutions, then all the results on firm-level and aggregate-level cost
efficiency from Mayer et al. (2014) cary over directly to emissions efficiency as well.
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2 Theoretical Framework

In this section, we present a theoretical model of how emission intensity at the industry, firm,
and product level adjust endogenously to changing market conditions. Our goal is to illuminate
the mechanisms that contribute to aggregate changes in emission intensity, assess the conditions
under which these mechanisms influence emission intensity, derive testable predictions that we
can take to the data, and study aggregate impacts in comparative static exercises.

We begin with a closed-economy version of the model in section 2.1. Our model extends
the framework of Mayer et al. (2014) to multiple factors and technology adoption. Since the
mechanics of this model are presented in detail elsewhere, we move briskly through the prelimi-
naries to focus attention on the novel elements. We prove that the generalized model supports a
unique general equilibrium solution. Intermediate results are presented in appendix A.3.

In section 2.2, we derive comparative static impacts of increased market size, hence increased
competition, on economic and environmental efficiency at both the firm and industry levels.
Most of the analysis is conducted for the closed economy, except for a subsection that discusses
open-economy results derived in the appendix. Finally, in section 2.3, we collect the empirical
implications of our model for the data.

2.1 Model

2.1.1 Preferences and Demand

We consider a closed economy in which L consumers each supply one unit of labor and have
identical preferences over a continuum of differentiated varieties (qi) and a homogeneous good
(q0). Differentiated varieties are indexed by i ∈ Λ. Consumers suffer damages from global
externalities that arise from emissions of greenhouse gases (Zw), generated in production of
goods. The homogeneous good is chosen as numeraire.

Similarly to MMO, we assume individual utility is quasi-linear over goods and damages:

U = qc0 + α

∫
i∈Λ

qcidi−
1

2
γ

∫
i∈Λ

(qci )
2di− 1

2
η

(∫
i∈Λ

qcidi

)2

− F (Zw) . (1)

This assumption on preferences rules out income effects. Parameters α, γ, and η are all positive
and govern substitutability between goods. An increase in α and a decrease in η both shift out the
demand for the differentiated varieties relative to the numeraire, while an increase in γ increases
the degree of product differentiation between varieties. In the limit when γ = 0, varieties are
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perfect substitutes. The function F (Zw) determines the relative disutility from environmental
damages compared to the utility from consumption.

Total demand for each differentiated variety is a function of its own price (pi) and market
fundamentals:

qi ≡ Lqci =
αL

ηM + γ
− pi

L

γ
+

ηLp̄M

γ(ηM + γ)
, (2)

where M is the measure of consumed varieties and p̄ is their average price. While qi exists for
all i, this quantity need not be positive. Define pmax as the price at which demand for a variety
is driven to zero and the set Λ∗ as the largest subset of Λ for which demand is positive. Then we
have for all i ∈ Λ∗, given p̄ = (1/M)

∫
i∈Λ∗

pidi,

pi ≤
αγ + ηp̄M

ηM + γ
≡ pmax. (3)

Thus, each varieties’ price (pi) depends on endogenous entry and the average price in the market.
With these assumptions on preferences, it can be shown that the price elasticity of demand is not
uniquely determined by product differentiation γ (as in the classic monopolistically competitive
setup of Dixit & Stiglitz (1977)), but depends on the number of varieties M available. An
increase in the number of varieties and a decrease in the average price reduces the price bound
pmax, resulting in what we will consider “tougher” competition.

2.1.2 Production

The economy is composed of a non-polluting homogeneous good sector and a differentiated
variety sector, the latter of which generates emissions as a byproduct of production. Labor is
mobile across sectors and is inelastically supplied in a competitive market. The numeraire good
is produced under constant returns to scale at unit cost and sold in a competitive market, which
implies a unit wage.

The differentiated sector requires both labor and energy inputs. Emissions z are directly
proportional to energy consumption, so there is an equivalence between treating emissions as a
by-product of production and as an input (Copeland & Taylor, 2003). We assume that the price
of emissions τ embodies the price of energy, and an exogenous environmental tax that is fixed
by the government.

Entry in the differentiated product sector is costly as each firm incurs product development
and production startup costs, which are assumed to be labor costs. Subsequent production ex-
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hibits constant returns to scale. After making the irreversible investment fE required for entry, a
firm learns its total factor productivity ϕ, which was a priori uncertain. We model this as a draw
from a common (and known) distribution G(ϕ) with support on [0,∞]. Since the entry cost is
sunk, firms that can cover their marginal cost survive and produce.

As in other multi-product models, firms have a “core competency”, which corresponds to
their lowest marginal cost variety. This is the product for which firms are most efficient at turning
inputs into outputs. In a competitive market, firms would specialize in this core competency;
however, with downward sloping variety-specific demand curves, firms may find it profitable to
expand production to other varieties. These varieties will be produced at higher marginal cost
than core-competency varieties, but as long as their marginal cost lies below the price bound
pmax, the firm can profitably bring the varieties to market. We index by m the varieties produced
by the same firm in increasing order of distance from its core variety m = 0.

To formalize this notion, assume each variety within the firm is produced with a different
technology, and that the core variety’s technology is the most efficient. Production of a variety
m by a firm with total factor productivity ϕ takes the form:

q(ϕ,m) = ϕ[(e−σm`)ε + (e−νmz)ε]1/ε, (4)

where ε governs the elasticity of substitution between “effective” inputs, which equal actual
inputs l and z scaled by their respective distance functions from the core.3 Parameters σ and
ν govern these distance functions. Production function (4) is quasi-concave if ε ≤ 1, which is
assumed in the rest of the paper. Parameters σ, ν and ε are common to all firms and will play
critical roles in determining the environmental impacts of competition. Equation (4) nests the
single-input production function in MMO, which is recovered by setting z = 0.

Given the normalization assumption for the wage rate (w = 1), the cost-minimizing firm with
productivity ϕ produces variety m with unit cost

Φ(ϕ,m) = w`+ τz =
1

ϕ

[
τ

ε
ε−1 e

νmε
ε−1 + e

σmε
ε−1

] ε−1
ε
. (5)

Hence, more-efficient firms (higher ϕ) have lower unit costs, all else equal. Emission intensity
of production is also specific to each variety within the firm and is defined as

E(ϕ,m) =
z

q
=

1

ϕ

[
e−νmε +

(
τem(εν−σ)

) ε
1−ε
]−1/ε

. (6)

3There is no loss in generality in omitting sharing parameters.
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Mirroring the correlation between productivity and cost, higherϕ is associated with lowerE(ϕ,m).
Additionally, we have that (for the proof, see Appendix A.1)

Lemma 1. The unit cost of variety m produced by firm with productivity ϕ, Φ(ϕ,m), is increas-

ing in m if ν > 0, σ > 0.

and

Lemma 2. The emission intensity of variety m, E(ϕ,m), is increasing (decreasing) in m if and

only if

ε− (1− ε)
(
τem(ν−σ)

) ε
ε−1 < (>)

σ

ν
.

The emission intensity of variety m can be either increasing or decreasing in m only if ε > 0 and

ν > σ.

Lemma 1 ensures that the firm’s core competency corresponds to m = 0, for which the
unit cost of production is the lowest in the firm with productivity ϕ. Adding a new variety m
away from this core competency raises the unit cost of production. The sufficient condition on
parameters ν and σ implies that the technology for producing a new variety uses both factors less
efficiently.

By contrast, lemma 2 implies that even though core products are cheapest to produce, they
need not have the lowest emission intensity. Though input-use efficiency is falling for both
inputs as m increases (lemma 1), a high degree of substitutability between the two factors could
induce the firm to substitute heavily away from emissions for higher-m products. Under the
conditions specified in lemma 2, this flexibility can actually leave core products with higher
emission intensity than other (higher-marginal cost) varieties. For the remainder of the paper,
we assume the conditions of lemma 2 hold to preserve the possibility that emission intensity and
unit cost could be negatively correlated. These conditions imply that labor and emissions exhibit
a high-degree of substitutability, and higher-m varieties use even less efficiently emissions than
labor.4

4Note that a more restrictive production function would preclude the possibility of a negative correlation, for
example, when the elasticity of substitution between emissions and labor is positive and close to 1 (ε → 0). This
corresponds to the standard framework in the literature following Copeland & Taylor (1994) where production is
represented by a Cobb-Douglas function with emissions and labor as inputs. To illustrate, consider the production
function for varietym: q(ϕ,m) = ϕ(e−σm`)β(e−νmz)1−β . This technology implies that both the unit cost function
and the emission intensity function can be factorized by em[βσ+(1−β)ν]. Thus these functions are both increasing in
m for σ, ν > 0.
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2.1.3 Technology Adoption

To this point, we have assumed that productivity and emission intensity are fixed for a given
variety over time (conditional on input prices and exogenous parameters). However, there is
a large literature that finds that firms increase productivity over time in response to changing
market conditions (Bustos, 2011; Bloom et al., 2016; De Loecker et al., 2012). Probably the
most common explanation of this behavior in the literature is that firms upgrade technology
within firm-product line. To allow for this behavior, we now introduce the possibility of variety-
specific productivity-augmenting technological upgrading.

Following Bustos (2011), we model endogenous technology as a binary choice between a low

and a high productivity technology. The high technology raises the firms efficiency in turning
inputs into outputs, dividing marginal cost by ρ, with ρ > 1. If we assume that the technological
change is Hicks-neutral, then adoption of the high technology also lowers emission intensity.
These productivity gains are traded off against a positive fixed cost of adoption f . The firm
computes expected profits from producing the variety under each technology, and selects the
technology which yields higher profits (assuming that technology l corresponds to (4)). This
choice proceeds variety by variety, so firms could choose to adopt the technological “boost” (ρ)
for some, all, or none of their varieties. We assume there are no spillover effects of adoption
across varieties within the firm (other than general equilibrium effects on competition).5

2.1.4 Profit Maximization

Firms that can cover at least the marginal cost of production of their core competency survive
and produce. All other firms exit the industry. Surviving firms maximize their profits using the
residual demand function (2). In so doing, given the continuum of competitors, a firm takes the
average price level p̄ and total number of varieties M as given. This describes the monopolistic
competition framework.

The profit maximizing price p(Φ) and output level q(Φ) of a variety with marginal cost
Φ(ϕ,m) must then satisfy

q(Φ) =
L

γ
[p(Φ)− Φ(ϕ,m)] , (7)

where Φ(ϕ,m)/ρ replaces Φ(ϕ,m) for technology h. The variety is supplied if and only if

5We further assume that adopting technology h for some varieties within the firm alters neither the ranking of
varieties in terms of their production costs nor their ranking in terms of emission intensity. This last assumption is
made for technical reasons that will become clear below.
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the maximizing price p(Φ) is below the price bound pmax from (3). Let ΦD denote the unit
cost of the domestic marginal variety achieving zero sales. Its demand level q(ΦD) is driven
to zero as p(ΦD) = ΦD = pmax. This yields the cutoff productivity for firm survival: ϕD =

[1 + τ
ε
ε−1 ]

ε−1
ε /ΦD.

For each firm with Φ(ϕ, 0) < ΦD, profits can potentially be earned from adding varieties
beyond the core. The total number of varieties produced by a firm with productivity ϕ is

m(ϕ) = max

{
m|
[
τ

ε
ε−1 e

νmε
ε−1 + e

σmε
ε−1

] ε−1
ε
/ΦD ≤ ϕ

}
+ 1 if ϕ ≥ ϕD, (8)

which is (weakly) increasing for all ϕ ∈ [0,∞]. Accordingly, the number of varieties produced
by a firm with productivity ϕ is an integer. This number is an increasing step function of the firm
productivity.

Let p(Φ), π(Φ) = p(Φ)q(Φ) − q(Φ)Φ, and λ(Φ) = p(Φ) − Φ denote the price, the profit,
and the (absolute) markup of a variety with production cost Φ, which can take the value Φ(ϕ,m)

under technology l and Φ(ϕ,m)/ρ under technology h. All these performance measures can
then be written as functions of ΦD and Φ:

p(Φ) = [ΦD + Φ]/2, λ(Φ) = [ΦD − Φ]/2, (9)

q(Φ) =
L

2γ
[ΦD − Φ], r(Φ) =

L

4γ
[Φ2

D − Φ2], (10)

π(Φ) =
L

4γ
[ΦD − Φ]2. (11)

Thus, lower marginal cost varieties have lower prices and earn higher revenues and profits than
varieties with higher marginal costs.

To close the discussion of firms’ behavior, in equation (11), firms maximize profits for an
arbitrary technology (either l or h). Variety by variety, firms compare optimized profits across
the two technologies and select the option that yields higher profits. The cost of using technology
h is the same for all varieties while the benefit varies with the varieties’ initial marginal cost.
The marginal variety for which a firm adopts technology h, with initial marginal cost ΦA, is
determined by πh(ΦA/ρ)− f − πl(ΦA) = 0. Using (11), the cutoff for technology adoption can
be expressed as a function of the production cost cutoff ΦD:

Φ2
A(1 +

1

ρ
)− 2ΦDΦA +

4γf

L(1− 1/ρ)
= 0. (12)
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This quadratic function finds solutions if and only if Φ2
D ≥ 4(1 +ρ)γf/(ρL−L); in which case,

we obtain

ΦĀ =
ΦD −

√
Φ2
D − C1

L

1 + 1/ρ
,ΦA =

ΦD +
√

Φ2
D − C1

L

1 + 1/ρ
(13)

with C1 = 4(1+ρ)γf
L(ρ−1)

. In the absence of solution, all varieties are produced under technology l.
If both solutions are interior, that is ΦĀ,ΦA < ΦD, then there is a range of varieties with initial
production costs contained in the interval [ΦĀ,ΦA] for which firms prefer to adopt technology
h. The lowest cost varieties, [0,ΦĀ], and the highest cost varieties, [ΦA,ΦD], remain produced
under technology l as the gains from technology adoption do not outweigh the fixed cost f .
This closes the production plan for the firm.6 Figure 1 summarizes the technology choice for all
varieties depending on their production costs, when both technology cutoffs are lower than ΦD.

Figure 1: Technological choice for all varieties depending on their production costs

2.1.5 Free Entry and Equilibrium

In the long run equilibrium, the unrestricted entry of new firms drives expected profit to zero.
Prior to entry, expected firm profit is given by

∫∞
ϕD

Π(ϕ)dG(ϕ)− fE where

Π(ϕ) =

mĀ(ϕ)−1∑
m=0

πl(Φ(ϕ,m)) +

mA(ϕ)∑
m=mĀ(ϕ)

πh
(

Φ(ϕ,m)

ρ

)
+

m(ϕ)−1∑
m=mA(ϕ)+1

πl(Φ(ϕ,m))

− [mA(ϕ)−mĀ(ϕ)− 1]f, (14)

6Since ΦĀ < ΦD, whereas ΦA < ΦD if and only if Φ2
D < 4γρ2f/((ρ − 1)2L), there could also be only one

cutoff ΦĀ above which all varieties adopt technology h. We do not allow firms to create a new variety that would
not be profitable under technology l, but would be under technology h. The technology decision is thus posterior to
the decision to produce each variety.
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if the firm receives a high productivity draw ϕ ≥ ϕĀ where ϕĀ ≡
[
τ

ε
ε−1 e

νmε
ε−1 + e

σmε
ε−1

] ε−1
ε
/ΦĀ ≡

A(m)/ΦĀ. mĀ(ϕ) and mA(ϕ) identify the varieties with the lowest and the highest production
cost, respectively, produced under technology h, while the firm produces m(ϕ) varieties. When
the firm receives a lower productivity draw, its core product may directly use technology h, and
only its highest production cost varieties would use technology l. If the productivity draw is very
low, ϕD < ϕ < ϕA, the firm only produces under technology l.

Taking expectations over G(ϕ), the equilibrium free entry condition simplifies to

∞∑
m=0

∫ A(m)
ΦA

A(m)
ΦD

πl(Φ(ϕ,m))dG(ϕ) +

∫ A(m)
ΦĀ

A(m)
ΦA

[πh(Φ(ϕ,m))− f ]dG(ϕ) +

∫ ∞
A(m)
ΦĀ

πl(Φ(ϕ,m))dG(ϕ)

 = fE .

(15)

To obtain closed form expressions, we follow MMO and assume productivity draws ϕ follow
a Pareto distribution with cumulative distribution function G (ϕ) = 1 − ϕ−k, ϕ ∈ [0,∞]. The
shape parameter k indexes the dispersion of productivity draws. The distribution is uniform when
k = 1, and it becomes more concentrated at lower initial productivity levels when k increases.
Any truncation from below will retain the same distribution function, hence the productivity
distribution of surviving firms will also be Pareto with shape k.

We can rewrite and simplify the free entry condition (15) using this parametrization as

fE
Ω

=C2Φk+2
D + C3(Φk+2

Ā
− Φk+2

A )− C4ΦD(Φk+1
A − Φk+1

Ā
)− f(Φk

A − Φk
Ā), (16)

where C2, C3 and C4 are constants7, and Ω ≡
∑∞

m=0A(m)−k is the sequence of the unit cost
component that does not depend on firm productivity. We find that this sequence converges if and
only if ε ≤ 1, ν > 0 and σ > 0, which are assumed in Lemma 1.8 Substituting the technology
cutoffs ΦĀ and ΦA by their values from (13) implies that (16) has a unique unknown variable, the
production cost cutoff ΦD. In appendix A.2, we prove the existence and unicity of the solution
to equation (16).

