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Abstract

This article assesses the consequential risk impacts of the recent system of rice intensi�cation (SRI) imple-

mented in the Morogoro region of Tanzania, one of the largest Semi-Arid regions, using household and farm plot

level data extended to incorporate farmers' perceptions of climate change. The analysis implements a moment

approximation approach that accounts for the impacts of the technology on the �rst three moments of rice yields

and total household income. Using a endogenous switching regressions model, we �nd that perception of climate

change is a key driver for SRI adoption and impacts primarily the moments of income. Furthermore, the average

e�ect of SRI on dispersion and skewness are positive. In particular, the large increase in income variability is

not compensated by the increase in skewness (i.e., a reduction in downside risk), which may explain why SRI

adoption rate remains low in Tanzania. The study also highlights the importance of climate perceptions and

moisture-conserving technology in risk management in Semi-Arid areas. The theme of the study also falls within

the objectives of the PRISE project (Pathways to Resilience in Semi-Arid Economies) as it brings together insti-

tutional intervention (in the form of SRI provision), land productivity and vulnerability (in the form of farmers'

perceptions of climatic factors).
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1 Introduction

The growing literature on climate change predicts that Africa's agrarian economies are likely to disproportionately

bear the burden of increased temperature and erratic precipitation through substantial agricultural yield losses (A

Dinar, R Hassan, R Mendelsohn, J Benhin � 2012; IPCC, 2007; Kurukulasuriya et al., 2006). Climate change is

indeed likely to exacerbate underlying risks associated with climate-dependent economic activities such as rainfed

agriculture and to reduce investment under such risky environment (Adger et al. 2003; Moser and Barrett, 2003;

Christiaensen and Demery, 2007; Alem et al., 2010). Adaptation strategies are therefore essential to mitigate

the adverse consequences of changing climatic conditions. In this context, technologies that raise farmers' crop

productivity while improving yield stability are particularly valuable. For instance, many conventional technologies

such as those that accompanied the Green Revolution (e.g., improved varieties adoption) often result in greater crop

yield but at the expense of increased yield variability and income risk. As Antle and Crissman (1990) demonstrate

in a case study of rice production in the Philippines, individual conventional technologies do exhibit risk-enhancing

features, although appropriate combinations of management and inputs may achieve lower production risk. In this

paper, we assess the impact of an unconventional technology, the system rice intensi�cation (SRI), not only on the

mean agricultural yield and household income, but also on their variability and exposure to downside risk, captured

by the variance and skewness, respectively.

The system of rice intensi�cation (SRI) was developed in the 1980s in Madagascar as a set of alternative management

practices to help poor farmers�who were typically excluded from the input-intensive the Green Revolution�to

increase yield, while using cheap organic inputs and reducing water use. Given the inability of most African farmers

to access su�cient water resources, irrigation technologies, improved seeds, and inorganic fertilizers due to their cost

and due to insu�cient rainfall, SRI seems to be the perfect climate change adaptation strategy for these farmers.

SRI is based on four principles that rely on an unconventional set of agronomic practices. Unlike the traditional

paddy rice cultivation, SRI does not rely on �ooding but rather on moist soil, with intermittent irrigations (Stoop,

2002), which is particularly suited in regions where water is a limiting factor. Its guiding principles are: (1) early

transplanting (eight to 15 days old) of carefully managed seedlings; (3) single, widely spaced transplants to allow

early and regular mechanized weeding; (3) careful and controlled water management; and (4) application of compost

to the extent possible (Laulanié, 1993a, b; Stoop, 2002; Noltze et al., 2013). Despite skepticism from the scienti�c

agricultural community, SRI has delivered substantially higher yields while reducing input requirements (less water,

seeds and inorganic fertilizers) than the conventional paddy method (Noltze et al., 2013; and Katambara et al.,

2013). Furthermore, SRI is reported to produce more robust and resilient crops in the face of extreme weather

events, pests and disease (Stoop, 2002; Noltze et al., 2013). As a result, SRI has di�used over the past two decades

in the paddy rice growing regions in Asia (e.g., China, India, Vietnam) as well as in Africa.1 It is believed that

these outstanding outcomes will help poor and vulnerable farmers to increase their yields and incomes while being

resilient to the vagaries of unfavorable weather, especially in Africa. However, the spatial di�usion of SRI, the slow

adoption rate together with the high rate of dis-adoption among poor farmers has been puzzling (Rakotomalala,

1998; Stoop, 2002; Moser and Barrett, 2003, 2006; Takahashi and Barrett, 2014).

Why would resource-poor rice growers not adopt or even dis-adopt a method that promises to relax the binding

constraints they face under the conventional paddy method? Various explanations have been o�ered. Moser and

Barrett (2003, 2006) attribute the slow adoption and non-trivial dis-adoption rates to the large hidden opportunity

costs of engaging in SRI. Because SRI is a labor-intensive cultivation method, it typically requires a reallocation of

paid o�-farm labor into family unpaid farm labor to perform time-consuming tasks such as weeding and compost

preparation.2 For some poor farmers who have very few opportunities to earn cash, the cost is simply too high.3

1By 2015, SRI has been introduced in no less than 55 countries around the world, among these 22 African countries, including Mali,

Nigeria, Tanzania, Kenya, etc.
2Weeding is critical in SRI because weeds spread more rapidly under non-�ooded conditions (Noltze et al., 2013).
3Upho� (2006) maintains that this is a static view that does not account for the fact that labour intensity diminishes substantially

once farmers have become familiar with this new approach.
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Besides, since SRI constitutes a set of new, unconventional and un-familiar agronomic practices, success relies

heavily on sustained training and extension services. When these services are unavailable or not sustained over

time, farmers may have little incentive to adopt SRI. Yet another explanation is that SRI may have impacts beyond

the mere average yields and average income. If SRI were to impact the variability of the yields and income, or

were to impact the risk of lower yields and lower income then these impacts could also explain this puzzle. Indeed,

farmers who are averse to increased variability (risk averse) or averse to increased exposure to downside risk, would

abstain from adopting or would dis-adopt SRI despite its potential to deliver higher mean yields and mean income.

In this paper, we explore this third and complementary avenue to understand the puzzling low adoption of SRI.

Our empirical strategy relies on an endogenous switching regression model that estimates jointly the selection into

SRI as well as the e�ect of SRI on all �rst three moments of yields and income; that is on expected rice yield and

income but also on their variability and exposure to downside risk. This study extends the limited literature on

the variance and downside risk e�ects of technology adoption by focusing on System Rice Intensi�cation (SRI), an

integrated technology designed to reduce production risks. By doing so, we move away from the narrowly focused

analysis of the sole productivity impacts. For this purpose, a moment-based approach will be developed that will

characterize the stochastic technology (Kim and Chavas, 2003; di Falco and Chavas, 2009; di Falco and Veronesi

2014).

The analysis also intends to generate information on the development, dissemination and adoption of agricultural

technology in the context of semi-arid areas and along the objectives of PRISE. Speci�cally as the paper deals with

the theme climate vulnerability, land and agricultural growth, the analysis of SRI adoption would contribute to the

understanding of its contribution to increasing agricultural productivity per unit of land as well as its features of

reducing the dispersion in production as well as its downside risk in poor and risk-prone PRISE settings. Further, the

interaction between SRI adoption and climate perception highlights the importance of climate-related in formation

in agricultural technology adoption in PRISE regions4.