7We have C2 = L
2γ(k+2)(k+1) , C3 = Lk(1−1/ρ2)

4γ(k+2) , and C4 = Lk(1−1/ρ)
2γ(k+1) .

8We have
[
τ

ε
ε−1 e

νmε
ε−1 + e

σmε
ε−1
] (1−ε)k

ε −→m→∞ 0 if and only if ν, σ > 0 and ε ≤ 1. We also know that
dΩ/dτ < 0 as 0 < ε ≤ 1.

13



2.2 Results

Our interest lies in identifying the role of three channels – firm reallocation, product mix and
technology adoption – in determining the emission intensity of manufacturing production. We
will proceed sequentially by analyzing first firm reallocation and product mix, and then add the
technology adoption decision.

2.2.1 Results on Firm Reallocation and Product Mix

Assuming that the decision to adopt technology h is not profitable for any variety, the free entry
condition (16) simplifies greatly (using ΦĀ = ΦA).9 In this case, the endogenous cost cutoff
solves to

ΦD =

[
2γ(k + 1)(k + 2)fE

LΩ

] 1
k+2

. (17)

An increase in market size L, as well as an decrease in environmental regulation (since dΩ/dτ <

0), decreases the cost cutoff ΦD, which translates into a tougher competitive environment. This
market with tougher competition then features more product varietyM and lower average price p̄
because of the combined effect of product selection toward the lowest cost varieties and of lower
markups (see Appendix A.3).

What are the economic and environmental impacts of the increase in competition? To answer
this question, we compute the aggregate output, total cost, and total pollution level by summing
these variables over all varieties produced:

Q(ϕ) ≡
M(ϕ)−1∑
m=0

q(Φ(ϕ,m)), C(ϕ) ≡
M(ϕ)−1∑
m=0

Φ(ϕ,m)q(Φ(ϕ,m)), Z(ϕ) ≡
M(ϕ)−1∑
m=0

z(Φ(ϕ,m)),

where, using (6) and (10), we have z(Φ(ϕ,m)) = L
2γ
E(ϕ,m)[ΦD − Φ(ϕ,m)]. From these

aggregates, we construct two efficiency measures: one for economic efficiency, the other for
environmental efficiency. Our measure of firm efficiency is simply the inverse of the average
cost per product, i.e., ψC(ϕ) ≡ Q(ϕ)/C(ϕ). Our measure of firm emission intensity is the
average emission level per unit of output, i.e., ψZ(ϕ) ≡ Z(ϕ)/Q(ϕ).

As in Mayer et al. (2014), a firm facing increased competition can choose to drop some of its
most expensive varieties, but it can also change the relative output share of each variety. There
are thus an intensive and an extensive margins of adjustment within firms that are channeled

9Recall that this case occurs if and only if Φ2
D < 4(1 + ρ)γf/(ρL− L).
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through the product mix. The product mix effect makes firms skew their production toward their
core varieties whose relative markups and profits rise. This yields

Proposition 1. Tougher competition (a decrease in ΦD) improves firm-level productivity mea-

sure, and it reduces (increases) firm-level emission intensity if and only if E(ϕ,m) is increasing

(decreasing) in m.

Proof: see Appendix A.4.
Proposition 1 shows that even though increased competition always raises firm-level eco-

nomic efficiency, it does not necessarily raise firm-level environmental efficiency. The environ-
mental impact depends on whether core products are cleaner or dirtier than higher-m varieties.

At the industry level, however, the product mix effect is combined with the reallocation ef-
fect through which less productive firms exit while more productive firms enter the market and
increase their market share. This selection effect that skews aggregate production toward more
productive firms improves the average productivity of the sector. Its impact on the average en-
vironmental performance depends on two countervailing forces: first, more productive firms use
inputs more efficiently, which decreases the average emission intensity; second, more productive
firms produce a wider variety of products, which can make these firms dirtier or cleaner depend-
ing on the emission intensity of higher-m varieties. We get the industry productivity measure by
aggregating over firms:

ψ̄C ≡
∫∞
ϕD
Q(ϕ)dG(ϕ)∫∞

ϕD
C(ϕ)dG(ϕ)

=
k + 2

k

1

ΦD

. (18)

Similarly, the industry emission intensity depends on the aggregate emissions level, which is
given by

∫ ∞
ϕD

Z(ϕ)dG(ϕ) ≡
∫ ∞
ϕD

M(ϕ)−1∑
m=0

z(Φ(ϕ,m))

 dG(ϕ) =
LkΦk+2

D Γ

2γ(k + 1)(k + 2)
, (19)

where Γ ≡
∑∞

m=0 ϕE(ϕ,m)A(m)−k−1. The sequence Γ is finite under the conditions ε > 0

and ν > σ, as shown in Appendix A.5. Because these conditions are precisely the sufficient
conditions required in Lemma 2 to preserve an ambiguous relationship between E(ϕ,m) and
m, and because we are only interested in cases that preserve this possibility, we need no further
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restriction. The aggregate emission intensity measure is thus given by

ψ̄Z ≡
∫∞
ϕD
Z(ϕ)dG(ϕ)∫∞

ϕD
Q(ϕ)dG(ϕ)

=
kΦDΓ

(k + 2)Ω
, (20)

and we have

Proposition 2. Tougher competition (a decrease in ΦD) implies

i/ an increase in aggregate productivity;

ii/ a decrease in aggregate emission intensity.

Proof: see Appendix A.5.
Thus, bigger markets (low ΦD) also have higher aggregate productivity and lower aggregate

emission intensity. These aggregate responses combine a firm level response (including product
mix effect) with across-firm reallocation effects (including entry and exit). The result on aggre-
gate productivity is consistent with Mayer et al. (2014). Firms skew production towards their
better-performing products, and less competitive firms exit the market as competition increases.
This reduces the average cost of production at the sector level. Consumers benefit from tougher
competition because it lowers average prices (p̄), as well as average markups (λ̄).

The result on aggregate emission intensity is novel. Despite the ambiguity in the firm level
response (see Proposition 1), we find that tougher competition reduces aggregate emission in-
tensity at the industry level. This impact is driven by the across-firm reallocation effect. Even
though productive firms can adjust their product mix in a way that increases their emission in-
tensity, they remain cleaner than less efficient firms.

2.2.2 Results on Technology Adoption and Product Mix

When the decision to adopt technology h is profitable for some varieties within firms, firms adjust
endogenously both their product mix and their technology choice when market conditions vary.
Since technology h is more efficient in using all inputs, within-firm-product technical change
reduces the emission intensity of the adopting firms. Technology adoption is thus unambiguously
good for emission intensity, in isolation. However, the impacts are more complicated when the
firm can adjust both technology and product mix at the same time.

When both channels are available to firms, three cutoffs (ΦD, ΦĀ and ΦA) determine the
equilibrium. It is no longer sufficient to consider that a change in ΦD reflects the change in
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market conditions, since both technology cutoffs depend on ΦD and other exogenous variables
such as the size of the market L. We obtain

Proposition 3. An increase in market size implies

i/ tougher competition (a decrease in ΦD),

ii/ and an ambiguous impact on technology adoption.

Proof: see Appendix A.6.
Whereas an increase in market size unambiguously implies tougher competition – as in the

context when no variety adopts technology h – its impact on technology adoption is ambiguous.
In Appendix A.2, we note that for sufficiently large market sizes, more lowest cost varieties
would adopt technology h. This results in an increase in technology adoption when the cutoff
ΦA is not interior. When the cutoff ΦA is interior, however, this increase in technology adoption
can however be counterbalanced by a reduction in technology adoption from the highest cost
varieties. We illustrate these different outcomes using numerical simulations in the Appendix.
These simulations suggest that more efficient firms will adopt technology h for some of their
best products, while higher cost varieties may switch back to being produced under technology l
when competition gets tougher.

Next, we consider the interaction effects of the two forces. From Proposition 3, we know
that an increase in market size increases competition, and may induce technology adoption for
some varieties, especially some of the best performing ones. To isolate the product mix response
to competition and the interaction between technology adoption and product mix, consider two
varieties m and m′ produced by a firm with productivity ϕ, where m < m′. Assuming that
both varieties are initially produced under technology l, the ratio of the firm’s output of the two
varieties is given by

ql(Φ(ϕ,m))

ql(Φ(ϕ,m′))
=

ΦD − Φl(ϕ,m)

ΦD − Φl(ϕ,m′)
. (21)

First, assume that the firm will not adopt technology h for any of its products. As competition
increases (ΦD decreases), this ratio (21) increases, implying that the firm skews its production
toward its core varieties. This reallocation of output toward better performing products generates
the productivity increase within the firm; this describes a pure product mix channel.

By contrast, assume the firm adopts technology h for one of its varieties as competition
increases. If the firm selects variety m for technology adoption, then the marginal cost of pro-
duction of this variety decreases to Φh(ϕ,m) = Φl(ϕ,m)/ρ. This translates into higher relative
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demand and sales for good m as its relative price decreases. Thus, technology adoption for good
m exacerbates the output reallocation toward better performing products. Technology adoption
reinforces the product mix effect in this case.

If varietym is extremely profitable, however, the firm might decide to adopt technology h for
variety m′ instead, lowering its marginal cost to Φh(ϕ,m′) = Φl(ϕ,m′)/ρ. In this case, technol-
ogy adoption decreases the relative price of variety m′, and increases its relative demand. This
counteracts the product mix effect as variety m′ gains market shares due to its lower marginal
cost of production. Technology adoption cannot however revert the ranking of varieties in terms
of marginal costs, hence Φl(ϕ,m) < Φh(ϕ,m′). An increase in competition in this context
leads to ambiguous impacts on product mix because of its effect on technology adoption, which
reallocates output toward varieties using new technologies.

2.2.3 Impacts of Trade

The expansion of the Indian economy in the last two decades reflects not only an increase in
the domestic market size, as Indian consumers gain purchasing power, but also an increase in
trade, as Indian firms gain access to foreign markets. The model yields implications about the
relationship between trade liberalization and the equilibrium domestic cost cutoff level, denoted
by Φjj . As shown in Appendix A.7, bilateral trade liberalization induces two countervailing
effects: a domestic competitive effect (i.e., a decrease in Φjj as described above) and an increased
export market access effect (i.e., an increase in the export cost cutoff Φjf ). The latter effect is
such that, as it becomes less costly to ship goods to the trading partner, more firms start to export
and more varieties are shipped. Therefore, the impacts described in Propositions 1 and 2 are
reversed for the export market access effect. This implies that depending on the relative strength
of these countervailing effects, Indian manufacturing emission intensity can increase or decrease
over time. We provide details about the impacts of trade liberalization in Appendix A.7.

2.3 Empirical Implications

Our framework implies three empirical predictions that we can test in the data:

Prediction 1. Bigger firms have lower emission intensity.

Prediction 2. Emission intensity is either systematically increasing or decreasing in sales across

varieties within the firm.

Prediction 3. The probability of entry and exit is increasing in m.
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Prediction 1 follows from Proposition 2. Since tougher competition reallocates market shares
to more productive firms and reduces the industry-level emission intensity, it implies that firm
average emission intensity is falling in firm size.

Prediction 2 follows directly from (10) and lemma 2: higher-m varieties generate lower sales,
and either have higher or lower emission intensity, depending on the parameters σ, ν, and ε. As
these parameters are assumed constant across firms and products within an industry, the sign of
the correlation should be constant at the industry level, but it could vary between industries.10

Prediction 3 follows from (10), (11) and Proposition 1: higher-m varieties are produced at
low quantities and earn low profits. Hence, when market conditions change, these varieties will
become either newly profitable (in the case that ΦD increases) or newly unprofitable (in the case
that ΦD falls). This generates either entry or exit.

Our model also illuminates several points about our channels that we can bring to the data.
First, the product mix effect depends on whether core products are cleaner or dirtier than higher-
m varieties. Second, even though the product mix effect makes firms dirtier when core products
are dirtier, reallocating resources to more efficient firms makes the industry cleaner. Third, tech-
nology adoption makes firms cleaner, but the impact of an increase in market size on adoption
and product mix is ambiguous.

3 Data and Background

We test the implications of our model using detailed production for the Indian economy between
1990-2010. This empirical setting offers two key benefits for our purpose. First, the Indian
economy saw a remarkable array of market reforms over this period that dramatically increased
the competitiveness of the economy (Goldberg et al., 2010a,b). Second, there exists unusually
detailed production data for a large swath of firms over this period with which we can explore
the different micro channels laid out in the model. Additionally, India is a major emitter of
GHGs that is expected to contribute significantly to emission growth over the next century, so the
determinants of emission intensity in this country are important in their own right. In this section,
we describe the institutional background, discuss issues in calculating the different components
of emission intensity, and then present the data.

10Even though our theoretical framework considers only one differentiated sector, we consider several industries
in the empirical part of the paper.
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3.1 Institutional Context

In India, sweeping market reforms have been implemented in recent years, including the trade
liberalization of the early 1990s and a stepped-up dismantling of the license raj. These reforms
have had pro-competitive effects on industry and firm productivities. Market conditions have also
changed due to the increased domestic demand of a fast-growing economy and greater access to
foreign markets after the removal of export tariffs in the early 1990s. These changes could
lower competition among firms and products. We successively present the reforms with pro-
competitive impacts and the changes in market conditions that lowered competition in India.

Significant reforms were introduced in 1991 that transitioned India from a closed, highly
regulated economy to a more open, free-market oriented system. The proximate cause for the
reforms was a severe balance of payments crisis in 1991. Financial assistance was granted by
the International Monetary Fund to support India’s adjustment program, which included major
structural reforms. One big reform was the extensive liberalization of licensing requirements for
establishing and expanding capacity (a system called the "license raj"). India started dismantling
its license system during the 1980s and stepped up this process in 1991. By 1997, roughly 90
percent of industries (and output) were delicensed (Aghion et al., 2008). Other pro-competitive
reforms initiated in 1991 included the trade liberalization of imports and exports, and the re-
moval of restrictions on foreign direct investments. These reforms have had the expected pro-
competitive effects on Indian industries. Lower output tariffs induce productivity gains (Krishna
& Mitra, 1998; Sivadasan, 2009; Topalova & Khandelwal, 2011). More precisely, Topalova &
Khandelwal (2011) find that trade liberalization lead to higher levels of productivity only for
private companies.

Since 1997, there have been further adjustments to import tariffs, and other sweeping reforms
have also been undertaken, some under the influence of standard political economy pressures
(Topalova & Khandelwal, 2011). For instance, the progressive dismantling of the “reservation”
system, under which certain industrial products would be reserved for exclusive manufacture by
small-scale enterprises, started in 1997 and ended in 2010. After the removal of these product
market restrictions, product churning and productivity rose (Tewari & Wilde, 2014; Harrison
et al., 2014).

In a fast-growing economy with a population characterized by huge wealth disparities, it is
possible that the expansion of the domestic market lead to little product churning since there is
always a demand for older products while new products are adopted by the wealthy (Goldberg
et al., 2010b). This evidence indicates that pro-competitive forces are not the only ones affecting
market conditions. An increase in foreign demand for Indian products also lower competition
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among exporters and allow firms to export less profitable varieties (Chakraborty, 2012; Barrows
& Ollivier, 2015).

3.2 Data Preliminaries

Our theoretical model indicates that market liberalization lowers aggregate emission intensity
through reallocating production across heterogeneous firms over time and through technological
adoption within product lines, but could be offset by reallocations across products within firms
(depending on the correlation between unit cost and emission intensity). We aim at shedding
new light on these channels, but in doing so we face some well-known empirical challenges.

First, measuring pollution as a byproduct of production can be quite difficult. The generation
of most air pollutants (e.g., SO2, NOx, VOC) depends on production and abatement technolo-
gies, which means that they are only measurable end-of-pipe. In order to measure these pollu-
tants, firms must install monitoring technology on site, run them constantly during production
periods, and continuously record the readings. Furthermore, firms must truthfully reveal their
pollution rates, which research indicates firms tend not to do when external auditing efforts are
low (Duflo et al., 2013)

Second, most firms-level datasets only report outputs in terms of total revenue. This means
that “productivity” estimates are usually contaminated by endogenous firm-specific pricing de-
cisions and product-mix effects. Additionally, product-mix effects are not separately identifiable
from within-product line technological change (since output is not broken down by product-line
within the firm). Thus, even if measured productivity responds to competition shocks, it is not
clear which mechanism explains the results. One approach to addressing these sources of biases
is to assume specific functional forms for production technologies; yet, these assumptions are
restrictive and untestable in most cases (De Loecker et al., 2012). As a result, previous research
has been unable to credibly identify the micro determinants of emission intensity.

To surmount these measurement problems, we employ a novel production dataset that allows
us to compute emission intensity at the firm-product level directly from the data, without impos-
ing any functional form assumptions at all.11 As mentioned above, these calculations are made
possible due to an unusually detailed reporting requirement from the Indian government. By the
Indian Companies Act of 1956, Indian firms are required to issue annual reports of economic
activity over the period, including outputs in physical quantities by product line. This require-
ment is rare among firm-level dataset and allows us to address both endogeneity of pricing and

11That is, we need not impose any assumptions on the production function. We still assume that GHG emissions
are directly proportional to energy consumption, as we discuss below.
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product-mix.12 Additionally, while most known production datasets report only at the firm level,
the 1988 amendments to the Companies Act also requires firms to breakdown energy inputs by

product as well. That is, firms are required to report energy intensity of production by both en-
ergy source (e.g., coal, diesel, electricity) and product line, each year.13 This feature of the data is
not only rare, it is – to our knowledge – unique among production datasets, and it is what allows
us to compute energy input intensity without assuming a specific structure on production.

To fulfill the Companies Act requirement, Indian firms must monitor their energy use with
great scrutiny. When a firm produces only one product, or one product per establishment, the
energy intensity is easily computed by divided the amount of energy consumed by the quantity
produced. When a firm produces multiple products in one establishment, computations become
more complex unless the different production lines occur at different times. Energy management
softwares (e.g., CMS Computers’ energy management solutions – see cms.co.in – or Infotronics
Integrators India Pvt Ltd’s software – see infotronicsindia.com) have been developed in India to
help firms report their energy efficiency adequately. In Appendix B.4, we show that firms do not
simply attribute energy use to their products in proportion to sales or production levels, thereby
invalidating the main hypothesis for an uninformative rule of thumb calculation.

Of course, energy-use efficiency is not the same thing as pollution intensity. As mentioned
above, the emissions of many air pollutants are modulated by end-of-pipe abatement technolo-
gies. However, for the case of CO2, we can exploit the fact that end-of-pipe technologies (e.g.,
carbon capture and storage) are rarely used, especially in developing countries; hence, emissions
do scale proportionally with energy use. This equivalence allows us to compute CO2 emission
intensity from quantities of energy used along with embodied CO2 levels per physical quantity
of energy type.

3.3 Data Description

Our production data come from the Center for Monitoring the Indian economy (CMIE), which
compiles each year a large set of Indian firms’ annual reports into the database called Prowess.
In total, CMIE has collected reports from over 10,000 firms, detailing production of more than
40,000 products over the period 1987-2012. The database is not a census, so does not cover
all firms, but the database covers every sector of the economy. Also, since Prowess is skewed
towards larger firms, it covers a significant portion of output and emissions in the Indian economy

12For other datasets with firm-product outputs denominated in quantities, see also Bernard et al. (2011) and Mayer
et al. (2014), among others. Note that none of these datasets break down inputs by product-line as well.

13We refer to 1988 amendment to Section 217(1)(e) of the Indian Companies act of 1956
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over the period. Finally, though CMIE does not explicitly assign unique firm and product codes,
both firm and product string names are fairly consistent over time, so the data can be linked over
time as an unbalanced panel.

CMIE stores different components of the data in different modules. In the output module, a
unit of observation is a firm-product-year. For each observation, we have the firm name, product
name (i.e., a string variable supplied by the firm to identify the product), the year, the physical
quantity of production, the physical unit of production (i.e., denomination of output), and the
sales value. In this module, we have a total of 260,295 observations representing 9,715 firms and
36,935 firm-products.

Product-specific energy data is stored in a different module. Here, again, we have the firm
name, product name, year, and denomination of physical output (i.e., unit of production). In
addition, we also have energy sources used to make 1 unit of output along with the unit rate of
consumption of these energy sources. In total, firms report consuming energy in 140 different
forms, sometimes consuming multiple types of energy to produce a single product in a given
year. To give an example, we see that one firm used 730 Kwh of electricity and .05 tonnes of
furnace oil each to produce 1 tonne of “Polyester staple fibre” in 1999. Multiplying each energy
source by a specific CO2 emission rates per unit of energy source from the EPA and summing
over energy sources, we compute a firm-product-year CO2 emission intensity of production (see
appendix B for details). This process yields 47,530 firm-product-year observations, representing
3,328 firms and 5,554 firm-products between the years 1987-2012.

Unfortunately, as mentioned above, CMIE assigns neither firms nor products unique identi-
fying codes. Hence, merging input to output data is not straightforward. Since we have string
names of both firms and products, a candidate procedure would be to merge on exact string
matches, but in many cases matches are not exact. Luckily, in most cases, it is fairly straight-
forward to merge the two datasets by hand (see appendix B for details). The final dataset con-
tains 31,531 observations (with both output and input values) across 2,746 firms and 4,191 firm-
products (restricted to the years 1990-2010, for which we have significant coverage). In Table 1,
we breakdown the number of firms by industry and by total number of distinct products manu-
factured over the period.14 We find significant coverage across all sub-sectors of manufacturing,
and we find a high proportion of multi-product firms.

Descriptive statistics are reported in Table 2. We aggregate across products within the year,

14Industries are based on India’s National Industrial Classification (NIC). In order to have sufficient coverage
in each industry each year, we have aggregated multiple 2-digit NIC codes into the six aggregate industries listed
in Table 1. These will also be the industrial classifications we use to calculate the contribution of across-industry
reallocations to changes in aggregate emission intensity over time.
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Table 1: Number of single and multi-product firms by Industry

(1) (2) (3) (4) (5)
Industry # Firms 1-Prod 2-Prod 3-Prod >3-Prod
Chemicals, rubber and plastics 735 492 115 56 72
Food, beverage, and tobacco 539 404 85 32 18
Basic/fabricated metal products 529 395 80 29 25
N.metallic min., coke/petroleum 179 128 36 7 8
Textile, apparel, and leather 602 445 105 32 20
Wood and paper 162 132 24 4 2

Total 2746 1996 445 160 145

Notes: Data based on full sample (i.e., outputs denominated in various units). Column (1) re-
ports number of firms by industry. Column (2) reports number of firms that make only 1 prod-
uct throughout the period. Column (3) reports number of firms that make at least two product
throughout the period, and so on. Industries are based on NIC2 classification and are aggregated
as follows: Chemicals, rubber and plastics (NIC 20-22), Food, beverage, and tobacco (NIC 10-12),
Manufacture of basic metals and fabricated metal products (NIC 24,25), Nonmetallic minerals and
coke and petroleum (NIC 23,19), Textile, Apparel, and leather (NIC 13-15), Wood and Paper (NIC
16,17). Columns 2-5 sum to column 1 and industry aggregates sum to total in each column.

so the unit of observation is a firm-year. Panel A reports descriptive statistics for the entire
dataset, while Panel B restricts the sample to the set of firms that report output in tonnes.15 We
also split the sample into single-product firms and multi-product firms. A single product firm
produces only 1 product throughout the entire period, while a multi-product firm reports making
at least two distinct products at some point between 1990-2010. For each set of firms (single-
product, all output; multi-product, all output; single-product, only tonnes; multi-product, only
tonnes), we report mean, standard deviation, minimum, and maximum of output (i.e. physical
production), sales, CO2, CO2/value, and number of products (per year) for firm-year observations
in the corresponding sample.

As expected, multi-product firms generate more output and emissions, but also have lower
emission intensity in both value and quantity of output. The average single-product firm in the
sample generates 1.817 billion Rs. of sales each year (roughly 40 million USD) and 55.18 kt of
CO2, compared to 1.954 billion Rs and 144.7 kt of CO2 for multi-product firms. By comparison,
the average firm in the nationally representative Indian Annual Survey of Industries generates
0.43 billion Rs in sales and 4.82 kt of CO2 emissions.16 So clearly, Prowess firms are much

15For some analyses, we will make use of the data in Panel A; but for many of the calculations, it will be
necessary to denominate output in a constant physical unit (for example, when comparing emission intensity across
firms). In the latter case, we focus on the subsample (Panel B). We note that about 85% of all output observations
are denominated in tonnes, so the restriction does not drop much of the data.

16These are the authors’ own calculations based on ASI microdata, years 2001-2010
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larger than the national average. This is due to the reporting threshold for inclusion in Prowess.

4 Empirical Evidence of Mechanisms

In this section, we bring our detailed production data to bear on the model. The motivation for the
model was that firms operate with different levels of productivity over time and across products,
and that these productivity differences translate into differences in emission intensity. We begin
by checking that these quantities in fact vary (either across units, or within units over time) in the
data, and then conduct formal tests of the predictions.

4.1 Analysis of Variation

We begin by assessing variation in emission intensity across firms. In Panel A of Figure 2, we
aggregate outputs (in tonnes) and CO2 to the firm level, regress log emission intensity on year
and industry dummies, and plot a histogram of the residuals. Thus, we have only variation across
firms within the same industry and year in this panel. Not surprisingly, we find an enormous
amount of variation in emission intensity across firms: the standard deviation of log CO2 per
tonne of production in this sample is equal to 1.41. If we assume that log emission intensity is
approximately normally distributed, this standard deviation implies that intensities at the 90th
percentile are a factor of 37 higher than intensities at the 10th percentile. This is a striking
amount of variation in pollution across firms and echoes similar findings with respect to total
factor productivity found in other samples (Bernard & Bradford Jensen, 1999; Hsieh & Klenow,
2009).

Moving to panel B of Figure 2, we assess the variation in emission intensity over time within
firms. In the model, firm-average emission intensity changes over time both through across-
product compositional shifts and within product-line technological change. Here, we study the
net effect. We aggregate to the firm-year level, project log emission intensity on firm and year
dummies, and plot the residuals. Hence, variation in panel B comes only from within-firm
changes over time. As in panel A, we find that emission intensity within firm over time also
changes, but that the variation is significantly less than the across-firm variation. With a standard
deviation of 0.37 in panel B, emission intensities at the 90th percentile are 3 times higher than
intensities at the 10th percentile. Clearly, the variation is much greater across firms, but there is
still substantial movement within firms over time. In fact, approximately 60% of firms see their
emission intensity fall by at least half over the period (relative to the highest emission intensity
for the firm).
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Figure 2: Variation in Log Emission Intensity (Tonnes of CO2/Tonne of Output)
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Notes: Each panel plots the distribution of log emission intensity (CO2/tonne of production) , controlling for
different fixed effects. In panel A, industry and year effects have been controlled for. In Panel B, firm and year
effect have been controlled for. In both these panels, data has been aggregated across products within the firm, in
the case of multi-product firm-years. In panel C, firm-product and year effects are controlled for. In panel D, data is
de-meaned by firm-year. Only multi-product firm-years are considered.

Next, we decompose the within-firm variation into its two components – changes in emission
intensity within firm-product lines (“technology”), and changes to output shares across heteroge-
neous products (“product mix”). In panel C, we project log emission intensity at the firm-product
level on firm-product and year fixed effects, plot the residuals, and find a standard deviation of =
0.305. This implies a 90-10 split of about 2 for within firm-product lines over time (i.e. techno-
logical change).

Finally, in panel D, using only multi-product firm-years, we project log emission intensity at
the firm-product level on firm-year fixed effects, plot the residuals, and find standard deviation
of 1.108. Hence, using only across-product variation within firm-year, we find a 90-10 split
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of 17. Thus, emission intensity varies much more across products within the firm than within
firm-product over time.

The across product variation can be seen more clearly in Table 3. Here, we report the different
deciles of the distribution of ratios in emission intensities between a given firm-product-year and
the cleanest firm-product in the same year. That is, within each firm-year, we compare each
product to the cleanest firm-product in the year, and then summarize the distribution of this ratio
in Table 3. Only multi-product firm-years are considered. In Table 3, we find that the median
non-cleanest product has between 1.79 and 5.34 times higher emission intensity than the cleanest
product, depending on the industry. For the case of “Chemicals, rubber and plastics” (NIC 20-
22), almost 80% of these ratios are more than double the emissions rates of their respective
cleanest products. Other industries reveal similarly high degrees of variation.

In summary, we find a striking amount of variation in the data across firms, across products
within firms, and within firm-products over time. This degree of variation suggests that the
reallocation and technological upgrade mechanisms posited by the model have the potential to
play important roles in influencing aggregate emission intensity. We next study the pattern of
this variation as it pertains to the predictions of the model.

4.2 Prediction 1: Bigger firms are less emission intensive

Moving to formal tests of the model, we evaluate each of our three empirical predictions in
turn. We first present evidence that bigger firms have lower emission intensity. This correlation
speaks to the role of across-firm reallocation in determining aggregate emission intensity. While
versions of this prediction have been evaluated elsewhere (Holladay, 2015; Galdeano-Gómez,
2010), previous research only observes emission intensity in value of production, whereas we
observe physical quantities of production. This allows us to isolate productivity effects from
pricing decisions.

Taking firm size (total output) as a proxy for productivity, we split the sample of firms into
deciles of productivity each year and estimate the following flexible specification:

efy =
9∑
j=1

δj ∗Djfy + αs + εfy, (22)

where efy is log CO2 emission intensity of firm f in year y, Djfy is the dummy variable indi-
cating that firm f is part of decile j in year y, αs controls for sector category, and εfy is an error
term. We omit the dummy variable associated with the biggest firms (j = 10), so firm emission
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intensity are relative to the top decile. The coefficients of interest are δj , which indicate how firm
emission intensity varies with distance from the biggest firms.

Figure 3 reports the regression results graphically. As expected, we find that the less pro-
ductive firms have higher emission intensity. For the bottom decile, we estimate that firms are
approximately 4.5 times dirtier than firms in the top decile.17. We see that the point estimates de-
cline approximately linearly with firm size. At the middle decile, firms are about 2.5 times dirtier
than firms in the top decile. We plot 95% confidence intervals with dashed lines, and find that all
point estimates are statistically significant at the 5% level. These estimates confirm Prediction 1
and indicate that reallocating market shares towards the most efficient firms has the potential to
reduce the average emission intensity of the Indian manufacturing sector significantly.

Figure 3: Estimated firm emission intensity as a function of firm size
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Notes: Figure plots point estimates and 95% confidence intervals of firm decile impacts on emission intensity
derived from projecting log firm emission intensity in tonnes of CO2 per tonne of output on sector fixed effects and
fixed effects for firm deciles. Horizontal axis corresponds to the deciles firms belong to. Regression includes 21,217
firm-year observations, and data span 1990-2010. Standard errors are clustered at the firm level.

4.3 Prediction 2: Emission intensity is either increasing/decreasing in m

Next, we test for systematic variation in emission intensity across varieties within the firm. The
basic mechanism at the heart of the model is that firms produce different outputs with different
technologies. In particular, firms have a core-competency variety that they are “best” at produc-
ing, and all subsequent varieties are produced at lower volumes and higher unit costs. Prediction
2 states that emission intensity may either follow the same pattern as unit cost (increasing in m),

17δ1 = 1.5 =⇒ firms in the 10th decile are e1.5 = 4.5 times dirtier than firms in the top decile (omitted category)
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or the opposite pattern (decreasing in m). The fact that efficiency decays away from the core
pushes emission intensity up as m rises, but the possibility of substitution away from energy to-
wards labor could push emission intensity down. Absent a knife-edge case, one of these effects
will dominate, in which case emission intensity should be systematically related to “distance”
from the core product.

We first compute output share by product within a firm-year and then order by share, taking
output rank as a proxy for unit cost.18 Denote by m the output rank within the firm, so the core
product in a year is coded “m = 1” while the product with the second highest output share is
coded “m = 2,” and so on. To test for systematic variations of emission intensity within the firm,
we estimate

efpy =
∑
m

δm ∗mfpy + αfy + αp̄ + εfpy (23)

where efpy is log CO2 emission intensity of product p produced by firm f in year y, mfpy is
the output rank of the product within the firm-year, αfy correspond to firm-year fixed effects, αp̄
controls for product category, and εfpy is an error term. In equation (23), we flexibly estimate the
relationship between the product rank and emission intensity. The coefficients of interest are δm,
which indicate how emission intensity varies with distance (m ≥ 2) from the core. If δm > 0,
core products are cleaner than higher rank-m products whereas if δm < 0, core products are
dirtier.

Figure 4 presents regression results graphically using the entire firm-product level dataset
(Panel A) and tonnes only (Panel B).19 In Panel A, we find that emission intensity is generally
increasing in m, and that this increase is approximately linear. That is, products with m = 2 are
dirtier than core products, and products with m = 3 are dirtier than products with m = 2, and
so on. We plot 95% confidence intervals with dashed lines and find that these point estimates
are statistically significant at the 5% level, up until m = 9, at which point precision falls off. To
interpret the magnitude of these coefficients, an estimate of δ2 equal to 0.28 indicates that the first
follow-on product is about 33% higher than the core product, while δ3 equal to 0.65 indicates
that the second follow-on product is almost twice as dirty as the core product. Products with
m above 5 have emission intensities between 2 and 7 times dirtier than the core, though these
effects are less precisely estimated. Coefficients are even larger in Panel B, where we condition
output to be denominated in the constant unit tonne.

The estimates in Figure 4 represent the first direct evidence that productivity varies systemat-

18In the model, the lowest cost product also generates the highest sales, is produced in greater quantity, and
represents the firm’s core competency.

19We however impose that all products within a firm have the same unit.
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Figure 4: Estimated CO2 Intensity by Product Rank Relative to Core Product
 

A)   All Units 

 

 

B)   Tonnes Only 

 

Notes: Figure plots point estimates and 95% confidence intervals of product-rank impacts on emission intensity
derived from projecting log firm-product emission intensity in tonnes of CO2 per unit of output on firm-year fixed
effects, product category fixed effects (P2-level) and fixed effects for (output-based) product rank within the firm-
year. Horizontal axis corresponds to the product rank within the firm-year. Panel A includes 9,012 firm-product
observations comprising 3,245 firm-years. Regressions exclude the top and bottom 1% of emission intensities.
Output units are restricted to be the same within firm-year. Standard errors are clustered at the firm level. Panel B
includes 8,650 firm-product observations comprising 3,091 firm-years. Regressions exclude the top and bottom 1%
of emission intensities. Standard errors are clustered at the firm level. Average emission intensity for all products
and core-products is 1.83 and 1.40 tonnes of CO2 per tonne of output, respectively.
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ically across products within the firm in the literature and they strongly support the product-mix
mechanism posited by the model. Not only is the relationship statistically significant, the mag-
nitudes are striking. To put the size of these coefficients in context, consider that reallocating 1
unit of output from a firm’s 5th product to its core product lowers aggregate emission intensity as
much as moving 1 unit of production away from a firm at the median decile and reassigning it to a
firm in the top (most productive) decile. This finding indicates that across-product reallocations
within the firm has the potential to influence aggregate efficiency as much as the well-known
across-firm effect of Melitz (2003).