Our analysis highlights the importance of farmers' climate perception both on the adoption decision and on the

moments of yield and income. The essence of studying income risk in the context of climate variability stems

from the fact that low adaptive capacity implies that risk exposure can be heavily exacerbated by unfavourable

climatic conditions (Pecetti et al., 1992; Loss and Siddique, 1994; Di Falco and Chavas, 2009). Hence, in addition to

underlying risk considerations, the responsiveness of income risk would depend on climate change and its perceptions.

Analysis of climate change perceptions and its impact on farm level decision making, while recent, is a fast growing

area of research. Madison (2007) and Bryan et al. (2009) assessed the ability of farmers in Africa to detect climate

change and looked to ascertain how farmers had adapted to whatever climate change they believed had occurred.

Their �ndings show that farmer behavioural responses to perceived climate change tend to be related more to recent

climate events or trends as opposed to long-term changes in average conditions (Smit et al., 1997; Granjon, 1999

in Bryant et al., 2000; Thomas et al., 2007; Bryan et al., 2009). In addition, several studies found local knowledge

in decision making as it pertains to climate risk to be critical parameter in decision making (Roncoli et al., 2001,

2002; Vogel and O'Brien, 2006; Thomas et al., 2007). Others found that farmers base their decision to adapt their

farming practices not only on changes in average conditions, but also on a number of other climate factors observed

through personal experience such as extreme events, rainfall frequency, timing, and intensity, and early or late

frosts, highlighting the importance of climatic perceptions (Smithers and Smit, 1997; Roncoli et al., 2002; Vogel

and O'Brien, 2006; Thomas et al., 2007). 5

4PRISE focused countries are Senegal, Burkina Faso, Tanzania, Kenya, Pakistan and Tajikistan
5A number of studies point to bias in the perception of climate change associated with di�erent factors. In line with this, Howe

and Leiserowiz (2013) �nd that the subjective experience of local climate change is dependent not only on external climate conditions,

but also on individual beliefs, with perceptions apparently biased by prior beliefs about global warming. In addition, Whitmarsh

(2011) argues that individual attitudes and biased cognitive processing can also bias information recall associated with climate change.

Similarly, Weber (2010) argues that recent events are likely to be given more weight than distant events in the evaluation of risky

options.
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The rest of the paper is organized as follows. In section 2, we present some background description about SRI adop-

tion and climate change in Tanzania. The survey strategy and data are discussed in section 3, while the estimation

methodology is provided in section 4. Section 5 presents the empirical �ndings and section 6 concludes the paper.

2 Background: Climate change and SRI adoption in Tanzania

Vulnerability of rainfed agriculture to climate change could have devastating consequences for the welfare of small-

holder farmers in Tanzania due to reduced agricultural yields. Recent �ndings suggest that climate change may

yield shorter growing seasons and stress on cash crops due to increased moisture, heat, insects and pests (Mongi,

et al., 2010), resulting in likely deteriorations in food security (Arndt et al., 2011). In that regard, Rowhani et al.

(2010) show that a 2◦C-rise in temperature by 2050 may induce a decline in mean yields of maize, sorghum and

rice by 12%, 8.8% and 7.6%, respectively.

The impact of climate change on Tanzanian agriculture will not only be in�uenced by mean changes in climatic

conditions,but also by its associated variability. For instance, Rowhani et al. (2010) argue that ignoring climate

variability indeed underestimates the decline in maize, sorghum and rice yields by 3.6%, 8.9%, and 28.6%, respec-

tively. Moreover, Ahmed et al. (2011) �nd high yield variability of staple grains to be associated with large increases

in poverty. However, in analyzing the economy-wide e�ects of climate change in Tanzania, Bezabih et al. (2011)

contend that despite the projected reduction in agricultural productivity, the negative impacts may be fairly limited

provided policies that enable farmers to respond appropriately to changes in climatic conditions are implemented.

Policies promoting adoption of technologies that contribute to farmers' adaptation to climate change and climate

variability are of particular interest in this regard. However, in addition to their costliness, conventional yield-

enhancing technologies (e.g., improved varieties, cultivation of paddy rice, etc.) may be unsuitable for poor and

vulnerable farmers whenever they lead to a rise in yield variability and to greater exposure to downside risk (Kim and

Chavas, 2003), especially in a context of changing climatic conditions. For instance, in Tanzania, the conventional

�ooding techniques in paddy �elds are deemed ine�cient given limited water availability and growing seasonal

variability (Katambara et al., 2013). The recent introduction of the system of rice intensi�cation (SRI) in 2006

aimed to lessen the water intensity of rice production, improve low yields and consequently increase farmers' incomes.

Crops cultivated under SRI are also reported to be more resilient in the face of extreme weather events, pests and

diseases. This novel and unconventional approach seems particularly suited to poor farmers in water scarce regions

because it requires reduced inputs (less water, less seeds and less inorganic fertilizers are needed). A simpli�ed

variant of the SRI developed in Madagascar has been introduced in Tanzania since 2006. It entails shallow planting

of 1-2 cm of transplanted seedlings aged 8 to 12 days on a square grid of 20-25 cm with intermittent irrigation,

fertilizer and weeding (Nakano et al., 2014; Africare, 2010; Katambara et al., 2013b). The SRI was implemented

in several regions of Tanzania and has met some success regarding yields improvement, water e�ciency, productive

tillers and panicles requirements of rice production (Katambara et al., 2013a). For example, in Mkindo (Morogoro

Province) water e�ciency improved by up to 64% while yields increased from 3.8 tons/ha (with conventional

methods) to 6.3 tons/ha (Katambara et al., 2013a). In addition, wider spacing and less transplanted seedlings (up

to 10 kg/ha less seeds), as well as decreased disease vulnerability and enhanced wind resiliency due to healthier

and more robust plant stems and lowered expected soil erosion (Katambara et al., 2013a). Despite these seemingly

promising results, adoption of SRI has been limited in Tanzania (Katambara et al., 2013a). In the following sections,

we investigate the determinants of SRI adoption in the Morogoro region of Tanzania as well as the e�ect of adoption

on the �rst three moments (mean, variance and skewness) of agricultural yield and farmer's income.

The study area focuses on one of the semi-arid regions of the country, the Morogoro region Mahoo et al., 1999). As

project 5 of PRISE is focused on land, climate change, land productivity and risk responsiveness in the context of

Semi-Arid areas, this study could be considered as a relevant contribution to the project. The study is of importance
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to PRISE for three major reasons. First, assessment of technology options with environmentally sensitive features

such a SRI is rare in the African context. Second, in such a rain-fed setting, any signi�cant variation in the

temporal and spatial distribution of rainfall usually is manifested in a serious moisture constraint (Bezabih et al.,

2011; Mahoo et al., 1999). Indeed, existing literature on technology adoption and its impact on welfare typically

focuses on technological, informational, resource and institutional constraints, with rare focus on agroecological

di�erences (exceptions include Kassie et al., 2010). Third, as semi-arid areas are sensitive to the vagaries of climate,

assessing the impact of climatic perceptions in the adoption of the technology and on its di�erent outcome features

enables understanding the dynamics of climate-perception and technology adoption in such settings, also generates

valuable information.