Table 4: Emission Intensity of products by rank within the firm, disaggregated by Industry

Dep Var: Log(E/Q)

Food Textile Wood Chem Nonmetal Metal
(1) (2) (3) (4) (5) (6)

Product Rank 0.19∗ -0.14 0.39 0.26∗∗∗ 0.38∗∗∗ 0.14
(0.10) (0.11) (0.28) (0.05) (0.09) (0.09)

Firm-Year FE Y Y Y Y Y Y
Product Category FE Y Y Y Y Y Y
Num of Obs 1282 698 414 4353 824 1441
R squared 0.36 0.43 0.51 0.17 0.52 0.12
Mean Dep. Var -1.04 0.30 0.51 -0.83 -0.41 -1.32

Notes: Each columns tests for product-rank impacts on log emissions intensity in a different
industry. Dependent variable is log CO2 intensity in units of output, where units are restricted to
be the same within the firm-year observation. “Product Rank” reflects the real output share of the
product within the firm-year (e.g., 1 = highest output share, 2 = second highest output share, etc...)
All regressions include only multi-product firm-year observations for the years 1990-2012. The
top and bottom 1% of economy-wide emission intensities have been dropped. Standard errors are
clustered at the firm level (reported in parentheses). Asterisks indicate statistical significance at
the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.

Additionally, the estimates in Figure 4 indicate that the direct effect of efficiency decay out-
weighs any factor substitution effects away from energy. This is an interesting empirical finding,
but not at all obvious a priori. The model is general enough to allow that either effect could
have dominated, it just turns out that we find that the former dominates. This result indicates
either that labor and energy are not highly substitutable, or that perhaps labor efficiency decays
quicker than energy efficiency as m increases. In any event, the positive correlation between
m and emission intensity indicates that increased concentration on core products should lower
firm-average emission intensity, while increasing production away from the core will increase
emission intensity.
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Finally, we test for heterogeneous impacts by industry. In theory, the correlation between
emission intensity and m depends on the parameters σ, ν, and ε, which could vary by indus-
try. Hence, the correlation could also vary by industry. We investigate this possibility in Table
4, where we impose linearity and estimate (23) industry by industry. While it is theoretically
possible that the correlation varies by industry, we find only weak evidence of heterogeneous
effects. In Table 4, we estimate a statistically significant and positive δ for the food, chemicals,
and nonmetallic industries, and statistically insignificant and negative for textile industries. This
indicates that for all industries, with the potential exception of textiles, reallocation towards the
core product should lower emission intensity.

4.4 Prediction 3: Entry and exit are increasing in m

Finally, we consider the relationship between product entry/exit and product rank within the firm.
In the model, product-mix effects result from both reallocation across existing products (intensive
margin) and entry or exit of products (extensive margin). Furthermore, the model implies that
product churn happens away from the core (i.e. at higher m values). We can test this implication
directly in the data, and thus provide further evidence of the micro-channels of adjustment.

Defining the rank of each product within a firm-year as above, we estimate equation (23)
again, replacing emission intensity on the left hand side with a dummy for entry and a dummy
for exit at the firm-product level. An entering product is defined as a product that was not reported
in the previous year, but is reported in the current year, given that the firm produces some output
in both years. Exit is defined conversely. If product churn occurs away from the core competency
of the firm, we should find δj > 0, and do, in fact, in Figure 5. Figure 5 displays graphically
the point estimates and 95% confidence intervals from these regressions. We find that entry and
exist are increasing in distance from the core – firms are between 7% and 25% more likely to add
or drop products with m > 1 – and that point estimates are significant at the 5% level for ranks
below m = 9, supporting Prediction 3.

Together with the results in Figure 4, Figure 5 indicates that entering and exiting products
should have higher emission intensity than core products. We also find empirical support for
this implication in Table 5. First, we regress log emission intensity on firm-year fixed effects and
indicators entry and exit (continuing products represent the omitted category). Surprisingly, here,
we find that entering and exiting products are both cleaner than continuing products (column
1). However, we also find that firms sometimes either drop or add products that are also core
products, and hence, cleaner. To account for the two effects separately, we interact non-core
status with entering, exiting and continuing products and estimate the model again in column 2.
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Figure 5: Estimated Probability of Entry and Exit by Product Rank Relative to Core Product
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Notes: Figure plots point estimates and 95% confidence intervals of product-rank impacts on the probability of
entry and exit of a product derived from projecting entry and exit dummies on firm-year fixed effects, product
category fixed effects (P2-level) and fixed effects for (output-based) product rank within the firm-year. Horizontal
axis corresponds to the product rank within the firm-year. Regression includes 8,802 firm-product observations for
the period 1990-2010. Regressions exclude the top and bottom 1% of emission intensities. Standard errors are
clustered at the firm level.

Here, we compare non-core entering and exiting products to core products. In this comparison,
we see that entering and exiting products have higher emission intensity. We also find that other
continuing non-core varieties are dirtier than core products, and even more so than entering and
exiting products. This reveals that entry and exit can happen for varieties that are of intermediate
emission intensity: they are dirtier than core products but cleaner than other continuing varieties
within firms.

5 Aggregate Implications

In this section, we gauge the importance of our findings by decomposing the changes in aggregate
emission intensity in Indian manufacturing over the period 1990-2010 into component micro
channels. We begin with a discussion of the methodology, and then present the results from two
different decompositions.
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Table 5: Emission Intensity of Entering and Exiting Products

Dep Var: Log(E/Q)

(1) (2)
Entering Products -0.11

(0.07)
Exiting Products -0.10

(0.06)
Non-core Entering 0.21∗∗

(0.09)
Non-core Exiting 0.25∗∗∗

(0.08)
Non-core Continuing 0.44∗∗∗

(0.07)

Firm-Year FE Y Y
Sector FE Y Y
Num of Obs 28116 8802
R squared 0.15 0.18
Mean Dep. Var -0.56 -0.75

Notes: This table compares the log emission intensity of products within firms. Column 1 compares its levels for
entering and exiting products relative to continuing products. Column 2 compares its levels for non-core entering,
exiting and continuing products relative to core continuing products. Output units are restricted to be the same
within firm. Regressions include only multi-product firm-year observations for the years 1990-2010. The top and
bottom 1% of economy-wide emission intensities have been dropped. Standard errors are clustered at the firm level
(reported in parentheses). Asterisks indicate statistical significance at the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels.

5.1 Preliminaries

In the previous section, we found strong evidence in support of the micro channels posited by
the model: emission intensity varies systematically with productivity across firms, with unit cost
across products within the firm, within firm-product lines over time, and by entry/exit status.
The pattern of the variation is consistent with the model and indicates that industry-level emis-
sion intensity should fall with increased allocation towards more-productive firms and lower-cost
products within the firm. But how important are these channels in aggregate? In order to answer
this question, we need to (1) observe a period over which market conditions changed dramati-
cally, and (2) measure the impacts of component channels on aggregate emission intensities. The
massive market reforms in India in the 1990s and 2000s provides an excellent setting in which to
study these impacts. The increase in competition that resulted from these reforms should precip-
itate the kinds of endogenous behaviors predicted by the model, and hence lead to large changes
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in emission intensity.
To assess the importance of each channel, we perform a statistical decomposition of aggre-

gate emission intensity over the period. Statistical decompositions are common in the literature
and have proven useful for understanding the sources of productivity growth over time. The
novelty of our work is that (1) we abstract from all price effects, since we observe firm-product
outputs in quantity, (2) we can separately identify technological upgrading within firm-product
line from across product reallocations (product-mix). Additionally, we can distinguish product
churn effects (extensive margin) from reallocation across existing products (intensive margin).
This level of detail allow us to uncover new facts about the drivers of aggregate emissions growth;
however, since our data are more detailed than what are usually available, we must make some
small adjustments to the standard decomposition methodologies.

There are two broad approaches to statistical decompositions of productivity or emissions
in the literature. First, researchers decompose changes in overall emissions levels into scale,
composition, and technique effects (Antweiler et al., 2001; Levinson, 2009). “Scale” captures
the impact of overall changes in total output of the economy, “composition” captures changes in
output shares across industries, and “technique” captures changes to emission intensity within in-
dustries.20 In industry-level analyses, reallocations across firms within an industry, reallocations
across products within the firm, and changes to technology within firm-product over time are all
lumped together under the heading “technique.” In our context, we can separately estimate these
different margins.

Second, researchers decompose changes in aggregate intensity into within vs across unit
changes (Foster et al., 2008). The unit of observation is usually the firm, so “within-unit” changes
encompass both product-mix effects as well as technological adoption. The specific focus on
productivity misses the scale and across-industry effects, but is better suited to studying differ-
ences between the intensive and extensive margin (e.g., firm churn). In our case, we can evaluate
both the across-firm channel, and decompose the within-firm channel into across-products (both
intensive and extensive margins) and within-products over time.

As we are interested in all components of the decomposition (from industry-level scale and
composition, to firm-product intensive vs extensive margins) we will utilize both approaches. We
first present the economy-wide decomposition (à la Antweiler et al. & Levinson), and then delve
deeper into the different channels of compositional adjustment with the productivity approach of

20In many environmental applications, a representative firm is assumed for each industry, and the entire “tech-
nique” effect is attributed to within-firm technological change. By contrast, in our modeling framework, changes
in competition could trigger different forms of reallocation across units within an industry without inducing any
technological adoption at all. With our detailed decomposition, we can assess the importance of these reallocation
channels and give a much more precise estimation of the role of within-unit technological growth.
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Foster et al. (2008).

5.2 Decomposition of Levels

Consider the economy-wide decomposition of Levinson (2009) (in vector notation):

∆Z = θ
′
zdQ︸ ︷︷ ︸
scale

+ Qz
′
dθ︸ ︷︷ ︸

composition

+ Qθ
′
dz︸ ︷︷ ︸

technique

(24)

where Z indicates total emissions, θ is the vector of industry output shares, z is the vector of in-
dustry emission intensities, and Q is total output in the economy. Equation (24) is an accounting
identity, and hence holds with equality. With aggregate data, computing the three components
of total emissions is fairly straight-forward, but with disaggregated data (such as firm or firm-
product), entry and exit present identification challenges.21

We proceed as follows. First, for a given level of aggregation (either industry, firm, or firm-
product), we compute total observed change in emission intensity from within units as

∆zt =
∑
j∈Cj

θj,t−1
(zj,t − zj,t−1)

zt−1

(25)

where j indexes unit (either industry, firm, or firm-product), Cj indicates the set of continuing
units (producing in both t and t−1), θj,t−1 indicates the output share of unit j in total output in the
previous year (t−1), zj,t and zj,t−1 indicate emission intensity in current and previous years, and
zt−1 indicates aggregate emission intensity in the previous year. That is, we compute weighted
average change in emission intensity year-to-year from within-unit changes. Computing changes
in this way allows within-unit changes for units that previously entered (prior to t − 1) to be
accounted for. I.e., we can accommodate technological change from entering units. Additionally,
by conditioning on continuing units, the effect of exit on emissions is correctly attributed to

21To see this, consider the case in which a firm enters production in the middle of the period. Computing the
counterfactual emissions requires holding composition fixed at base-year levels; but if a firm enters production after
the base year, then its counterfactual share will be stuck at zero for the entire period. As long as the firm does not
change its emission intensity, this is no problem for the standard methodology. But if the firm changes its emission
intensity, these changes will not be taken into account in the calculation of counterfactual emissions, because the
counterfactual output share of the firm is always held at zero. All changes to emission intensity from entering
firms will be incorrectly attributed to compositional shifts. Additionally, firm exit poses a problem for the standard
methodology too. When a firm exits, its emission intensity is missing. If the firm produced in the base year, then
it will have a positive share for the entire period, but with a missing emission intensity in the year it exits (and all
subsequent years). If the emission intensity is mistakenly set to zero, the decomposition would treat the firm as
though it become emission free, which is not true.
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compositional shift.
Next, we compute counterfactual emission levels as:

Z̃t = (1 + ∆Qt) ∗ (1 + ∆zt) ∗ Z̃t−1. (26)

where ∆Qt denotes observed output growth and ∆zt is computed as above. Z̃t constitutes the
analogue to counterfactual emissions as computed by a standard Levinson (2009) approach, but
takes entry and exit into account. Thus, the difference between Z̃t and the raw output data
indicates the contribution of within-unit technological changes to aggregate emissions growth,
while the difference between Z̃t and actual emissions captures the compositional effect.

We compute Z̃t separately taking the industry, firm, and firm-product as the unit j and plot
results graphically in Figure 6 along with output and emissions indices. The scale effect is
represented by the red curve, which plots observed total physical output (measured in tonnes)
over the period 1990-2010. Tonnes of production quadrupled over the period, implying a strong
scale effect. By contrast, total emissions (drawn in black) only doubled by 2010, indicating a
large reduction in emission intensity. These reductions are confirmed by auxiliary data from the
nationally representative Indian Annual Survey of Industries (ASI) (see Figure C.1).22

The three grey lines decompose the reduction in emission intensity into technique and com-
positional effects at different levels of aggregation. First, we plot counterfactual emissions taking
the industry as the unit j with the dotted line in Figure 6. The “technique” effect is measured
by the distance between the red line and the dotted line. In this case, it represents across-firm
reallocations, across-product reallocations, and within product line technological adoption. The
compositional effect is measured by the distance between the dotted line and the black line.
In this case, it represents output share changes across industries. In Figure 6, we find that the
industry-level technique effect contributes to a little under half of the reduction in emission inten-
sity (44%), with across-industry composition accounting for the rest (56%). This suggests that
Indian manufacturing production shifted toward cleaner industries, while changes at the indus-
try level contributed to the decrease in aggregate emission intensity as well. The strong negative
effect of industrial composition is quite striking. The fact that India has shifted production away

from dirtier industries is evidence against the well-known “pollution haven” result, in which poor
countries attract dirty industries as they open to trade.

Next, we compute counterfactual emissions taking the firm as the unit of observation, and plot
with the gray dashed line in Figure 6. At this level of aggregation, the technique effect – measured

22In Figure C.1, we restrict attention to the period 2001-2009 due to data limitations in the ASI. For these years,
we find that real sales growth and emissions growth both track very well between the ASI and Prowess.
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by the distance between the red line and this gray dashed line – includes only those channels that
affect firm-level emission intensity. Across-firm reallocations are now counted as part of the
compositional effect. At this level of aggregation, it appears as though composition explains
virtually all of the reduction in emission intensity (almost no distance between dashed line and
red line). The big change in the evaluation of the composition effect comes from across-firm
reallocations: we find that more-efficient firms capture larger market shares over time, lowering
industry-level emissions intensity by 58%. This is exactly what one would expect, given the
dramatic increase in the competitive environment (see Proposition 2).

Figure 6: Scale, Technique, and Composition Effects at Different Levels of Aggregation
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Notes: Figure plots total output index (“scale”), total CO2 emissions (“Emissions”) and counterfactual emissions at
the industry, firm, and product levels. Only data denominated in tonnes are used. Industry definitions are the same
as in Table 1.

An implication of the previous result is that firm-level emission intensity must not have
changed very much over the period, since across-firm reallocations explains virtually all of the
industry-level “technique” effect. This is perhaps surprising, given the large degree of variation
over time across products and within product lines discovered in section 3. However, when we
disaggregate further, we find that two equally strong forces are at work within the firm, each
pushing emission intensity in different directions. When we plot counterfactual emissions at
the firm-product level in solid gray line in Figure 6, we find that technological adoption within
firm-product (reflected by the difference between the solid red and gray lines) reduced emis-
sion intensity by 34%, whereas product mix (measured by the difference between the solid gray
line and the dashed gray line) increased emission intensity by 49%. This means that firms both
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adopted more efficient technologies and reallocated production towards dirtier products. Accord-
ing to the previous section, the latter would imply reallocation away from core products. These
two behaviors make sense in the context of increased competition, given the ambiguous impact
of the interaction effect of technology and product mix (Proposition 3).

We investigate these results further in Figures C.2 and C.3, where we present decompositions
broken down by heavy-weight vs light-weight industries, and single-product vs multi-product
firms, respectively. In Panel A of Figure C.2, we present results for light industries (e.g., Food &
Beverages manufacturing, Textile & Leather, Wood and Paper production), while Panel B reports
the same for heavy industries (e.g., Chemicals, Plastics, Nonmetallic & Equipment manufactur-
ing, Metals). Comparing the different panels of Figure C.2 reveals a sharp contrast: while there is
almost no evidence of a decrease in emission intensity for light industries, heavy industries con-
tributed strongly to the overall decrease in emission intensity. Being more emission intensive,
these industries have more opportunities to improve on their environmental performance. Ad-
ditionally, firm-level counterfactual emissions for light industries are even higher than the scale
effect after 1994, which implies that technological investments make firms dirtier. This could
happen if new technologies are more energy-intensive than old ones.

Next, in Figure C.3, we find that across-sector reallocations play an important role for single-
product firms after 2002, while they play a minor role for multi-product firms. By contrast,
reallocations across firms explain a large part of the cleanup among multi-product firms, but not
single-product firms. Additionally, single-product firms adopt few cleaner technologies whereas
multi-product firms adopt them more intensely but they also change their product mix in a way
that cancel out the environmental gain from technology adoption.

5.3 Decompositions of Intensity

The decompositions above reveal that reallocations across firms, reallocation across products
within firms, and technological adoption within firm-products all contribute significantly to changes
in aggregate emission intensity. We now investigate the role of intensive vs extensive margins
both across firms and within firms in explaining these effects with our second decomposition.
This distinction between intensive and extensive margins can have important policy implica-
tions: Should the government encourage new firms/products to enter in the market to reduce
aggregate emission intensity? Should the government encourage firms to expand their product
lines and upgrade their technologies on existing or new products? These questions could find
a partial answer in the evidence that some channels are more active than others, and therefore
could be magnified by policy interventions.
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Based on the methodology of Foster et al. (2008), we decompose aggregate intensity into
within-unit effects, intensive margin reallocation effects (across continuing units) and extensive
margin reallocation effects (from entry and exit). The methodology was originally applied at the
aggregate level, but extending it to the firm-level is trivial.

To begin, consider a decomposition similar to Foster et al. (2008) at the aggregate level:

∆zit =
∑
f∈C

θf,t−1∆zf,t︸ ︷︷ ︸
Technology

+
∑
f∈C

(zf,t−1 − zf,t−1)∆θf,t +
∑
f∈C

∆zf,t∆θf,t︸ ︷︷ ︸
Intensive Margin Reallocation

+
∑
f∈N

θf,t(zf,t − zi,t−1)−
∑
f∈X

θf,t−1(zf,t−1 − zi,t−1)︸ ︷︷ ︸
Extensive Margin Reallocation

, (27)

where zit indicates emission intensity at the industry level in year t, zf,t is firm f ’s emission
intensity in period t, θf,t is the output share for firm f in industry i’s total production. The sets
C, N , and X , respectively, represent the sets of continuing, entering, and exiting firms within
industry i. (27) is an accounting identity, and so holds with equality. The first component of the
decomposition represents the within-firm over time effect of different technologies. The next two
terms represent the across-firm reallocation effect (holding technology fixed) and the interaction
effect of technology and reallocation. These two terms both apply only to continuing firms, and
hence together account for the “intensive margin”. The last two terms represent the change to
industry level emission intensity from entry and exit of new firms, i.e. “extensive margin.”

We compute each element of (27) separately year by year and report five year averages in
Table 6. Column 1 reports the total growth in emission intensity at the economy level. Column
2 reports the across-industry component of this economy-wide growth. Column 3 reports total
within-industry growth in emission intensity, the left hand side of (27). Next, columns 4-8 report
the five components of (27) in order. Column 4 represents the change in emission intensity from
within-firm changes. Columns 5 and 6 represent together the intensive margin, and column 7 and
8 represent the extensive margin.

The entries in Table 6 are computed as average annual growth rates, and so are not exactly
comparable to the “long difference” changes in Figure 6, but Table 6 reveals the same basic
pattern. Within-firm changes over time contribute little to aggregate emissions growth (+0.48%
annually), but across-firm reallocations contributes significantly to the clean up (-1.21% annu-
ally). This reduction is driven mostly by intensive margin reallocation across continuing firms
(-0.92% annually), while net entry contributed only mildly to aggregate reductions (-0.31%).
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Table 6: Decomposition of Emission Intensity Growth At Economy Level

Total Growth Across Ind. Within Industry

(1) (2) (3) (4) (5) (6) (7) (8)
Total Within Between Cross Entry Exit

1991-1995 -4.47 -0.84 -3.63 -1.46 0.48 -2.04 0.34 -0.95
1996-2000 -1.17 -2.68 1.51 0.59 3.67 -1.84 -0.02 -0.88
2001-2005 -3.29 -4.06 0.77 -1.12 2.04 -1.20 1.66 -0.61
2006-2010 -3.03 -1.45 -1.58 3.90 -0.38 -4.40 -0.29 -0.41
All Years -2.99 -2.26 -0.73 0.48 1.45 -2.37 0.42 -0.71

Notes: This table reports total year over year average growth rates (for 5-year intervals) in CO2 emission
intensity (tonnes of CO2 emitted for tonnes of physical unit produced) for the entire Indian manufacturing sector
(Column 1) and component channels (Columns 2-8). Column 2 reports the across industry contributions to total
emission intensity growth. Column 3 reports the within industry component. The within industry component is
then broken down into within firms (column 4), between firms (column 5), cross-product (column 6), firm entry
(column 7) and firm exit (column 8). Growth rates are expressed in percentage terms.

Interestingly, entry sometimes increases and sometimes decreases emission intensity, while exit
always contributes significantly to emission intensity reductions. The latter is consistent with
competition forcing out old, inefficient firms. The former indicates that entering firms are not
necessarily at the technological frontier of the industry, even though they are newer. This pattern
is consistent with the dynamics highlighted by Melitz (2003), where selection effects are more
pronounced for exiting firms than entering firms in the face of increased competition.

Finally, we decompose the within-firm component further to understand the drivers of within-
firm changes in Table 7. Column 1 reproduces the total within-firm effect from Table 6.23 In
columns 2-6, we then present empirical analogues of the five components of (27), taking the
firm-product as the unit of observation. Thus, column 2 represents technology adoption effects
within firm-product over time. Columns 3 and 4 represent together intensive margin reallocations
across existing products. Columns 5 and 6 represent product adding and dropping (respectively)
for continuing firms. Finally, columns 7-9 report the number of continuing, entering, and exiting
products, respectively.

Figure 6 revealed that within-firm-product technological change lowers emission intensity,
while product mix changes increase emission intensity, and that these forces were nearly offset-
ting. In Table 7, we find that the negative product-mix effect results mostly from the intensive
margin (+1.05% annually) compared to small contributions from net entry (+0.15%).24 This is

23Note that due to different weighting, the numbers change slightly.
24This is not contradictory with the results from Table 5 where both entering and exiting products are dirtier than

core products, since the decomposition (27) uses previous year firm level rather than simultaneous year core level.
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Table 7: Decomposition of Emission Intensity Changes within Firms

Growth Components of Decomposition # Products

(1) (2) (3) (4) (5) (6) (7) (8) (9)
∆z/z Within Between Cross Entry Exit Continuing Entry Exit

1990-1995 -1,79 -1,92 -0,42 -0,02 0,09 0,48 858 42 31
1996-2000 0,65 -1,16 1,49 -0,17 -0,11 0,60 1380 38 49
2001-2005 -1,07 -0,55 -0,03 -0,09 0,04 -0,45 1143 33 39
2006-2010 4,21 0,58 3,76 -0,01 -0,15 0,03 855 19 29
All years 0,39 -0,82 1,12 -0,07 -0,03 0,18 1050 33 37

Notes: This table decomposes year-over-year average growth rates (for 5-year intervals) in firm emission inten-
sity into the five components of (27) and then averages over firms. Columns 1-6 express growth rates in percentage
terms. Columns 2-6 sum to column 1. Columns 7-9 report the average number of continuing, entering, and exit-
ing products per year. Calculations rely only on the product-specific energy dataset. Output units are restricted to
be the same within firm both within years and over time. Sample includes only firms that produce more than one
product over the period.

perhaps not surprising, given the low levels of product churn (columns 8-9), and consistent with
previous work that found low rates of product entry and exit (Goldberg et al., 2010b).

We explore across-product reallocation further in Table 8, wherein we decompose changes
in output shares across varieties of different ranks-m within the firm. We divide products into
continuing products (intensive margin), and entering and exiting products (extensive margin).
Among the former, we then break out products by product rank m. In Table 8 we see that firms
reallocate output toward their existing non-core varieties, as products of rank higher than 2 gain
relatively more output shares than core products. This reallocation makes sense in light of the
positive impact of product-mix on emission intensity – firms reallocate production towards higher
emission intensive products, which increase firm-average and aggregate intensity. We also see
that on net, entry and exit play little role within firms.

The relative contributions of the technology and product mix channels we find are important
in thinking about how firms adjust to changes in market conditions. During the period 1990-2010,
firm emission intensity declines in some years and increases in other years (column 1). This
measure is more precise than the results obtained from Figure 6 which reflects a cumulative effect
on firm-level emission intensity. On average, firm emission intensity increases during the period
1990-2010, and this is due to product mix reallocations that outweigh technology improvements.
This suggests that firms faced lower competition (for instance, as trade barriers were dismantled)

As continuing products reduce their emission intensity from year t − 1 to t (column 2), both results are consistent.
Foster et al. (2008) also consider a related decomposition where the comparison is made with an average of the
variables across t − 1 and t. However, this methodology is more difficult to interpret in the context of reallocation
dynamics.
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Table 8: Average change in output share of each variety within multi-product firms

Intensive Margin Extensive Margin

(1) (2) (3) (4) (5) (6) (7)
Total Prod 1 Prod 2 Prod 3 Prod 4+ Entry Exit

1991-1995 -0.005 0.002 -0.011 -0.023 0.000 0.036 -0.031
1996-2000 0.005 -0.003 0.012 0.012 0.000 0.028 -0.033
2001-2005 0.001 0.002 0.000 0.000 0.001 0.031 -0.032
2006-2010 0.004 0.004 0.006 0.025 0.002 0.017 -0.021
All Years 0.001 0.001 0.002 0.003 0.001 0.028 -0.029

Notes: This table reports the average change in output share of each variety within multi-
product firms during 5-year intervals. We restrict the sample to output denominated in tonnes.
“Prod 1” reflects the product with the highest output share within the firm-year, “Prod 2” the
product with the second highest share, etc. “Entry” and “exit” correspond to entering and exiting
products, while “Intensive margin” reflects the average change in output share of continuing
products.

in most years. Had the market conditions been different, product mix reallocations would have
had different implications on the environmental performance of firms. Policies that strengthen
competition, encourage firms to invest more in new technologies for their existing products, and
alleviate the credit constraints they might face, could help mitigate this negative environmental
impact.

6 Conclusion

The paper explores the contributions of sector and firm reallocations, technology adoption, and
product mix changes to the Indian manufacturing emission intensity decline over the period
1990-2010. We construct a heterogeneous multi-product firm model that shows that tougher
competition leads to an improvement in the aggregate emission intensity at the sector level,
even though firms can become cleaner or dirtier through product mix and technology adoption.
Using a novel dataset of emissions and output at the firm-product level, we find that emission
intensity in India dropped significantly between 1990-2010 through reallocations across firms,
while product-mix and technology played important – though counteracting – roles at the firm
level.

Our analysis is the first to reveal a systematic pattern in the efficiency of production across
product lines within the firm. In particular, we find that emission intensity is increasing in dis-
tance from core competency. This indicates that Indian firms tend to specialize in products that
are relatively cleaner to produce. Policies or market developments that lead Indian firms to focus
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on core competency should thus lower firm-average emission intensity. However, the sign of the
correlation between efficiency and distance from the core is theoretically ambiguous, and thus
could be different in a different setting. Thus, researchers should take care in interpreting firm-
level impacts as representing “technological” change, since product-mix could influence firm
averages in either direction.

Altogether, the results indicate that market forces significantly impact the emission intensity
of production, even absent environmental regulation. In the context of climate leakage – in which
some countries maintain weak environmental regulation, and hence attract dirty production – the
results imply that emission intensity may change in the unregulated country regardless, due sim-
ply to market forces. Additionally, as the process of globalization and market reforms continues
in the developing world, the dynamics we uncover are likely to continue to alter emission inten-
sity, even if global climate negotiations are ineffective.

References

Aghion, P., Burgess, R., Redding, S., & Zilibotti, F. (2008). The unequal effects of liberalization:
Evidence from dismantling the license raj in india. American Economic Review, 98(4), 1397–
1412.

Allcott, H., Collard-Wexler, A., & O’Connell, S. D. (2014). How Do Electricity Shortages Affect

Industry? Evidence from India. Technical report, National Bureau of Economic Research.

Antweiler, W., Copeland, B. R., & Taylor, M. S. (2001). Is free trade good for the environment?
The American Economic Review, 91(4), 877–908.

Barrows, G. & Ollivier, H. (2015). Does trade make firms cleaner? theory and evidence from
indian manufacturing. mimeo.

Bernard, A., Redding, S., & Schott, P. (2011). Multiproduct firms and trade liberalization. The

Quarterly Journal of Economics, 126(3), 1271–1318.

Bernard, A. B. & Bradford Jensen, J. (1999). Exceptional exporter performance: cause, effect,
or both? Journal of international economics, 47(1), 1–25.

Bernard, A. B., Redding, S. J., & Schott, P. K. (2010). Multiple-product firms and product
switching. American Economic Review, 100(1), 70–97.

46



Bloom, N., Draca, M., & Van Reenen, J. (2016). Trade induced technical change? the impact
of chinese imports on innovation, it and productivity. The Review of Economic Studies, 83(1),
87–117.

Bustos, P. (2011). Trade liberalization, exports, and technology upgrading: Evidence on the
impact of mercosur on argentinian firms. The American economic review, 101(1), 304–340.

Chakraborty, P. (2012). The great trade collapse and indian firms. PhD Student, Graduate

Institute of International and Development Studies, Geneva.

Cherniwchan, J. (2013). Trade liberalization and the environment: Evidence from nafta and u.s.
manufacturing. mimeo.

Collard-Wexler, A. & De Loecker, J. (2015). Reallocation and technology. American Economic

Review, 105(1), 131–171.

Copeland, B. & Taylor, M. (1994). North-south trade and the environment. Quarterly Journal of

Economics, 109(3), 755–787.

Copeland, B. R. & Taylor, M. S. (2003). Trade and the Environment. Princeton University Press
Princeton.

Cui, J., Lapan, H., & Moschini, G. (2012). Are Exporters More Environmentally Friendly than

Non-Exporters? Theory and Evidence. Technical report.

De Loecker, J. (2011). Product differentiation, multiproduct firms, and estimating the impact of
trade liberalization on productivity. Econometrica, 79(5), 1407–1451.

De Loecker, J., Goldberg, P. K., Khandelwal, A. K., & Pavcnik, N. (2012). Prices, markups and

trade reform. Technical report, National Bureau of Economic Research.

Dixit, A. K. & Stiglitz, J. E. (1977). Monopolistic competition and optimum product diversity.
The American Economic Review, (pp. 297–308).

Duflo, E., Greenstone, M., Pande, R., & Ryan, N. (2013). Truth-telling by third-party audi-
tors and the response of polluting firms: Experimental evidence from india*. The Quarterly

Journal of Economics, (pp. qjt024).

Eckel, C. & Neary, J. P. (2010). Multi-product firms and flexible manufacturing in the global
economy. The Review of Economic Studies, 77(1), 188–217.

47



Forslid, R., Okubo, T., & Ulltveit-Moe, K. H. (2014). Why are firms that export cleaner? inter-
national trade and co2 emissions.

Foster, L., Haltiwanger, J., & Syverson, C. (2008). Reallocation, firm turnover, and efficiency:
Selection on productivity or profitability? American Economic Review, 98(1), 394–425.

Galdeano-Gómez, E. (2010). Exporting and environmental performance: A firm-level produc-
tivity analysis. The World Economy, 33(1), 60–88.

Goldberg, P. K., Khandelwal, A. K., Pavcnik, N., & Topalova, P. (2010a). Imported interme-
diate inputs and domestic product growth: Evidence from india. The Quarterly Journal of

Economics, 125(4), 1727–1767.

Goldberg, P. K., Khandelwal, A. K., Pavcnik, N., & Topalova, P. (2010b). Multiproduct firms
and product turnover in the developing world: Evidence from india. The Review of Economics

and Statistics, 92(4), 1042–1049.

Greenstone, M. & Hanna, R. (2014). Environmental regulations, air and water pollution, and
infant mortality in india. American Economic Review, 104(10), 3038–72.

Gutiérrez, E. & Teshima, K. (2011). Import competition and environmental performance: Evi-
dence from mexico.

Harrison, A., Martin, L., & Nataraj, S. (2014). In with the big, out with the small: Removing
small-scall reservations in india. NBER Working Paper, w19942.

Holladay, J. S. (2015). Exporters and the Environment. Technical report.

Hsieh, C.-T. & Klenow, P. J. (2009). Misallocation and manufacturing tfp in china and india.
The Quarterly Journal of Economics, 124(4), 1403–1448.

Jing Cao, L. D. Q. & Zhou, M. (2013). The inverted-u shaped investment in abatement the
inverted-u shaped investment in abatement technology: Theory and evidence.

Kellenberg, D. K. (2009). An empirical investigation of the pollution haven effect with strategic
environment and trade policy. Journal of International Economics, 78(2), 242–255.

Kreickemeier, U. & Richter, P. M. (2013). Trade and the environment: The role of firm hetero-
geneity. Review of International Economics, (pp. n/a–n/a).

48



Krishna, P. & Mitra, D. (1998). Trade liberalization, market discipline and productivity growth:
new evidence from india. Journal of development Economics, 56(2), 447–462.

Levinson, A. (2009). Technology, international trade, and pollution from us manufacturing. The

American economic review, 99(5), 2177–2192.

Lileeva, A. & Trefler, D. (2010). Improved access to foreign markets raises plant-level produc-
tivity. . . for some plants. The Quarterly Journal of Economics, 125(3), 1051–1099.