3 Data

The data used for the empirical analysis is based on a survey in the Kilombero district of Morogoro region, one of the

largest rice producing regions in the country. In this district, 334 rice farming households were randomly selected

from eight villages for the farming season ending in June, 2013. In the Tanzanian setting, an SRI package consists

of seeds sorting prior to planting, square grid planting, use of saro seeds varieties, and application of chemical

fertilizers. We consider a household to be SRI adopter if it applies at least three of the four components. However,

none of these components is applied universally by all adopting households, which underscores the fact that SRI

adoption is partial.6

The choice of plots that were allotted to SRI occurred as follows. Initially, farmers gave information on all of their

rice-planted plots in the survey year, by SRI status. It was noted that multiple plots cultivation was only common

among the traditionally farmed varieties but not on SRI. Whenever a household adopted SRI it only applied the

method in one of its plots and not in several, hence our choice of only one plot for the SRI. For the non-SRI plots,

a representative plot was selected using a simple random technique in order to minimize minimize the plot-level

selection bias for this particular category of plots. In Section 4, we discuss the econometric steps we took to further

control for potential selection bias resulting from systematic selection of plots into the SRI and non-SRI categories.

With an adoption rate of approximately 60%, a total of 193 households have adopted SRI on at least one of their

plots during the previous agricultural season. When a household operates several plots, information is collected

only for one randomly selected plot. The survey includes detailed socio-economic households characteristics, plot-

speci�c information, as well as farming inputs used (from plots preparation to the post-harvest), alongside output

and marketing information. Table 1 below presents the mean of the variables used in the regressions by SRI adoption

status, as well as the mean di�erences between the adopter and non-adopter groups.

On average, households adopting SRI tend to be larger, headed by older farmers (44.5 versus 41 years for non-

adopters) and have more males of a working age (i.e., 15 years and above). They are typically wealthier, have more

experience in rice farming and a denser social network. They also tend to receive visits from extension services.

These di�erences are statistically signi�cant at least at the 5 percent level. However, we do not �nd any statistically

signi�cant di�erences across the two groups when it comes to their level of education and marital status.

Farmers typically practice SRI on relatively smaller plots (1 acre compared to 2.8 acres) that are located closer to

their homesteads (3.7 km vs. 4.7 km). On average, these plots are more fertile than the conventionally cultivated

plots. However, we do not �nd any signi�cant di�erences across plots on other observable characteristics such as

slope and soil type.

Consistent with previous literature, practising SRI requires considerably more labor. On average an SRI plot

requires almost twice as much labor supply (64 man-days vs. 33 man-days for non-SRI plots) This substantial

di�erence emphasizes the need of evaluating the impact of the technology beyond mere agricultural yield given both

6Each of the components is applied on almost 90 percent of the adopting plots. This is comparable to related studies (e.g.. Noltze

et al, 2013; Takahashi and Barrett, 2013).

5



the direct and indirect costs of such extra labor requirement. In addition, given the potential reallocation of labor

by SRI farmers from other income generating activities to SRI plots, assessing the higher moments impact of the

technology becomes even more important since the adopting household in this case has less window to diversify

against bad outcome risks.

The key dependent variables, in addition to SRI adoption, are yield and total household income. Yield is calculated

as total harvest per acre of cultivated land in thousands of tonnes. Given the labor intensive nature of SRI, it is

important to estimate its impact on total households' income, accounting for both direct and indirect costs associated

with such extra labour demand. Because the adoption of SRI requires additional labor supply (expressed in man-

days), it could be the case that increased labor costs could negatively a�ect both farm and o�-farm incomes. Total

household income constitutes both total farm pro�t and o�-farm earnings from all sources including remittances

within the same agricultural season. Farm income is calculated as di�erence between total revenue and total

production cost per acre, multiplied by total size of the cultivated plot. While revenue is computed as the product

of farm gate price of paddy per kilogram and yield, we calculate total cost as the sum of all input costs (including

seeds, labor, herbicides and fertilizer) used during the entire farming year starting from plot preparation to the

harvest period. It should be noted that Labor cost constitutes of both household labor (computed using shadow

wage approach by Jacoby, 1993) and cost for hired labor. Preliminary assessment suggests that SRI farmers obtain

signi�cantly more yield, and total household income than their counterparts. On average, SRI farmers harvest 7.51

in log kg per acre and earn a total income of TZS 1.6 million compared to a yield of 6.85 (log kg per acre) and an

income of TZS 1.2 million for non-adopters.

Finally, households were also asked about their perception regarding changing climatic patterns�average annual

rainfall and temperature�over the past 10 years. Perception about climate change is captured by two dummy

variables that indicate whether a farmer has noticed a pattern of rising average temperatures or declining rainfalls

over the past decade. These dummy variables are constructed based on farmers' direct response. Most farmers have

perceived such changing patterns; nearly 60% of SRI adopters have observed a decrease in the average rainfall, as

opposed to 53% of the non-adopters, although the di�erence is not statistically signi�cant. Approximately, 64% of

both SRI adopters and non-adopters believe that average annual temperatures are increasing.

It is however important to note that due to self-selection problem (or endogeneity bias) we cannot attribute all the

di�erences presented in the table to SRI adoption. Given that SRI farmers are more socially connected, receive

more extension services and that they apply the technology on more fertile plots, adopters and non-adopters could

still have some outcome di�erences even without the technology adoption.

4 Conceptual framework and econometric methodology

The premise of our analysis is that farmers are expected to grow yield-enhancing varieties such that welfare is

improved from the gains of higher yields and pro�t. Further, to the extent that SRI is perceived and conceived as a

risk mitigating practice, it is expected to have additional welfare bene�ts to generally poor and risk-averse farmers

(Kim and Chavas, 2003). Our analysis relies on a moment-based speci�cation of the stochastic production function

(Antle 1983; Antle and Goodger 1984). The method has been widely used in the context of risk management in

agriculture (Just and Pope 1979; Kim and Chavas 2003; Koundouri et al. 2006; and Di Falco and Chavas 2009).

It is based on Pratt's (1964) concept of risk premium as a measure of the cost of private risk bearing, where

technological progress may potentially be either risk-increasing or risk-decreasing depending on whether it increases

or decreases the relative risk premium. As a result, the welfare of risk averse farmers may be adversely a�ected by

mean-preserving increases in the variance of yield or income and in the associated skewness (e.g. the probability of

crop failure). Since increased variance does not distinguish between unexpectedly good and bad events, and since

the avoidance of crop failure is the major objective of farmers in Sub-Saharan Africa (Di Falco and Chavas, 2009),

the notion of skewness is particularly important. While, risk averse farmers may have an incentive to reduce the
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Table 1: Summary Statistics

Variables
Entire sample Sub-samples

Mean Std dev Mean Adopters Mean Non-Adopters Mean Di�erence

Age 42.96 11.87 44.46 40.91 3.54∗∗∗

Household size 4.71 1.84 4.91 4.44 0.47∗∗

Married (dummy) 0.86 0.35 0.87 0.85 0.02

Male (dummy) 0.91 0.29 0.89 0.94 -0.05

Men 1.51 0.91 1.56 1.43 0.14

Education (in years) 7.00 1.88 7.04 6.94 0.10

Experience rice (in years) 14.91 9.72 15.65 13.90 1.75

Wealth (log wealth) 12.72 1.25 12.89 12.49 0.41∗∗∗

Total labor supply (in man days) 50.84 68.83 63.62 33.36 30.26∗∗∗

Chemical fertilizer usage (dummy) 0.54 0.50 0.86 0.09 0.78∗∗∗

Plot size (in acre) 1.74 2.33 0.97 2.78 -1.81∗∗∗

Very fertile 0.41 0.49 0.41 0.40 0.010

Fertile 0.92 0.28 0.95 0.87 0.08∗∗

Slopy plot 0.13 0.34 0.11 0.16 -0.040

Plot distance (in km) 4.10 4.39 3.75 4.58 -0.83∗

Distance to market (in km) 87.54 203.19 102.8 66.67 36.11

Agriculture as main activity 0.96 0.19 0.97 0.94 0.030

Yield (in log kg per acre) 7.23 0.83 7.51 6.85 0.66∗∗∗

Total Income (in million TZS) 1.39 2.00 1.58 1.12 0.45∗∗

Extension (dummy) 0.43 0.50 0.62 0.16 0.45∗∗∗

Perception Rain decrease (dummy) 0.57 0.50 0.60 0.53 0.060

Perception Temperature increase (dummy) 0.64 0.48 0.64 0.65 -0.01

Years in the village 14.19 9.91 15.27 12.70 2.56∗∗

Social connection 0.87 0.30 0.94 0.78 0.17∗∗∗

Sort seed 0.72 0.45 0.92 0.45 0.47∗∗∗

Number of observations 334 334 193 141 -
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variance of returns, farmers exhibiting aversion to downside risk have an incentive to grow varieties that positively

a�ect the skewness of the distribution of returns, thus reducing their exposure to downside risk (e.g. severe drought

leading to crop failure) (Kim and Chavas, 2003; Difalco and Chavas, 2009). Thus, a moment-based approach can

capture the full extent of risk exposure.

We therefore estimate the impact of the new technology (SRI) on outcome variables between adopters and non-

adopters, beyond the usual mean di�erence to also assess its impacts on higher moments of the outcome variables

(i.e. variance and skewness). Our empirical approach addresses two estimation considerations. First, there is a

potential problem of simultaneity bias because although adoption of SRI may result in enhanced yields and higher

incomes, it can also be the case that higher yields and incomes increase the probability of adopting SRI. Second,

some observed and unobserved characteristics (household or farm characteristics) may concurrently a�ect both

selection (adoption of SRI) and outcome (income or yield). Estimation of the e�ects of adoption via ordinary least

squares (OLS), which assumes random selection, is therefore potentially biased.

Standard treatment e�ects models typically include a treatment dummy as explanatory variable, assuming that the

impact on the outcome variable can be represented as a simple intercept shift. Noltze et al (2013) argue that this is

inappropriate because farm and farmer conditions may systematically in�uence SRI impacts on yields and house-

hold incomes. Following previous studies (e.g., Di Falco et al, 2011; Noltze et al, 2013), we employ an endogenous

switching regression model (ESR) to address this estimation bias. Apart from its ability to correct for selection bias

due to observable and unobservable di�erences between the groups, ESR allows us to estimate both the average

treatment e�ects on the treated (ATT) and the average treatment e�ect on the untreated households (ATU). The

endogenous switching regression model consists of two stages. The �rst stage is a selection equation that is based

on a dichotomous choice function (probability of adopting SRI), while the second stage, the outcome equations,

feature the determinants of the outcome equations (yield or income) for both adopters and non-adopters.

In the �rst stage, given observed and unobserved characteristics, each farmer elects to adopt the new SRI technology

or not whenever his latent (unobserved) expected bene�ts from adoption (SRI∗) are positive, and will abstain

otherwise. The decision to adopt is however observed and captured dummy variable SRI which takes value 1 in

case of adoption. The �rst stage selection equation is typically modeled as follows:

SRI∗i = S′iγ + υi

SRIi =

0 if SRI∗i ≤ 0

1 if SRI∗i > 0

where Si is a vector of exogenous variables a�ecting both the probability of adopting SRI. These variables include (i)

households' characteristics such as education, age, marriage status, experience, and wealth; (ii) farm characteristics

such as farm size, fertility of the soil, and slope of the terrain; (iii) social network and training; and (iv) perception

about changing climatic patterns, which is a novelty in the SRI literature (see for example Takahashi and Barrett,

2013; Noltze et al, 2013).

The second stage outcome equations are explicitly modeled di�erently according to the farmers' adoption decision.

The model accommodates the two adoption regimes:

Regime 0: y0i = X ′iβ0 + ε0i if SRIi = 0

Regime 1: y1i = X ′iβ1 + ε1i if SRIi = 1

where y0i and y1i denote the values of the outcome (mean, variance and skewness of yield, pro�t and income) for

farm household i in each adoption regime; Xi is a vector of exogenous covariates that in�uence the outcome in
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each regime, and β0 and β1 are the associated vectors of coe�cients. This method allows for correlation between

the three error terms ε0i, ε1i and υi �which are assumed to be jointly normally distributed N (0,Σ) where the

covariance matrix is written as:

Σ =

 σ2
υ = 1 σ0υ σ1υ

σ0υ σ2
0 .

σ1υ . σ2
1

 .

The covariance terms between ε0i and ε1i are not de�ned (.) since a given farmer cannot be simultaneously an adopter

and a non-adopter. The �rst variance σ2
υ is normalized to one to ensure statistical identi�cation of parameters.

We typically estimate this endogenous switching regression model by using a consistent and e�cient procedure that

relies on full information maximum likelihood (FIML) with observation i′s likelihood written as follows:

Li = Pr (yi andSRIi = {0, 1})

= [Pr (yi = y1i, SRIi = 1)]
SRIi . [Pr (yi = y0i, SRIi = 0)]

1−SRIi

=
[
Pr (yi = y1i)Pr

(
SRIi = 1

∣∣yi = y1i
)]SRIi

.
[
Pr (yi = y0i)Pr

(
SRIi = 0

∣∣yi = y0i
)]1−SRIi

where

Pr (yi = yji) = Pr (yi = X ′iβj + εji) =
1

σj
φ

(
yi −X ′iβj

σj

)

Pr
(
SRIi = 1

∣∣yi = yji
)

= Pr
(
υi
∣∣εji = εj0 > −S′iγ

)
= Φ

S′iγ + ρjυ (yi −X ′iβj) /σj√
1− ρ2jυ



Pr
(
SRIi = 0

∣∣yi = yji
)

= Pr
(
υi
∣∣εji = εj0 ≤ −S′iγ

)
= 1− Φ

S′iγ + ρjυ (yi −X ′iβj) /σj√
1− ρ2jυ


where φ and Φ are the standard normal probability density and cumulative distribution functions; and j = 0, 1

represents SRI adaptation and non-adaptation, respectively.

For proper identi�cation of the selection equation coe�cients, we assume at least one element of the vector of

covariates S in the SRI equation is excluded from the outcome equations. Our exclusion restriction relies on two

sets of variables. First, we rely on variables relating to social network (density of the connection and number of years

in the village) which as we will see do not a�ect the outcome directly but through SRI adoption decision. Secondly,

as another excluded variable, we include a variable that captures a management practice that is closely associated

with SRI. For instance, the practice of sorting seeds is particularly advocated within SRI. We can presumably

assume that this activity will a�ect yield or income (mean, variance and skewness) only through SRI and not

directly. The admissibility of the instruments is tested by performing the falsi�cation test introduced by di Falco et

al. (2011). That is, a valid set of instruments will a�ect the decision to adopt SRI but not the moments of yield or

income for non-adopters. As we show in Panel C of Tables 2 and 3, based on the admissibility tests, we can never

reject the null that the chosen instruments are valid.