Lipscomb, M. (2008). The effect of environmental enforcement on product choice and compe-
tition: Theory and evidence from india. Center for Economic Analysis Department of Eco-

nomics, University of Colorado at Boulder, Working Paper No. 08, 13.

Martin, L. (2012). Energy efficiency gains from trade: greenhouse gas emissions and india’s
manufacturing firms.’. Department of Agricultural and Resource Economics, University of

California Berkley.

Mayer, T., Melitz, M. J., & Ottaviano, G. I. P. (2014). Market size, competition, and the product
mix of exporters. American Economic Review, 104(2), 495–536.

Melitz, M. (2003). The impact of trade on aggregate industry productivity and intra-industry
reallocations. Econometrica, 71(6), 1695–1725.

Melitz, M. & Ottaviano, G. (2008). Market size, trade, and productivity. The review of economic

studies, 75(1), 295–316.

Olley, G. S. & Pakes, A. (1996). The dynamics of productivity in the telecommunications equip-
ment industry. Econometrica, 64(6), pp. 1263–1297.

Shapiro, J. S. & Walker, R. (2015). Why is Pollution from US Manufacturing Declining? The

Roles of Trade, Regulation, Productivity, and Preferences. Technical report, National Bureau
of Economic Research.

Sivadasan, J. (2009). Barriers to competition and productivity: evidence from india. The BE

Journal of Economic Analysis & Policy, 9(1).

Tewari, I. & Wilde, J. (2014). Multiproduct Firms, Product Scope and Productivity: Evidence

from India’s Product Reservation Policy. Technical report.

49



Topalova, P. & Khandelwal, A. (2011). Trade liberalization and firm productivity: The case of
india. Review of economics and statistics, 93(3), 995–1009.

Verhoogen, E. A. (2008). Trade, quality upgrading, and wage inequality in the mexican manu-
facturing sector. The Quarterly Journal of Economics, 123(2), 489–530.

50



Appendix

A Theoretical Framework

In this appendix, we present the proofs of the lemmas and propositions of the theoretical model.
These results are presented for a closed economy where increased competition arises from an
increase in the size of the market. Subsection A.7 extends the model to open economies and
presents results on the impacts of trade liberalization.

A.1 Proofs of Lemma 1 and 2

Given the unit-cost function (5) for variety m, we have

dΦ(ϕ,m)

dm
=

1

ϕ

[
τ

ε
ε−1 e

νmε
ε−1 + e

σmε
ε−1

]−1
ε
[
ντ

ε
ε−1 e

νmε
ε−1 + σe

σmε
ε−1

]
which is positive if ν > 0, σ > 0.

Given the emission intensity E(ϕ,m) equation (6), we have

dE(ϕ,m)

dm
=

1

ϕ

[
e−νmε +

(
τem(εν−σ)

) ε
1−ε
]−1−ε

ε

[
νe−νmε − εν − σ

1− ε
(
τem(εν−σ)

) ε
1−ε

]
,

which is positive (negative) if and only if

ε− (1− ε)
(
τem(ν−σ)

) ε
ε−1 < (>)

σ

ν
.

The sign is unambiguously positive if ε ≤ 0, or if σ > ν.

A.2 Proof of Existence and Uniqueness of the Equilibrium

We need to prove the existence and unicity of the solution of Equation (16). Let define

χ ≡ 2Φk+2
D

(k + 2)(k + 1)
+
k(1− 1

ρ2 )(Φk+2
Ā
− Φk+2

A )

k + 2
+

2kΦD(1− 1
ρ
)(Φk+1

A − Φk+1
Ā

)

k + 1
−

4γf(Φk
A − Φk

Ā
)

L
,
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which must equal 4γfE/(ΩL), a constant. We obtain, after rearranging terms,

∂χ

∂ΦD

=
2

k + 1

[
Φk+1
D + k(1− 1

ρ
)(Φk+1

A − Φk+1
Ā

)

]
+ k(1− 1

ρ
)Φk−1

Ā

∂ΦĀ

∂ΦD

[
(1 +

1

ρ
)Φ2

Ā − 2ΦDΦĀ +
4γf

L(1− 1/ρ)

]
− k(1− 1

ρ
)Φk−1

A

∂ΦA

∂ΦD

[
(1 +

1

ρ
)Φ2

A − 2ΦDΦA +
4γf

L(1− 1/ρ)

]
.

The bracketed terms in the second and third lines of this expression are equivalent to (12), which
equals zero for both ΦĀ and ΦA by definition of the technology cutoffs. As a result, this ex-
pression simplifies into the first line, which is strictly positive given ΦĀ < ΦA. Thus, χ is an
increasing function of ΦD, which tends toward zero when ΦD tends toward zero. Therefore,
there exists a unique solution for ΦD, obtained when χ crosses the constant 4γfE/(ΩL) > 0.

A.3 Intermediate Results

Given a mass of entrants NE , the distribution of costs across all varieties is determined by the
optimal firm product range choice M(ϕ) as well as the distribution of productivity G(ϕ). Let
MΦ(Φ) denote the measure function for varieties produced at total marginal cost Φ or lower,
given NE entrants. Further define H(Φ) ≡ MΦ(Φ)/NE as the normalized measure of varieties
per unit mass of entrants. Thus

H(Φ) =
∞∑
m=0

[
1−G

([
τ

ε
ε−1 e

νmε
ε−1 + e

σmε
ε−1

] ε−1
ε
/Φ

)]
,

which is exogenously given by the distribution function G(.). Given a unit mass of entrants,

there will be a mass 1 − G

([
1 + τ

ε
ε−1

] ε−1
ε
/Φ

)
of varieties with cost Φ or less; a mass 1 −

G

([
e
σε
ε−1 + τ

ε
ε−1 e

νε
ε−1

] ε−1
ε
/Φ

)
of first varieties away from core competency (with cost Φ or

less), and so forth. The measure H(Φ) sums over all these varieties.
Using (9) gives a relationship between average cost and price since Φ̄ = 2p̄ − ΦD. We thus

have M = 2γ(α−ΦD)

η(ΦD−Φ̄)
, where the average total cost of all varieties

Φ̄ =
1

M

∫ ΦD

0

ΦdMΦ(Φ) =
1

NEH(ΦD)

∫ ΦD

0

ΦNEdH(Φ) =
1

H(ΦD)

∫ ΦD

0

ΦdH(Φ)
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depends only on ΦD. Similarly, this cutoff also uniquely pins down the average price across all
varieties:

p̄ =
1

M

∫ ΦD

0

p(Φ)dMΦ(Φ) =
1

H(ΦD)

∫ ΦD

0

p(Φ)dH(Φ).

Finally, the mass of entrants is given by NE = M/H(ΦD), which can in turn be used to obtain
the mass of producing firms N = NE[1 − G(ϕD)]. When productivities are distributed Pareto,
then all produced varieties will share the same Pareto distribution:

H(Φ) =
∞∑
m=0

[
1−G

([
τ

ε
ε−1 e

νmε
ε−1 + e

σmε
ε−1

] ε−1
ε
/Φ

)]
= ΦkΩ

which implies dH(Φ)/dΦ = ΩkΦk−1. This yields Φ̄ = 1
ΦkDΩ

∫ ΦD
0

ΦΩkΦk−1dΦ = kΦD
k+1

. Simi-
larly, the average markup is such that

λ̄ =
1

2Φk
DΩ

∫ ΦD

0

[ΦD − Φ]ΩkΦk−1dΦ =
ΦD

2(k + 1)
.

Plugging the expression of Φ̄ into the definitions of M and p̄ also yields

M =
2γ(k + 1)(α− ΦD)

ηΦD

, p̄ =
(2k + 1)ΦD

2(k + 1)
.

A market with tougher competition (lower ΦD) also features more product variety M and a
lower average price p̄ because of the combined effect of product selection towards the lowest
cost varieties and of lower markups.

In equilibrium, the average number of products produced across all surviving firms is thus

constant since M/N = H(ΦD)NE
[1−G(ϕD)]NE

= Ω
[
1 + τ

ε
ε−1

] ε−1
ε
. Increases in the toughness of competi-

tion do not affect the average number of varieties because the mass of surviving firms N rises by
the same proportion as the mass of produced varieties M .
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A.4 Proof of Proposition 1

Let denote A(m) ≡
[
τ

ε
ε−1 e

νmε
ε−1 + e

σmε
ε−1

] ε−1
ε

so that Φ(ϕ,m) = A(m)/ϕ. The economic produc-
tivity measure for a firm with productivity ϕ producing M(ϕ) varieties is

ψC(ϕ) =
Q(ϕ)

C(ϕ)
=

∑M(ϕ)−1
m=0 q(Φ(ϕ,m))∑M(ϕ)−1

m=0 Φ(ϕ,m)q(Φ(ϕ,m))
.

For a fixed product scope M with 1 < M ≤M(ϕ), this can be written as

ψC(ϕ) =
MΦD −

∑M−1
m=0 Φ(ϕ,m)

ΦD

∑M−1
m=0 Φ(ϕ,m)−

∑M−1
m=0 Φ(ϕ,m)2

,

subject to ϕ ∈ [A(M)/ΦD, A(M − 1)/ΦD]. We have

dψC(ϕ)

dΦD

=
−M

∑M−1
m=0 Φ(ϕ,m)2 +

(∑M−1
m=0 Φ(ϕ,m)

)2

[
ΦD

∑M−1
m=0 Φ(ϕ,m)−

∑M−1
m=0 Φ(ϕ,m)2

]2 .

Using Jensen’s inequality for a real convex function, here the quadratic function, we have(∑M−1
m=0 Φ(ϕ,m)

)2

∑M−1
m=0 Φ(ϕ,m)2

≤M,

and thus we get dψC(ϕ)/dΦD < 0. This proves that, holding M ≥ 1 constant, the average cost
efficiency of the firm improves when import competition increases (lower ΦD).

Even when product scope M drops due to the decrease in ΦD, the average cost efficiency
must still increase due to the continuity of ψC(ϕ) with respect to ΦD (both Q(ϕ) and C(ϕ) are
continuous in ΦD as the firm produces zero units of a variety right before it is dropped when
competition gets tougher). Following the argument of Mayer et al. (2014), consider a large
downward change in the cost cutoff ΦD. The result for given M tells us that the cost efficiency
for a firm with productivity ϕ improves on all ranges of ΦD’s where the firm changes the number
of varieties produced. Because ψC(ϕ) is continuous at those ΦD’s, and increasing everywhere
else, it must be increasing everywhere.
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Similarly, the emission intensity for a firm ϕ producing M(ϕ) varieties is

ψZ(ϕ) =
Z(ϕ)

Q(ϕ)
=

∑M(ϕ)−1
m=0 E(ϕ,m)q(Φ(ϕ,m))∑M(ϕ)−1

m=0 q(Φ(ϕ,m))
.

For a fixed product scope M with 1 < M ≤M(ϕ), this can be written as

ψZ(ϕ) =
ΦD

∑M−1
m=0 E(ϕ,m)−

∑M−1
m=0 E(ϕ,m)Φ(ϕ,m)

MΦD −
∑M−1

m=0 Φ(ϕ,m)
,

subject to ϕ ∈ [A(M)/ΦD, A(M − 1)/ΦD]. We have

dψZ(ϕ)

dΦD

=
M
∑M−1

m=0 E(ϕ,m)Φ(ϕ,m)−
∑M−1

m=0 E(ϕ,m)
∑M−1

m=0 Φ(ϕ,m)[
MΦD −

∑M−1
m=0 Φ(ϕ,m)

]2 .

For all M ∈ N∗, denote the numerator of this expression as DM , where (Φ(ϕ,m))m∈N and
(E(ϕ,m))m∈N are real positive sequences. First, consider some examples such as M = 2.
Simplifying notations using Em and Φm, we have

D2 = 2(E0Φ0 + E1Φ1)− (E0 + E1)(Φ0 + Φ1) = (E1 − E0)(Φ1 − Φ0).

Now for M = 3, D3 = (E1 − E0)(Φ1 − Φ0) + (E2 − E0)(Φ2 − Φ0) + (E2 − E1)(Φ2 − Φ1).

Using a recursive argument, we thus deduce that

DM =
∑

0≤i<j≤M−1

(Ej − Ei)(Φj − Φi)

By assumption (Φm)m∈N is strictly increasing, thus for all 0 ≤ i < j ≤ M − 1 we have
Φj > Φi. Thus DM is positive, hence ψZ(ϕ) increases in ΦD, if and only if (Em)m∈N is also
strictly increasing whereas it is negative if and only if (Em)m∈N is strictly decreasing.

As before, even when product scopeM drops due to the decrease in ΦD, the average emission
intensity must still have the same variation as E(ϕ,m) due to the continuity of ψZ(ϕ) with
respect to ΦD (both Z(ϕ) and Q(ϕ) are continuous in ΦD as the firm produces zero units of a
variety right before it is dropped when competition gets tougher).
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A.5 Proof of Proposition 2

Let denote B(m) ≡
[
e−νmε +

(
τem(εν−σ)

) ε
1−ε
]−1/ε

so that z(ϕ,m) = E(ϕ,m)q(ϕ,m) =
B(m)
ϕ

L
2γ

[ΦD − Φ(ϕ,m)] , where, as previously, Φ(ϕ,m) = A(m)/ϕ. We have

∫ ∞
ϕD

Q(ϕ)dG(ϕ) ≡
∫ ∞
ϕD

M(ϕ)−1∑
m=0

q(Φ(ϕ,m))dm

 dG(ϕ)

=
∞∑
m=0

∫ ∞
A(m)
ΦD

L

2γ

[
ΦD −

A(m)

ϕ

]
kϕ−k−1dϕ =

LΦk+1
D Ω

2γ(k + 1)
,

and

∫ ∞
ϕD

C(ϕ)dG(ϕ) ≡
∫ ∞
ϕD

M(ϕ)−1∑
m=0

Φ(ϕ,m)q(Φ(ϕ,m))dm

 dG(ϕ)

=
∞∑
m=0

∫ ∞
A(m)
ΦD

L

2γ

A(m)

ϕ

[
ΦD −

A(m)

ϕ

]
kϕ−k−1dϕ =

LkΦk+2
D Ω

2γ(k + 1)(k + 2)
.

This leads to

ψ̄C ≡
∫∞
ϕD
Q(ϕ)dG(ϕ)∫∞

ϕD
C(ϕ)dG(ϕ)

=
k + 2

k

1

ΦD

,

which gives dψ̄C/dΦD = −(k + 2)/(kΦ2
D) < 0. Thus tougher competition (a decrease in ΦD)

increases aggregate productivity. Denoting Q̄ ≡
∫∞
ϕD
Q(ϕ)dG(ϕ) yields a positive scale effect

from a bigger market: dQ̄/dL =
Φk+1
D Ω

2γ(k+1)

[
1− k+1

k+2

]
> 0.

Aggregate emissions can be calculated as∫ ∞
ϕD

Z(ϕ)dG(ϕ) =
∞∑
m=0

∫ ∞
A(m)
ΦD

L

2γ

B(m)

ϕ

[
ΦD −

A(m)

ϕ

]
kϕ−k−1dϕ

=
LkΦk+2

D

2γ(k + 1)(k + 2)

∞∑
m=0

B(m)A(m)−k−1

where, after some computations,

Γ ≡
∞∑
m=0

B(m)A(m)−k−1 = τ
1
ε−1

∞∑
m=0

[
e
mε[(ν−σ)ε+σk(1−ε)]

(ε−1)[k(1−ε)−ε] + τ
ε
ε−1 e

νmεk
ε−k(1−ε)

] k(1−ε)−ε
ε

.
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In order for Γ to converge, we need the bracketed term to the power [k(1− ε)− ε]/ε to approach
0 as m→ +∞. This expression is equivalent to

[
e
mε[(ν−σ)ε+σk(1−ε)]

(ε−1)[k(1−ε)−ε] + τ
ε
ε−1 e

νmεk
ε−k(1−ε)

] k(1−ε)−ε
ε

= e
m[(ν−σ)ε+σk(1−ε)]

(ε−1)

[
1 + τ

ε
ε−1 e

mε(ν−σ)
ε−1

] k(1−ε)−ε
ε

where sufficient conditions for the first exponential term to converge toward zero whenm→ +∞
are ν > σ and 0 < ε < 1, and the same conditions ensure that the exponential term inside
the brackets also tends to zero. Thus, so long as we restrict our attention to cases where the
relationship between E(ϕ,m) and new varieties is ambiguous, which imposes that ν > σ and
ε > 0 given Lemma 2, Γ converges and ψ̄Z = kΓΦD

(k+2)Ω
, which yields dψ̄Z/dΦD = kΓ

(k+2)Ω
> 0.

So an increase in competition (a fall in ΦD) lowers aggregate emission intensity. Denoting Z̄ ≡∫∞
ϕD
Z(ϕ)dG(ϕ) = kfEΓ/Ω yields dZ̄/dL = 0.

A.6 Proof of Proposition 3

We investigate the impact of a variation in market size L in the full model with both technology
and product mix channels. We first want to know how ΦD varies with L. Given the implicit
function theorem, we know that ∂ΦD/∂L = −(∂χ/∂L)(∂χ/∂ΦD)−1. From above, we know
that ∂χ/∂ΦD > 0. We further obtain, after rearranging terms,

∂χ

∂L
=

4γf(Φk
A − Φk

Ā
)

L2

+ k(1− 1

ρ
)Φk−1

Ā

∂ΦĀ

∂L

[
(1 +

1

ρ
)Φ2

Ā − 2ΦDΦĀ +
4γf

L(1− 1/ρ)

]
− k(1− 1

ρ
)Φk−1

A

∂ΦA

∂L

[
(1 +

1

ρ
)Φ2

A − 2ΦDΦA +
4γf

L(1− 1/ρ)

]
.