As noted before, following Kim and Chavas (2003), we estimate our switching models (for total harvest and total

income) considering not only the mean levels as dependent variables, but also the variance, to capture variability,

and the skewness, to capture exposure to downside risk. Considering the variance and its skewness in addition to its

levels, allows us to identify potential trade-o�s between productivity gains and income stability (the risk of income

loss/crop failure). For example, if we consider regime 1, the second and third moments (variance and skewness) are

calculated as:
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Variance = µ2y1 = E
[
(y1 − E (y1))

2
]

Skewness = µ3y1 = E
[
(y1 − E (y1))

3
]

To compare di�erences in total yield and total income between adopter and non-adopter households, we calculate

treatment e�ects using estimates from the switching regression models. Two e�ects are of particular interest. First,

we estimate the e�ect of treatment on adopters or treated (i.e., ATT); that is, the e�ect of adoption on adopters.

Secondly, we estimate the e�ect of treatment in the non-adopter or untreated (i.e., ATU); that is, the e�ect of

adoption on non-adopters had they adopted SRI). The unbiased treatment e�ects ATT and ATU that control for

observed and unobserved heterogeneity are given by:

ATT = E (y1i | SRIi = 1)− E (y0i | SRIi = 1)

ATU = E (y1i | SRIi = 0)− E (y0i | SRIi = 0)

where

E (y1i | SRIi = 1) = X ′iβ1 + λ1σ1υ

E (y0i | SRIi = 1) = X ′iβ0 + λ1συ0

E (y1i | SRIi = 0) = X ′iβ1 + λ0συ0

E (y0i | SRIi = 0) = X ′iβ0 + λ0σ1υ

The inverse mills ratios λ0 and λ1 evaluated at S′iγ characterize the truncated error terms so that:

E (ε1i | υi > −S′iγ) =
φ (S′iγ)

Φ (S′iγ)
σ1υ = λ1σ1υ

E (ε0i | υi ≤ −S′iγ) =
φ (S′iγ)

1− Φ (S′iγ)
σ0υ = λ0σ0υ

5 Results and discussion

We estimate the impact of SRI on the �rst three moments of yield and total household income (i.e., mean, variance

and skewness) using endogenous switching regression models. We report the two stages of our model in Table 2

and Table 3. The choice of variables in the estimation draws from the theoretical and empirical variables in Difalco

and Chavas (2009). We �rst discuss the correlates of SRI adoption, and second we examine the determinants of the

mean, variance and skewness for both yield and income.

5.1 Determinants of SRI adoption

Our �rst step is to shed some light on the observed factors that characterize SRI adopters. We �nd that wealthier

households, and those who rely on agriculture as their main source of income are more likely to adopt SRI. The

fact that SRI attracts wealthier farmers is somewhat unexpected given SRI was initially designed to enable poorer

farmers to enhance their yields and reduce water consumption. This unexpected pattern in Tanzania is also captured

by the fact that farmers using more chemical fertilizers are more willing to adopt this new practice. By contrast,

SRI was introduced in Madagascar for farmers who typically could not a�ord expensive chemical fertilizers and were
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rather relying on manure and other organic fertilizers. As expected, greater labor supply is a determining factor

since SRI is more labor-intensive (extra labor needed for weeding, seed sorting etc.) than the conventional paddy

rice farming. Similarly, seed sorting is also associated with SRI adoption. Farmers owning farmland of smaller

size, greater soil fertility, and located within close proximity are more eager to adopt SRI. A possible explanation

is that, given the recent introduction of SRI, farmers are still experimenting before considering a scale up of this

practice. An alternative explanation could be that farmers are simply diversifying their portfolio of technology. It

is worth noting that in other settings and regions, farmers have dedicated only relatively small plots to SRI despite

its bene�ts due, among others, to the high opportunity costs this practice is associated with (Moser and Barrett,

2003).

Both formal education (i.e. years of schooling) and extension service based training in�uence positively the adoption

decision, albeit the former tends overall to be statistically less signi�cant. The fact that farmers who receive visits

from extension services are more likely to adopt SRI could be due to the complex and un-conventional nature of

SRI. In addition greater social connection (as measured by the number of social groups, and the number of years

lived in the village), is associated with technology adoption.

Importantly, we �nd that changing climatic patterns (as perceived by farmers) in�uences the decision to adopt SRI.

Farmers perceive climatic changes through reduced rainfall and increased temperature. Those who have observed

decreasing rainfall patterns are more incline to adopt SRI than those who have not perceived these changes. This

suggests that adoption of SRI could be regarded as an adaptation mechanism to climate change since one of its

key objectives is to reduce water usage in rice farming. On the other hand, perception of long-term increasing

temperatures on SRI adoption is negative but statistically signi�cant only for the mean yield.

We �nd very similar results for the variance and skewness of the yield. The only two di�erences is that both

education and perceived temperature increase are no longer signi�cant. Finally, the �rst stage of the income models

(Panel C of Table 3) shows very similar results.

5.2 Switching regression results for mean, variance and skewness of yield and total

income

For an average farmer who has adopted SRI (see Panel A of Table 3), the �rst three moments of income are primarily

in�uenced by labor supply, plot distance from the homestead, and perception of rising temperature. An increase

in these variables results in greater mean income andreduced downside income risk. These positive e�ects are

accompanied with enhanced income variability. Surprisingly, households whose primary activity lies in agriculture

experience reduced mean income and increased downside income risk. These adverse e�ects are however mitigated

by the decrease in income variability. It is also noticeable that farmers' experience in rice cultivation reduces income

variability while plot size raises it. However, neither variable has a signi�cant e�ect on expected income or skewness.

The results found for rice yield (Panel A of Table 2) are fairly similar although statistical signi�cance is generally

more patchy.

Changing climatic conditions as perceived by farmers play a key role in our analysis. In fact, rising temperatures

(as perceived by farmers) have a markedly di�erent e�ect across the group of adopters and non-adopters. Reduced

rainfall however does not exhibit such di�erences. We �nd that the e�ect of a rise in temperatures as perceived

by adopting farmers is to raise expected income and expected rice yield, at the expense of increased variability.

Downside risk is also reduced although it is statistically signi�cant only for income. By contrast, non-adopting

farmers' perception of rising temperatures has no statistically signi�cant e�ect on any of our dependent variables.