The bracketed terms in the second and third lines of this expression are equivalent to (12), and
thus equal to zero for both ΦĀ and ΦA. As a result, this expression simplifies into the first line,
which is strictly positive given ΦĀ < ΦA. We conclude that ∂ΦD/∂L < 0.

We then investigate the impacts of a variation in L on the technology cutoffs. Using (13)
yields

dΦĀ

dL
=

ρ

1 + ρ

∂ΦD

∂L
−

ΦD
∂ΦD
∂L

+ 2(1+ρ)γf
L2(ρ−1)√

Φ2
D −

4(1+ρ)γf
L(ρ−1)


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and

dΦA

dL
=

ρ

1 + ρ

∂ΦD

∂L
+

ΦD
∂ΦD
∂L

+ 2(1+ρ)γf
L2(ρ−1)√

Φ2
D −

4(1+ρ)γf
L(ρ−1)

 .
In both cases, the sign of the derivative is ambiguous given ∂ΦD/∂L < 0 and ΦD >

√
Φ2
D −

4(1+ρ)γf
L(ρ−1)

.
We can rewrite the first derivative as

dΦĀ

dL
=

2γf

(1 + 1
ρ
)L2

√
Φ2
D −

4(1+ρ)γf
L(ρ−1)

(k + 1)(Φk
A − Φk

Ā
)[ΦD −

√
Φ2
D −

4(1+ρ)γf
L(ρ−1)

]

Φk+1
D + k(1− 1

ρ
)(Φk+1

A − Φk+1
Ā

)
− 1 + ρ

ρ− 1

 .
For large market size L, the bracketed term ΦD −

√
Φ2
D −

4(1+ρ)γf
L(ρ−1)

tends toward zero. Hence,
this could imply that the sign of the derivative is negative.

Numerical simulations are helpful in determining the impacts of an increase in market size
when the sign of the derivatives is ambiguous. They illustrate these impacts for some parameter
values, but cannot be generalized. We consider the following parameter values: k = 2, f = 35,
γ = 4 or 2, ρ = 5 or 1.2, and Ω = 2.5 or 1.5. Table A.1 illustrate all potential outcomes using
simulations.

Table A.1: Simulation Results when Market Size Increases

Parameter values Variation in L Results

γ ρ Ω fE ΦD ΦĀ ΦA

4 5 2.5 800 from 100 to 110 -3.5 -6.7 −3.4ni

2 1.2 1.5 1000 from 400 to 500 -5.9 -20.8 +1.1i

2 1.2 1.5 1000 from 500 to 600 -4.8 -15.9 −0.8i

Notes: The results are described in terms of percent changes relative to the
initial value when the market size L varies. The index ni indicates that ΦA
is “non interior”, while the index i indicates that it is “interior”.

We observe that ΦĀ tends to decrease when the market size increases, which implies that
more lowest cost varieties adopt technology h. When ΦA is non interior, all high cost varieties
located above ΦĀ adopt technology h, hence the variation in this first technology cutoff is suffi-
cient to determine that technology adoption increases. When both cutoffs are interior, technology
adoption increases unambiguously when ΦA increases, whereas the results are ambiguous when
ΦA decreases.
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A.7 Open economy with Product Mix Channel

We extend the model to open economies that differ in their population, trade costs, and envi-
ronmental regulations. We consider only two regions, India and the rest of the world. In this
two-region setting, we denote Indian variables with the index j and foreign variables with f .
This extension abstracts from the ability firms have to upgrade their technology, while focusing
on the product mix channel. The reason is that the equilibrium can thus be summarized by only
one productivity cutoff for domestic production, and another one for exporting.

A.7.1 Equilibrium

The demand side and the production side of the model are the same as in the closed economy.
Firms in either country can produce in one market and sell in the other by incurring an iceberg
trade cost θlf > 1 (θll = 1). Thus, the delivered cost of a variety with manufacturing cost
Φ(ϕ,m) to country l is θjlΦ(ϕ,m).

Because markets are segmented, firms separately optimize for each market. A firm may
decide to export some of its varieties at a delivered price pjf (ϕ,m), so that it can earn export
profits πjf (ϕ,m) = [pjf (ϕ,m) − θjfΦ(ϕ,m)]qjf (ϕ,m). Firms must earn positive profits on a
variety if they sell it in a given market. This yields a domestic cutoff Φjj and an export cost
cutoff Φjf , at which a firm would make zero profit from exporting to country f . We obtain
Φjf = pmaxf /θjf = Φff/θjf . Trade barriers make it harder for exporters to break even relative
to domestic producers. The cutoffs Φjj and Φjf summarize all the effects of market conditions
in both countries relevant for country j’s firm performance measures. We also obtain the firm
productivity cutoff for exporters: ϕjf = [1 + τ

ε
ε−1

j ]
ε−1
ε /Φjf .

When firms optimize for each market, the price and the markup are given by pjl(ϕ,m) =
1
2
[Φjl + θjlΦ(ϕ,m)] and λjl(ϕ,m) = 1

2
[Φjl − θjlΦ(ϕ,m)]. The maximized profit levels in the

domestic and foreign markets are given by πjj(ϕ,m) =
Lj
4γ

[Φjj − Φ(ϕ,m)]2 and πjl(ϕ,m) =
Ll
4γ

[Φll − θjlΦ(ϕ,m)]2, respectively.
We assume that the entry cost fE and the productivity distribution G(ϕ) are common across

countries. A prospective entrant’s expected profits are then given by

∫ ∞
ϕjj

 ∑
{m|Φ(ϕ,m)≤Φhh}

πjj(ϕ,m)

 dG (ϕ) +

∫ ∞
ϕjf

 ∑
{m|Φ(ϕ,m)≤Φjf}

πjf (ϕ,m)

 dG (ϕ)− fE,

which combines the expected profits obtained in the domestic and the export markets. The equi-
librium free entry condition sets these expected profits to zero, which must pin down the endoge-
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nous cost cutoff Φll in both regions. The free entry condition simplifies to

ΩjLjΦ
k+2
jj + ΩfLf (θjf )

2Φk+2
jf = 2γ(k + 1)(k + 2)fE,

given the Pareto distribution assumption for productivity draws. Using Φjf = Φff/θjf and the
symmetry across countries that gives a system of equations, we obtain the endogenous domestic
cutoff for each country as

Φjj =

(
2γ(k + 1)(k + 2)fE(1− ξf )

ΩjLj(1− ξfρj)

) 1
k+2

,

where ξf = θ−kjf < 1 is a measure of ‘freeness’ of trade from country j to country f .

A.7.2 Computing Number of Varieties and Entrants in Open Economy

The price distributions in country j of domestic firms producing in j, pjj(ϕ,m), and exporters
producing in f , pfj(ϕ,m), are identical. Thus, as in the closed economy, the threshold price
condition in country j (3), along with the resulting Pareto distribution of all prices for varieties
sold in j, yield a zero-cutoff profit condition linking the domestic cost cutoff to the mass of
varieties consumed in country j: Mh = 2γ(k + 1)(α− Φjj)/(ηΦjj).

Given a positive mass of entrants NE,h in country j, there will be NE,h[1 − G(ϕjj)] firms
producing in country j, and NE,h[1−G(ϕjf )] firms exporting ξfΦk

jjΩjNE,j varieties to country
f . Summing over all varieties from countries j and f sold in country j, we get

Mj = NE,hΦ
k
jjΩj + ξjNE,fΦ

k
ffΩf .

Combining the two expressions for Mj , and similarly for Mf , gives the number of entrants in
each country (by symmetry):

NE,j =
2γ(k + 1)

η(1− ξjξf )Ωj

[
α− Φjj

Φk+1
jj

− ξj
α− Φff

Φk+1
ff

]
.

Assuming a non-specialized equilibrium where both countries produce the differentiated good
(NE,l > 0, l = j, f ) implies that only a subset of relatively more productive firms choose to
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export in either country, since NE,j > 0 is equivalent to

α− Φjj

Φk+1
jj

> ξj
α− Φff

Φk+1
ff

⇔ α/θj − Φfj

α− Φff

(
Φff

Φfj

)k+1

> 1,

which is incompatible with Φfj ≥ Φff . Therefore, Φfj < Φff .

A.7.3 Impacts of Bilateral Liberalization

Consider the case of bilateral liberalization where we assume that trade costs are symmetric,
θfj = θjf = θ. Thus we analyze the effect of a decrease in θ, or equivalently, of an increase in
ξh = ξf = ξ. In this case, the equilibrium cost cutoff (16) can be written as

Φll =

(
2γ(k + 1)(k + 2)fE

ΩlLl(1 + ξ)

) 1
k+2

for l = j, f.

Bilateral liberalization thus increases competition in both markets by lowering Φjj and Φff pro-
portionally:

dΦll

dθ
= Φll

k

k + 2
θ−k−1(1 + ξ)−1 > 0 for l = j, f.

However, the change in the export cutoff goes in the opposite direction since

dΦjf

dθ
=

Φff

θ2

(
k

k + 2
ξ(1 + ξ)−1 − 1

)
< 0,

because kξ < (1 + ξ)(k+ 2). Thus, there are two countervailing effects: a domestic competitive
effect and an export scale effect. The first effect raises firm competition in the domestic market.
The second effect is a countervailing force arising from the increased export market access. As
it becomes less costly to ship goods to the trading partner, more firms start to export and more
varieties are shipped.

The economic benefits of trade are relatively well known in this open economy setting with
selection and pro-competitive effects of trade (Melitz & Ottaviano, 2008; Mayer et al., 2014).
Therefore we focus on the novel environmental impacts of trade. Bilateral liberalization impacts
the domestic and export cost cutoffs in opposite directions. While competition becomes tougher
domestically, an export scale effect softens competition for exporting. This results in ambiguous
impacts on the emission intensity at the sector level given Proposition 2. To fully assess the
impacts of bilateral liberalization on the environment, we evaluate the aggregate level of emis-
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sions in country j, Zh, as the sum of emissions from domestically consumed goods and exported
goods:

Zj =

∫ ∞
ϕjj

Zjj(ϕ)dG(ϕ) +

∫ ∞
ϕjf

Zjf (ϕ)dG(ϕ) =
kΓh

2γ(k + 1)(k + 2)

(
LhΦk+2

jj + LfΦk+2
jf

)
.

The domestic level of emissions from production in country j also depends on the regulation
of its trading partner through the export cost cutoff, as well as on trade costs. By symmetry, the
worldwide level of emissions, Zwt ≡ Zj + Zf , is thus given by

Zwt =
k

2γ(k + 1)(k + 2)

[
LjΦ

k+2
jj

(
Γj +

Γf
θk+2

)
+ LfΦ

k+2
ff

(
Γf +

Γj
θk+2

)]
.

To assess the full effect of trade on the environment, we compare the worldwide level of
emissions in autarky and in free trade. Full trade liberalization implies that θ = 1. Comparing
Zwt with its equivalent in autarky (Zwa = kfE [Γj/Ωj + Γf/Ωf ]) yields

Zwt − Zwa =
kfE

2ΩjΩf

(Ωj − Ωf )(Γj − Γf ),

which is positive whatever the environmental regulation difference across countries as long as
dΓl/dτl < 0 for l = j, f , given dΩl/dτl < 0. We obtain

Proposition 4. Assuming τl ≥ 1 for l = j, f , bilateral trade liberalization implies that

i/ national emissions decrease when trade costs are high (incl. at autarky level), and in-

crease, at least in the low regulation country, when trade costs are low;

ii/ the worldwide level of emissions is larger under free trade than under autarky.

Proof: The sign of Zwt − Zwa depends on dΓl/dτl, which, given the definition of Γ, is such

dΓl
dτl

=
Γl

(ε− 1)τl
+
k(1− ε)− ε

ε− 1
τ

2
ε−1

l

∞∑
m=0

e
m[2(ν−σ)ε+σk(1−ε)]

(ε−1)

[
1 + τ

ε
ε−1

l e
mε(ν−σ)
ε−1

] k(1−ε)−2ε
ε

,

which is negative if and only if

[ε− k(1− ε)]τ
2
ε−1

l

∞∑
m=0

e
m[2(ν−σ)ε+σk(1−ε)]

(ε−1)

[
1 + τ

ε
ε−1

l e
mε(ν−σ)
ε−1

] k(1−ε)−2ε
ε

<
Γl
τl
. (A.1)

This inequality holds for k ≥ ε/(1− ε), and a sufficient condition for this to hold is ε ≤ 1/2. For
high values of ε, the condition may not hold, and thus k(1− ε)− ε < 0. In this case, we use the
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parameter restrictions of Lemma 2, i.e., 0 < ε ≤ 1 and ν > σ > 0, to obtain

τ
1/(ε−1)
l

∞∑
m=0

e
m[2(ν−σ)ε+σk(1−ε)]

(ε−1)

[
1 + τ

ε
ε−1

l e
mε(ν−σ)
ε−1

] k(1−ε)−2ε
ε

< Γl,

since each element of the sum is smaller than its counterpart in Γl. Thus, condition (A.1) holds
if [ε − k(1 − ε)] 1−ε

ε < τl, which holds for τl ≥ 1. Assuming that the relative price of emission
compared to labor is higher than 1 implies that dΓl/dτl < 0.

Using the expression for Zj , the impact of bilateral liberalization on national emissions is

dZj
dθ

=
kΓj

2γ(k + 1)

(
Lj
dΦjj

dθ
Φk+1
jj + Lf

dΦjf

dθ
Φk+1
jf

)
,

which is positive if and only if

Ωf

Ωj

>
2 + 2ξ + k

θ2k
. (A.2)

When θ tends toward infinity (hence ξ tends toward 0), then the inequality holds. When θ tends
toward 1 (hence ξ too), the right hand side (RHS) is larger than 1. Additionally the RHS is
monotonically decreasing in θ. Hence, if Ωf/Ωj > (4+k)/k, the inequality (A.2) holds whatever
the trade cost, and domestic emissions decrease in country j. If Ωf/Ωj < (4 + k)/k, emissions
decrease for high trade costs, and increase when trade costs are low.

Symmetrically, the impact of bilateral liberalization on country f ’s emissions is also positive
if and only if

Ωf

Ωj

<
θ2k

2 + 2ξ + k
. (A.3)

The RHS here is monotonically increasing in θ, starting at k/(4+k) for θ = 1 and tending toward
infinity when θ tends toward infinity. Hence, if Ωf/Ωj < k/(4 + k), the inequality (A.3) holds
whatever the trade cost, and domestic emissions decrease in country f . If Ωf/Ωj > k/(4 + k),
emissions decrease for high trade costs, and increase when trade costs are low.

To summarize, consider the case where τj < τf , which implies that Ωf/Ωj < 1 < (4 + k)/k.
We obtain two cases for the impacts of bilateral liberalization:

i/ if Ωf/Ωj < 4/(4 + k), Zf decreases with trade liberalization, whereas Zj decreases for
high values of θ and increases for low values of θ;
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ii/ if Ωf/Ωj > 4/(4 + k), both Zj and Zf decrease with trade liberalization for high values
of θ, and increase for low values of θ. �

Proposition 4 reveals the impacts of bilateral liberalization on the environment. Recall that
we have two countervailing effects playing a role here: tougher competition in the domestic
markets, and increased export opportunities. The domestic competitive effect dominates when
countries face high trade costs. National emissions thus decrease through the reallocation of
factors toward more productive firms. When trade costs are lower, the export scale effect pushes
emissions upward, especially in the country with lax regulations. This can be interpreted as
a “pollution haven” story since the low regulation country free rides on the global pollution
problem, and its firms benefits more from trade liberalization as they gain market shares over
their foreign competitors. Overall, the export scale effect dominates the domestic competitive
effect when countries fully liberalize their markets. Indeed, bilateral trade liberalization increases
the worldwide level of emissions compared to autarky.
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B Data Construction

In this appendix, we describe the construction of our panel production dataset. Key steps include
converting energy intensities of production into CO2 intensities, standardizing output units, iden-
tifying and removing outlying observations, and finally merging product-specific output data to
product-specific input data. We first discuss the output data and the energy input data separately,
and then our procedure for merging the two.

B.1 Output Data

Outputs are reported in Prowess by firm-product-year, where individual entries are distinguished
by product string names. Within a firm-year set, any given product string name appears only
once. These string names are provided by the firms themselves and appear to be constant over
time.25 Each observation is also assigned to a unique product classification code designed by
CMIE; however, this code varies over time within product string name. Additionally, firms often
report separate products in the same year that CMIE assigns to the same product code. Hence,
we take firm name/product name combinations as unique identifiers of “firm-product” instead
of the CMIE code. With this definition of a firm-product, there are 269,922 firm-product-year
observations in the raw data, which include information on physical quantity of output, unit of
physical output (e.g., tonnes, numbers, etc.), and sales value (among other variables).

The only issue we face in the output data is that output units are not always constant across
firm-products over time. This is problematic for assessing changes in emission intensity. We
standardize units as much as possible within physical dimension (e.g., converting all observations
denominated in mass units to “tonnes”), but this process does not catch all cases of unit switching.
When our standardization process fails, we drop the entire firm-product line (6,603 observations,
or about 2.5% of the data). This leaves 260,498 firm-product-year output observations to merge
to energy inputs.