The e�ect of perceived higher temperature runs entirely through adopting farmers. While farmers are less likely to

adopt SRI when they perceive rising temperatures, for those farmers who have indeed adopted SRI, the perception

of increasing temperatures is associated with greater expected yield and variability but also with greater expected

income, increased income variability and reduced exposure to downside income risk. This overall positive e�ect
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Table 2: Determinants of Yield and SRI: Endogenous Switching Regression Model

(1) (2) (3) (4)

Ordinary Least Squares Endogenous Switching Regression

Mean Yield Mean Yield Variance of Yield Skewness of Yield

Panel A: Yield if SRI = 1

hhsize -0.035 (0.025) -0.037 (0.038) -0.130 (0.087) 0.414 (0.349)

married 0.371∗∗ (0.168) 0.591∗∗ (0.278)

male -0.226 (0.170) -0.218 (0.248)

men 0.081∗ (0.045) 0.110∗∗ (0.052)

education 0.047∗ (0.027) 0.041 (0.042) 0.074 (0.105) -0.403 (0.492)

experience_rice -0.002 (0.005) -0.001 (0.006) -0.039∗∗ (0.015) -0.000 (0.061)

lwealth2 0.059∗ (0.032) 0.021 (0.043) -0.002 (0.089) -0.210 (0.278)

labor_total 0.003∗∗∗ (0.001) 0.002∗∗∗ (0.001) 0.004 (0.003) 0.029∗∗∗ (0.011)

chem_fert_usage 0.282∗∗∗ (0.106) -0.119 (0.226) -0.222 (0.479) -3.726∗∗ (1.736)

plotsize -0.058∗∗ (0.029) -0.178 (0.132) 0.130 (0.229) 0.988 (1.312)

veryfertile 0.024 (0.080) 0.010 (0.105) -0.063 (0.215) 0.329 (0.671)

slopyplot -0.064 (0.114) -0.298∗ (0.166) -0.264 (0.232) -0.747 (0.802)

plotdistance -0.013 (0.012) -0.014 (0.023) 0.155∗∗ (0.075) -0.238 (0.339)

distance_mkt_min -0.000 (0.000) 0.000 (0.000) -0.000 (0.000) -0.000 (0.001)

agriculture 0.004 (0.281) -0.650∗∗ (0.259) -0.608 (0.538) -3.802 (2.380)

extension 0.152 (0.103) 0.072 (0.117) 0.266 (0.258) -0.189 (1.111)

rain_dec -0.201∗∗ (0.079) -0.201∗ (0.114) 0.136 (0.195) -0.834 (0.707)

temp_inc 0.194∗∗ (0.085) 0.255∗∗ (0.118) 0.388∗ (0.204) 0.413 (0.737)

_cons 5.870∗∗∗ (0.548) 7.451∗∗∗ (0.734) 1.054 (1.721) 9.323 (6.761)

Panel B: Yield if SRI = 0

hhsize -0.037 (0.031) 0.017 (0.030) -0.038 (0.067)

married 0.089 (0.131)

male -0.181 (0.153)

men 0.079 (0.062)

education 0.007 (0.027) -0.040 (0.025) 0.044 (0.054)

experience_rice -0.001 (0.005) -0.002 (0.006) 0.005 (0.014)

lwealth2 0.073∗ (0.043) -0.082 (0.080) 0.078 (0.089)

labor_total -0.001 (0.002) -0.000 (0.002) -0.000 (0.003)

chem_fert_usage -0.122 (0.233) 0.289 (0.755) -0.915 (0.631)

plotsize -0.024 (0.016) 0.022 (0.030) -0.062 (0.068)

veryfertile -0.109 (0.113) 0.266 (0.247) -0.541 (0.352)

slopyplot 0.334∗∗ (0.130) -0.489∗∗∗ (0.176) 0.894∗∗∗ (0.334)

plotdistance -0.006 (0.009) -0.019 (0.015) 0.033 (0.024)

distance_mkt_min -0.001∗∗∗ (0.000) 0.001 (0.001) -0.003 (0.002)

agriculture 0.340 (0.269) -0.668∗∗ (0.307) 1.143∗∗ (0.507)

extension -0.039 (0.142) 0.271 (0.293) -0.481 (0.385)

rain_dec -0.233∗∗ (0.115) 0.317 (0.215) -0.832∗∗ (0.411)

temp_inc 0.053 (0.104) -0.026 (0.130) 0.109 (0.232)

_cons 5.987∗∗∗ (0.602) 2.102∗∗ (1.065) -2.154∗ (1.159)

Robust standard errors in parentheses ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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(1) (2) (3) (4)

Yield OLS Mean Yield Variance of Yield Skewness of Yield

Panel C: SRI Equation

hhsize 0.102 (0.082) 0.135 (0.082) 0.150∗∗ (0.070)

married 0.757∗∗ (0.372) 0.024 (0.015)

male -1.909∗∗∗ (0.546)

men 0.369∗∗ (0.187)

education 0.248∗∗ (0.099) 0.100 (0.077)

experience_rice 0.009 (0.014) 0.002 (0.022) 0.100 (0.070)

lwealth2 0.382∗∗∗ (0.141) 0.312∗∗ (0.146) 0.271∗∗ (0.113)

labor_total 0.003∗ (0.001) 0.002 (0.002) 0.003∗∗ (0.001)

chem_fert_usage 2.564∗∗∗ (0.389) 2.557∗∗∗ (0.484) 2.390∗∗∗ (0.367)

plotsize -1.022∗∗∗ (0.293) -0.914∗∗∗ (0.297) -0.949∗∗ (0.412)

veryfertile 0.631∗∗ (0.307) 0.753∗∗ (0.347) 0.673∗∗ (0.289)

slopyplot -0.265 (0.446) -0.393 (0.377) -0.225 (0.338)

plotdistance -0.087∗∗∗ (0.032) -0.076∗ (0.040) -0.062∗ (0.033)

distance_mkt_min 0.002∗∗ (0.001) 0.002∗ (0.001) 0.002∗ (0.001)

agriculture 1.557∗∗ (0.709) 1.445 (1.362) 1.387∗∗ (0.625)

extension 0.907∗∗∗ (0.310) 0.765∗∗ (0.332) 0.876∗∗∗ (0.306)

rain_dec 0.815∗∗∗ (0.279) 0.464∗ (0.256) 0.465∗∗ (0.231)

temp_inc -0.644∗ (0.355) -0.444 (0.438) -0.345 (0.358)

years_invillage 0.031∗∗ (0.013) 0.041∗∗∗ (0.016)

connected2 1.097∗∗ (0.466) 1.169 (0.845) 1.258∗∗∗ (0.480)

sortseed 1.442∗∗∗ (0.296) 1.093∗∗ (0.476) 1.015∗∗∗ (0.300)

_cons -10.323∗∗∗ (2.104) -9.015∗∗∗ (2.141) -8.295∗∗∗ (2.073)

σ2
1 0.787∗∗∗ (0.119) 1.884∗∗∗ (0.215) 7.562∗∗∗ (0.343)

ρ1υ -0.348 (0.213) -0.087 (0.110) -0.424 (0.338)

σ2
0 0.528∗∗∗ (0.079) 0.783∗∗∗ (0.235) 1.781∗∗∗ (0.268)

ρ0υ -0.473 (0.395) 0.414 (1.108) -0.675∗∗ (0.341)

Chi Test Indep 3.036∗ 0.619 3.843∗∗

P-Value Chi test Indep 0.081 0.431 0.050

Admissibility Tests

Chi(3) SRI equation 27.99∗∗∗ 24.14∗∗∗ 24.66∗∗∗

P-Value Chi test 0.000 0.000 0.000

Chi(3) Outcome equations 1.55 3.20 3.46

P-Value Chi test 0.671 0.362 0.177

Number of Countries 325 325 325 325

Log Pseudo-Likelihood -358.624 -368.002 -591.717 -958.180

Robust standard errors in parentheses ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3: Determinants of Income and SRI: Endogenous Switching Regression Model

(1) (2) (3) (4)

Ordinary Least Squares Endogenous Switching Regression

Mean Income Mean Income Variance of Income Skewness of Income

Panel A: Income if SRI = 1

hhsize 0.028 (0.049) 0.057 (0.060) -0.406 (0.564) -0.009 (0.012)

married 0.493∗ (0.273) 0.898∗∗ (0.407) 6.151 (4.228) 0.079 (0.057)

male -0.018 (0.250) -0.423 (0.341) -0.698 (2.753) -0.007 (0.051)

education 0.043 (0.035) -0.035 (0.048) -0.306 (0.364) -0.002 (0.007)

experience_rice -0.011 (0.013) -0.021 (0.014) -0.279∗∗ (0.137) -0.003 (0.002)

lwealth2 0.106 (0.086) 0.120 (0.111) -0.104 (1.175) -0.003 (0.022)

labor_total 0.008∗∗ (0.004) 0.007∗∗ (0.003) 0.137∗∗∗ (0.044) 0.002∗∗∗ (0.001)

plotsize -0.024 (0.028) 0.024 (0.216) 3.845∗ (2.044) 0.060 (0.058)

fertile 0.424∗∗ (0.200) 0.566∗ (0.307) 3.030 (2.467) 0.036 (0.036)

slopyplot -0.204 (0.280) -0.258 (0.253) -3.090 (2.086) -0.041 (0.029)

plotdistance 0.038 (0.025) 0.052 (0.032) 1.127∗∗∗ (0.410) 0.017∗∗∗ (0.006)

distance_mkt_min 0.000 (0.000) 0.000 (0.000) -0.001 (0.003) -0.000 (0.000)

agriculture -0.883 (0.625) -3.302∗∗∗ (1.256) -25.215∗∗ (11.617) -0.331∗∗ (0.168)

extension 0.165 (0.210) 0.255 (0.247) 0.116 (2.892) -0.005 (0.025)

rain_dec -0.002 (0.174) -0.177 (0.257) -0.081 (2.552) 0.001 (0.025)

temp_inc 0.558∗∗∗ (0.163) 0.693∗∗∗ (0.214) 5.221∗∗∗ (1.927) 0.066∗ (0.038)

_cons -1.169 (1.269) 1.483 (1.893) 12.586 (16.256) 0.142 (0.384)

Panel B: Income if SRI = 0

hhsize -0.085 (0.089) -0.700 (0.718) -0.007 (0.005)

married 0.075 (0.339) 1.764 (1.704) 0.018 (0.024)

male 0.489 (0.309) 2.220 (1.706) 0.018 (0.019)

education 0.030 (0.033) -0.075 (0.183) -0.001 (0.003)

experience_rice 0.033 (0.028) 0.270 (0.232) 0.002 (0.002)

lwealth2 0.065 (0.111) -0.795 (0.688) -0.007 (0.013)

labor_total -0.007∗ (0.004) -0.037∗ (0.021) -0.000 (0.000)

plotsize -0.052 (0.032) -0.135 (0.183) -0.001 (0.004)

fertile 0.363 (0.243) 2.164 (1.641) 0.020∗ (0.011)

slopyplot 0.137 (0.519) 2.689 (4.214) 0.026 (0.041)

plotdistance 0.020 (0.029) 0.168 (0.179) 0.002 (0.002)

distance_mkt_min -0.000 (0.001) -0.002 (0.004) -0.000 (0.000)

agriculture 0.720∗∗ (0.359) 4.709 (2.879) 0.042∗ (0.023)

extension -0.302 (0.302) -2.786∗ (1.426) -0.023 (0.045)

rain_dec 0.199 (0.261) 2.600 (1.832) 0.023 (0.018)

temp_inc 0.347 (0.211) 0.790 (1.281) 0.011 (0.012)

_cons -1.526 (1.180) 1.375 (6.477) 0.003 (0.104)

Robust standard errors in parentheses ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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(1) (2) (3) (4)

Income OLS Mean Income Variance of Income Skewness of Income

Panel C: SRI Equation

hhsize 0.110∗ (0.063) 0.109∗ (0.063) 0.109∗ (0.065)

married 0.560 (0.394) 0.577 (0.396) 0.580 (0.405)

male -1.288∗∗∗ (0.448) -1.276∗∗∗ (0.446) -1.280∗∗∗ (0.447)

education 0.111∗ (0.059) 0.111∗ (0.058) 0.112∗ (0.058)

experience_rice 0.023∗ (0.012) 0.023∗ (0.012) 0.023∗ (0.013)

lwealth2 0.252∗∗ (0.104) 0.248∗∗ (0.105) 0.249∗∗ (0.106)

labor_total 0.001 (0.001) 0.001 (0.001) 0.001 (0.001)

plotsize -1.088∗∗∗ (0.290) -1.080∗∗∗ (0.288) -1.083∗∗∗ (0.289)

fertile 1.204∗∗∗ (0.307) 1.189∗∗∗ (0.301) 1.194∗∗∗ (0.303)

slopyplot -0.191 (0.269) -0.187 (0.267) -0.188 (0.268)

plotdistance -0.053∗∗ (0.023) -0.051∗∗ (0.023) -0.051∗∗ (0.024)

distance_mkt_min 0.001∗ (0.001) 0.001∗ (0.001) 0.001∗ (0.001)

agriculture 0.562 (0.673) 0.602 (0.652) 0.613 (0.654)

extension 1.083∗∗∗ (0.235) 1.064∗∗∗ (0.233) 1.072∗∗∗ (0.235)

rain_dec 0.557∗∗ (0.229) 0.552∗∗ (0.227) 0.553∗∗ (0.229)

temp_inc -0.467∗ (0.249) -0.462∗ (0.250) -0.461∗ (0.250)

connected2 1.222∗∗∗ (0.373) 1.194∗∗∗ (0.370) 1.194∗∗∗ (0.378)

sortseed 1.498∗∗∗ (0.253) 1.515∗∗∗ (0.248) 1.514∗∗∗ (0.250)

_cons -6.357∗∗∗ (1.676) -6.350∗∗∗ (1.656) -6.377∗∗∗ (1.658)

σ2
1 1.919∗∗∗ (0.197) 22.989∗∗∗ (0.344) 0.358 (0.383)

ρ1υ -0.162∗ (0.096) -0.074 (0.067) -0.103 (0.207)

σ2
0 1.487∗∗∗ (0.184) 10.483∗∗∗ (0.256) 0.094 (0.291)

ρ0υ -0.077 (0.293) -0.047 (0.205) -0.041 (0.691)

Chi Test Indep 2.821∗ 1.225 0.249

P-Value Chi test Indep 0.093 0.268 0.617

Admissibility Tests

Chi Test SRI equation 43.66∗∗∗ 50.79∗∗∗ 50.66∗∗∗

P-Value Chi test 0.000 0.000 0.000

Chi Test Outcome equations 0.21 2.32 4.00

P-Value Chi test 0.646 0.313 0.135

Number of Countries 332 332 332 332

Log Pseudo-Likelihood -672.115 -735.022 -1486.371 -27.541

Robust standard errors in parentheses ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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of rising in temperature is somewhat counter-intuitive though robust. Indeed, although rice grows linearly in the

range of 22�31◦C, higher temperature adversely a�ects growth and productivity (Yoshida, 1981; Krishnan et al.,

2011). However, increase in mean temperature or episodes of high temperatures during sensitive stages of the crop

may adversely a�ect the growth and yield of rice especially in tropical regions where temperatures are often above

the optimal for growth (28/22◦C, i.e., 28◦C in daytime and 22◦C at night).7 Given that mean temperatures in

the Kilimbero district �uctuates between 20.5◦C and 26.6◦C in a given year, a rise in temperature would still have

positive e�ect on rice yield.