B.2 Energy Input Data

Energy data in Prowess is reported in physical units of energy source per 1 unit of output by
output product and energy source. For example, a firm would report separately the number of
Kwhs of electricity and litres of diesel used to produce 1 tonne of tea in a given year. In the
raw data, we have 125,120 such firm-product-source-year observations. We multiply energy use

25For example, upon inspection of the data, there does not appear to be any spelling inconsistencies across firm-
products over time.
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by source specific CO2 emission factors, sum over energy types within a firm-product-year, and
drop outlier observations before merging to the output data. We discuss various issues with these
procedures here.

First, as in the output data, there is an issue related to standardization of output units. Here, we
need output goods denominated in the same units across firm-product-source-year observations
so that we can sum emissions over energy types and within firm-products over time. We first
attempt to standardize units within dimensions as before, but finally must drop firm-product-
years for which we cannot standardize units across energy types (1,562 firm-year observations,
or about 2% of the data). We then drop firm-products that do not have constant output units over
the period (about 1% of the data).

Next, we merge to each energy source type (e.g., coal, diesel fuel, etc.) a source-specific CO2

emissions factor. These factors are based on estimates of carbon content of different fuel sources
from the US Environmental Protection Agency and are reported in Table B.2. We are able to
assign an emission factor to 83% of energy source energy unit pairs (e.g., Kwh of electricity).
Of the 17% of such pairs that we cannot assign an emission factor, in many cases it appears
that units have been entered incorrectly. For example, we cannot assign an emissions factor to
observations denominated in “liters” of “electricity” because it does not make sense to consume
electricity in liters. The correct denomination in this example probably should have been “Kwh”
of electricity, but since electricity is also denominated sometimes in “Mwh” or even “Gwh”, it is
hard to know for sure what the real denomination should be.

Other cases involve instances when the units of denomination for the energy source do not
match to a known unit for the CO2 factor. For example, some observations are denominated in
“cubic meters” of “firewood,” while our emissions factor is denominated in “tonnes” of “fire-
wood”. Since the density of firewood could vary quite a lot, it is difficult to assign a meaningful
emissions factor in this cases. Thus, we drop all observations for which we cannot assign a rea-
sonable CO2 emissions factor (2,089 firm-product-source-year observations, or less than 2% of
the data).

After merging source-specific emission intensity factors, we multiply energy intensity of
production by CO2 emissions factors and sum over the firm-product-year. This results in a dataset
of 81,433 firm-product-year emission intensities denominated in kg CO2 per unit of production
(where “unit” may take several different values, but is unique for a given firm-product-year).

Next, we standardize product string names across years. This process is not necessary in
the output data because product names seem to be constant over time. But here, it happens that
between two years, a product string name within the same firm can change so slightly that it

66



seems reasonable to assume that the two string names refer to the same products. For example,
in one year, a product is reported as “T-shirts”, while in the next year the same firm reports a
product “t-shirts.” The string names are not exactly the same, so if we take strings as the unique
identifier of firm-products, we will count these two observations as different products, though
clearly they represent the same output. To address this data entry problem, we examine the data
observation by observation and standardize names by hand. This procedure affects about 5% of
the data.

Next, we address an issue relating to intermediate outputs. In the input dataset, firms often
report electricity as an output good, though this output does not appear in the output dataset.
Additionally, none of the firms in the dataset are identified as electricity providers. Thus, we
consider these cases to be instances of intermediate input production and drop them from the
dataset. These observations would be dropped from the analysis dataset anyway, since there is
no match in the output dataset, but we mention it here. This procedure drops 21,803 observations,
or 27% of the data.

Finally, we treat outlier observations in the input dataset. To this point, we have culled the
data to 56,955 firm-product-year observations. Product names and output units are constant
across years, but the dataset clearly contains some extreme outlier observations. We treat these
outliers in two ways. First, we identify firm-product emission intensities which look like entry
errors and assign those values instead the average emission intensity of the firm-product over the
period. This procedure affects about 1% of the data. Next, we drop the entire firm-product profile
if the emission intensity of the dirtiest year of the firm-product is at least 10 times greater than
the cleanest year of the firm-product. This procedure drops 8785 observations, or about 15%
of the data. Finally, we look within 6-digit product codes (across firms) and drop observations
which look implausibly far from the rest of the producers in the product code (about 1% of the
data). In the end, we are left with 47,530 firm-product-year observations with which to try to
merge to the output data.

B.3 Merging Outputs to Inputs

Our final step in constructing our analysis dataset is to merge the product-specific emissions
estimates to the product-specific output data. Since we have string names of both firms and
products, a candidate procedure would be to merge on exact string matches, but in many cases
matches are not exact. Luckily, in most cases, it is fairly straightforward to merge the two datasets
by hand (see appendix B for details). An additional challenge is to harmonize output units across
the two datasets. We discuss these procedures here.
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In each of the output and input datasets, we take product string name as a unique identifier
of firm-products. While the names of firm-products are standardized over time within these
two datasets, they are not always standardized across the two reports. Sometimes we find that
products are reported in the output dataset and not in the input dataset, or vice versa. We need
data on both outputs and inputs to be able to use the observation in the analysis, hence we drop
all observations that fail to merge on string name. If the match fails because the two reports
actually pertain to different outputs, then we can safely drop the failed merges from the dataset.
However, in many cases, it appears that the merge fails only because products are described
differently in the two reports. In this case, it seems reasonable to match product string names
by hand. For example, in the output dataset, the firm Aadi Industries Ltd. lists two products
– “Shopping Bags/Carry Bags” and “Tarpaulin/Wagon Cover” – and two different products in
the energy dataset – “Plastic Bags” and “Tarpaulin”. No other products are listed for this firm
in either dataset. Though the products do not match on exact string names, the two reports are
clearly describing the same outputs. Here, we match the “Shopping Bags/Carry Bags” from
the output dataset with the “Plastic Bags” reported in the energy dataset, and “Tarpaulin/Wagon
Cover” from the output to “Tarpaulin” in the energy. Proceeding in this way, we increase the size
of the merged dataset by 72% (relative to merging on exact string match).

We proceed as follows. First, we match all the firm-product-year observations that we can
on firm name and product name (18,420 observations). We then set aside all these successful
merges. Next, we compare the list of firm-products in the output data to the firm-products in the
input data for the same firm-year and attempt to match by hand. We only consider one-to-one
matches. I.e, we attempt to match each product in the output dataset to a unique product from the
input dataset. Sometimes it is straightforward to match output goods between the two reports, as
in the example described in the main text, but sometimes we still cannot match the two reports.
Comparing reports by hand, we increase the size of the dataset by 15,932 observations, or 86%
over matching on exact string name.

After harmonizing firm-product names across the two reports, there still remains an issue
sometimes with output units being denominated differently between the two reports. When the
discrepancy cannot be resolved, we drop the observations (about 1% of the data). We also drop
a few outlier observations with implausibly large implied CO2 emissions (1% of the data). This
leaves 32,327 matched output and input observations in the analysis dataset.
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B.4 Product-specific Energy Intensities

In this appendix, we test alternative hypotheses regarding how firms assign product-specific en-
ergy intensities.

As part of the 1988 Amendment to the Indian Companies Act, firms are required to report
energy intensity by energy source and output. However, this reporting requirement presumably
imposes some cost on firms, and there is no formal mechanism to ensure accuracy of reports.
Thus, it is possible that the product-specific energy data suffers from mis-reporting errors. With-
out an independent audit of each firm, we cannot test globally for mis-reporting errors; but, we
can generate hypotheses for likely forms of mis-reporting errors and test for them.

If we assume that accurate reporting is costly and that the cost of mis-reporting is low, then
two likely strategies emerge. First, firms could report pure noise for the product-specific energy
intensities. In this case, firm-product emission intensity would be uncorrelated with any variable.
The evidence in Section 4 would already seem to disprove this hypothesis. However, we can test
formally the hypothesis here.

Second, if firms choose to report some value for product-specific energy intensity that is not
pure noise, but also choose not to pay the cost of learning the true value, then perhaps the firm
employs some heuristic for estimating product-specific energy use. For example, perhaps the firm
simply assigns the energy use based on revenue shares, or labor shares, or capital shares. While
there are many possible heuristics that firms can employ, the only ones we can test are heuristics
that utilize observable product-specific information. This unfortunately rules out all input-based
heuristics, because energy is the only input for which we have product-specific information. We
then consider output-based metrics: sales shares and output shares.

Formally, let Zeij indicate the quantity of energy (in physical units - e.g., tons of coal, KwH
of electricity, etc.) firm i uses from energy source e (e.g., coal, electricity, etc.) to manufacture
Qij units of product j. The revenue earned from product j isRij = Qij ∗Pij . Denote the revenue
share and energy-type share associated with each product j:

rij =
Rij∑
j∈∆i

Rij

, zeij =
Zeij∑
j∈∆i

Zeij
(B.4)

for each energy source e, and where ∆i is as before the set of products manufactured by a firm
in a given year.

To test the hypotheses above, we estimate a linear regression model

zeijt = βerijt + γ′Wijt + εijt, (B.5)
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where t denotes years and Wijt represents controls. The parameter of interest is βe, the energy-
source specific correlation between energy-use share and revenue share. If the first hypothesis
above were true, we would have βe = 0, i.e. product-specific energy share would be uncorrelated
with product-specific revenue share. If the second hypothesis were true, we would have βe = 1.

In Table B.3, we test both hypotheses at once. We group all energy sources into five categories–
electricity, fuel, coal, gas, and biofuel – and report estimates separately by panel. Firm-products
are only included in the regressions if we have firm-product energy intensity information for the
given energy source and if at least one other product within the firm takes the source as an input
(so both zeijt and rijt lie strictly between 0 and 1). Note that firms need not use all possible
energy sources to produce all output goods. In the case that a firm only generates a subset of
all products reported using a given energy source, we re-compute rijt in columns 5-8 using total
revenues of products that take the given energy source as an input as the denominator in (B.4).
Standard errors are clustered at the firm-level throughout.

Columns 1 and 2 report OLS estimates both without controls (column 1) and with controls
(column 2). In these first two columns, we find that energy-use share is positively correlated with
revenue share, and these correlations are for the most part highly statistically significant. In all
cases, zeijt and rijt range between 0 and 1, so the point estimates imply that a 1 percentage point
increase in revenue share translates into between 0.376 percentage points (biofuel) and 0.751
percentage points (coal) increases in energy-use share. In almost all cases, we can easily reject
both βe = 0 and βe = 1, providing strong evidence against both hypotheses discussed above. We
find similar results in columns 5-6 where we use adjusted revenue shares.

One reason that βe lies consistently below 1 could be that revenue share is measured with
errors. In this case, estimates in Table B.3 would suffer from attenuation bias. The possibility of
measurement errors in revenues seems less of a problem than in many variables; but nevertheless,
we address this possibility by instrumenting the current-year product-specific revenue share with
lagged revenue share in columns 3-4, 7-8. In most cases, the point estimates increase, as one
would expect to happen given attenuation bias, but in no case is the increase very large, and in
all cases we can still easily reject βe = 1.

70



Table B.2: CO2 emission factors

Kg CO2 per Unit Unit of Kg CO2 per MMBTU
Energy Source of Energy Source Energy Source of Energy Source
(1) (2) (3) (4)
Acetylene .1053 scf 71.61
Agricultural Byproducts 974.9 short ton 118.17
Anthracite 2597.82 short ton 103.54
Biogas (Captured Methane) .0438 scf 52.07
Coke 2530.59 short ton 102.04
Coke Oven Gas .0281 scf 46.85
Distillate Fuel Oil No. 1 10.18 gallon 73.25
Distillate Fuel Oil No. 2 10.21 gallon 73.96
Electricity 278
Fuel Gas .0819 scf 59
Kerosene 10.15 gallon 75.2
Kraft Black Liquor 1131.11 short ton 94.42
LPG 5.79 gallon 62.98
Lignite 1369.28 short ton 96.36
Lubricants 10.69 gallon 74.27
Motor Gasoline 8.78 gallon 70.22
Naptha (<401 deg F) 8.5 gallon 68.02
Natural Gas (US average) .0545 scf 53.02
Petroleum Coke (Liquid) 14.64 gallon 102.41
Petroleum Coke (Solid) 3072.3 short ton 102.41
Propane (Liquid) 5.59 gallon 61.46
Residual Fuel Oil No. 6 11.27 gallon 75.1
Solid Byproducts 2725.32 short ton 105.51
Wastewater Treatment Biogas 52.07
Waxes 9.57 gallon 72.6
Wood and Wood Residuals 1442.64 short ton 93.8

Notes: The first column lists the energy source as named by the EPA. Prowess does not use
exactly the same naming convention, so we mapped by hand these energy types to the energy
types listed in Prowess. The second column reports kg CO2 associated with a given unit of
energy type in column 1, where the unit is reported in column 3. For most energy types, we
use the CO2 intensity listed in column 2. However, for some observations, we were unable to
standardize units across the two datasets. In some cases, we were able to use an alternative CO2

intensity reported per mmBTU. We list this alternative CO2 intensity in column 4.
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Table B.3: Energy Shares and Revenue Shares

True Revenue Shares Re-Adjusted Revenue Shares

(1) (2) (3) (4) (5) (6) (7) (8)
OLS OLS IV IV OLS OLS IV IV

Panel A: Electricity

Revenue Share 0.674∗∗∗ 0.688∗∗∗ 0.682∗∗∗ 0.695∗∗∗ 0.698∗∗∗ 0.600∗∗∗ 0.705∗∗∗ 0.606∗∗∗

(0.031) (0.040) (0.033) (0.013) (0.028) (0.037) (0.030) (0.011)

Num of Obs 11175 11175 11175 11175 11118 11118 11118 11118
R squared 0.338 0.320 0.337 0.446 0.321 0.446
Controls Y Y Y Y

Panel B: Fuel

Revenue Share 0.555∗∗∗ 0.611∗∗∗ 0.556∗∗∗ 0.617∗∗∗ 0.708∗∗∗ 0.513∗∗∗ 0.715∗∗∗ 0.512∗∗∗

(0.059) (0.077) (0.063) (0.032) (0.039) (0.061) (0.040) (0.025)

Num of Obs 3194 3194 3194 3194 3011 3011 3011 3011
R squared 0.168 0.185 0.168 0.450 0.223 0.450
Controls Y Y Y Y

Panel C: Coal

Revenue Share 0.751∗∗∗ 0.877∗∗∗ 0.758∗∗∗ 0.887∗∗∗ 0.812∗∗∗ 0.744∗∗∗ 0.813∗∗∗ 0.746∗∗∗

(0.072) (0.084) (0.075) (0.032) (0.058) (0.077) (0.060) (0.027)

Num of Obs 1916 1916 1916 1916 1835 1835 1835 1835
R squared 0.346 0.422 0.346 0.560 0.446 0.560
Controls Y Y Y Y

Panel D: Gas

Revenue Share 0.406∗∗∗ 0.529∗∗ 0.354∗∗ 0.473∗∗∗ 0.549∗∗∗ 0.061 0.534∗∗∗ -0.011
(0.125) (0.211) (0.134) (0.110) (0.116) (0.221) (0.124) (0.082)

Num of Obs 410 410 410 410 370 370 370 370
R squared 0.070 0.109 0.069 0.291 0.003 0.290
Controls Y Y Y Y

Panel E: Biofuel

Revenue Share 0.376∗ 0.538∗∗ 0.342 0.535∗∗∗ 0.663∗∗∗ 0.526∗∗ 0.643∗∗∗ 0.517∗∗∗

(0.203) (0.244) (0.218) (0.106) (0.136) (0.199) (0.154) (0.084)

Num of Obs 208 208 208 208 192 192 192 192
R squared 0.114 0.224 0.113 0.487 0.319 0.486
Controls Y Y Y Y

Notes: Each panel reports estimates that result from taking the energy source share listed as the dependent vairbale
and the product-specific revenue share as the independent variable. All shares are constructed to lie between 0 and
1 (exclusive). Columns 1-4 take total firm-product revenue as the denomintor of revenue share, while columns 5-8
condition on products for which the firm explicitly reports using the given energy source. Even-numbered columns
include controls for firm-year fixed effects. Columns 3-4 and 7-8 instrument current-year revenue share with lagged
revenue share. Standard errors are clustered throughout on the firm, and asterisks indicate statistical significance at
the 1% ∗∗∗, 5% ∗∗, and 10% ∗ levels 72



C Tables and Figures

Figure C.1: Real Sales Vs. CO2 Emissions in ASI and Prowess
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Notes: Figure plots total real output index (“Real Sales”) vs total CO2 emissions computed from the Annual Survey
of Industries (solid lines) and Prowess (dashed lines). Real sales are total nominal sales deflated by India CPI from
the World Development Indicators. All values indexed to the year 2001.
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Figure C.2: Light versus Heavy Industries Decomposition
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Notes: Figure plots total output index (“scale”), total CO2 emissions (“Emissions”) and counterfactual emissions at
the industry, firm, and product levels. Only data denominated in tonnes are used. Industry definitions are the same
as in Table 1. Heavy vs Light industry classification are explained in the main text.
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Figure C.3: Single-product versus Multi-product Firms Decomposition
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Notes: Figure plots total output index (“scale”), total CO2 emissions (“Emissions”) and counterfactual emissions
at the industry, firm, and product levels. Only data denominated in tonnes are used. Single and multi-product firms
are defined as in the main text.

75


	Working Paper - CCCEP_Major