On the other hand, the perception of reduced precipitation a�ects negatively the mean yield for SRI adopters, but

has no e�ect on its variance and skewness, nor does it have an impact on the moments of income. For non-adopters

however, the perception of reduced precipitation has a negative impact on both expected yield and its skewness but

does not a�ect the moments of income. In brief, farmers who observe reduced rainfall also experience reduced rice

yields irrespective of their adoption decision.

Finally, while we can reject the null hypothesis of independent equations the mean income, the mean yield, and the

skewness of yield, the LR test cannot reject independence for yield variance, income variance and income skewness.

This suggests that the hypothesis of absence of sample selectivity bias may be rjected for the former cases but not

for the latter cases.

5.3 Average treatment e�ects

We now present the average treatment e�ect of adopting SRI (see Table 4). Panel A shows the average treatment

e�ect on the treated (ATT) for the �rst three moments of rice yield and total income. Panel B in turn presents the

average treatment e�ect on the untreated (ATU).8

First of all, we �nd that SRI adoption has a positive and statistically signi�cant impact on expected yield and

expected income. On average, adopters increase their rice production per acre by 13 percent and total income by

83 percent compared to non-adoptors. The impact is economically large and statistically signi�cant at one percent

level.

Secondly, we �nd that adopting SRI raises income variability relative to non-adopters, but has no impact on the

variability of rice yield. Thus, risk-averse farmers would likely abstain from adoption, especially with regard to

household income. Higher variance of gains from improved agricultural technologies is also documented to be the

reason why risk averse farmers are less likely to adopt such technologies (e.g. Yesuf and Blu�ston, 2009; Tanaka et

al., 2010 ).

Thirdly, we �nd that SRI adoption has a positive and statistically signi�cant impact on the skewness of rice yield

and total income. The combined e�ect of increased income variance and skewness suggests that the technology

increases income uncertainty but lowers the probability of household exposure to downside income risks. This could

explain why, in contrast with the intended goal of opening new opportunities to address the needs of poorer farmers,

wealthier farmers (who are less susceptible to risk aversion) have been more willing to adopt SRI. On the other

hand, a reduction in exposure to downside risk (combined with increased expected rice yield and income) may

neutralize the income risk (due to high variance) and encourage even risk averse farmers to adopt the technology.

Panel B presents the average treatment e�ects for the untreated (ATU) or equivalently on SRI non-adopters. From

a policy perspective, these e�ects, which broadly accord with the ones discussed above, are highly relevant. Our

results show that while non-adopters' expected rice yield and expected income would have increased by 5.5% and

32% respectively, had they adopted SRI, the variance of the relevant variables increase by a factor of two and three,

respectively. Moreover, downside risk exposure is reduced substantially for yield rice and marginally for income.

7Temperature in�uences growth rate, duration, and productivity. According to Baker et al. (1992), yield decrease was about 7�8%

in rice for each 1◦C increase in daytime maximum/nighttime minimum in temperature from 28/21◦C to 34/27◦C.
8We bootstrap the distribution following Kim and Chavas (2003).
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Finally, we note that both for those farmers who perceive increased temperatures, average productivity and income

gains bene�t primarily SRI adopters. Indeed, for SRI adopters, the respective coe�cients of perceived temperature

increase are positive and signi�cant at the 1% level for income and 5% level for yield but insigni�cant for non-

adopters.

Overall, the �nding that despite increased yield, increased variance is not o�set by reduced downside risk may

explain why farmers are reluctant to adopt SRI given �the empirical evidence that most farmers are risk averse (Lin

et al., 1974; Binswanger, 1981; Antle, 1987; Saha et al., 1994) as well as downside risk averse (e.g. Binswanger,

1981; Chavas and Holt, 1996)� (See Kim and Chavas, 2003).
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6 Conclusions

This paper presents an impact evaluation analysis of the recent introduction of the System of Rice Intensi�cation

(SRI) in Morogoro (Tanzania), with a focus on exposure to risk and downside risk of rice yield and total household'

income, in addition to mean yield and income. Despite the recentness of the intervention and gaps in the local

policy environment, we �nd evidence of large economic impacts of SRI adoption. Overall, SRI adoption comes with

a trade-o� between greater expected yields and expected income on the one hand, and increased income variability

on the other hand. We also �nd that SRI has a considerable impact on reducing downside risk, as indicated by the

positive and signi�cant coe�cients of yield and income skewness. This suggests that the reluctance of risk averse

farmers to adopt SRI due to increased income variability may be mitigated by the increase in skewness. These

results are obtained using an endogenous switching regression model that estimates jointly the determinants of SRI

adoption and the three moments of rice yield and household income. We provide evidence of the importance of

wealth, soil fertility, farm size, extension services, social connection and climate change perception in shaping the

decision to adopt SRI. The measures of climate risk perception (in particular rising temperatures) are associated

with increased yields and income as well as their variance and skewness. Decreased rainfall however is correlated

with reduced yields and increased exposure to downside risk.

The results of this study improve our understanding of the behavioral and policy factors that can help understand

the constraints to and opportunities in the adoption of new technology. This paper suggests that su�cient awareness

of the occurrence of climate change can contribute to reduce downside risk exposure despite increased variance.

This provides useful insights on the linkages between climate change perceptions and the income risk impact of

new technology. Understanding of the contribution of technologies to yield variability and downside risk goes

beyond addressing the risk concerns of producers. Such analyses would also highlight how much and in what

ways deliberately incorporating such features into the development of agricultural technologies enhance the overall

societal value of the technology (Schuh and Tollini 1979).

One important shortcoming of the analysis is that it is based on cross sectional survey, implying that many of

the time-variant variables are only snapshots. Further unmeasured characteristics that are important determinants

of adoption and risk factors confound with the observed covariates and the sign and magnitude of the resulting

omitted variables bias is unknown. Future studies with panel data features would enable controlling for the e�ect

of such unobserved e�ects.

Given the potential for rural climate information to support adaptation and management of climate risk, there is a

need to make climate information more accurate, accessible, and useful for farmers (Roncoli et al., 2002; Ziervogel

et al., 2005; Hansen et al., 2007).

Further, follow-up research to assess risk e�ects of the program�especially by incorporating objective climate

change measures (as opposed to perceptions that we have looked into in this paper), the channels through which

speci�c program e�ects materialize, the path of their evolution over time, and how bene�ts are distributed across

adopters (given our �nding of signi�cant heterogeneity), would be of great interest.

With regards to PRISE, the contribution of the study is considerable. The negative impacts of climate change are

arguably most felt by hugely agrarian and rainfed economies of many semi-arid lands. Such vulnerability would

naturally underscore the importance of mechanisms that enhance the agricultural sector's capacity to cope better

with the adverse climate change impacts. As a technology package, the SRI would have climate change compatible

features as it is designed to perform in a moisture stressed setting. Our �nding that the SRI perfoms a better

risk reducing feature with climate perceptive farmers attests to the role of such technologies in climate-risk prone

environments. Hence for PRISE regions, there is a need for policy makers to encourage the development and release

of climate-sensitive technologies.
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