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Abstract

How important is it to be able to predict the distant future? We study this question

in a model of an agent who operates in a non-stationary stochastic environment. Payoffs

depend on how well adapted activities are to current conditions, and activities may be

adjusted to account for anticipated environmental changes, at a cost. We compute the

value of prediction systems, which produce forecasts of the future with a given profile of

accuracy as a function of lead time in every period. This allows us to quantify the impor-

tance of predictive accuracy at each lead time. Even if adjustment costs, discount factors,

and long-run uncertainty are large, short-run predictability is often more important than

long-run predictability.

‘If you have to forecast, forecast often.’

– Edgar R. Fiedler, The Three Rs of Economic Forecasting: Irrational, Irrelevant and Irrev-

erent, 1977.

1 Introduction

Ever since Galileo wrote down his laws of motion in the early seventeenth century, the quan-

titative sciences have been engaged in the business of prophesy. Scientific ingenuity has

rendered a staggering range of phenomena more predictable. Atmospheric scientists forecast

the weather, epidemiologists predict the spread of infectious diseases, econometricians forecast

demand for new public transportation systems, and statisticians predict electoral outcomes.

Yet despite many successes, reliable predictions of the long run behaviour of complex social

or natural systems often remain elusive (Granger & Jeon, 2007; Palmer & Hagedorn, 2006).

Inability to predict the long run is frequently seen as a barrier to effective decision-making,

and can be a source of emotional distress and planning inertia. Where Science cannot satisfy

our demand for certainty, others may nevertheless oblige us. A motley crew of modern-day

∗Millner: a.millner@lse.ac.uk. We gratefully acknowledge funding from the ESRC Centre for Climate 
Change Economics and Policy and Grantham Foundation for the Protection of the Environment. Daniel Heyen 
gratefully acknowledges funding from the German Research Foundation, grant HE 7551/1-1.
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soothsayers prognosticate on a variety of salient, but difficult to predict, long-run events.

Pundits foretell the rise and decline of nations, futurologists prophesy technological revo-

lutions that will transform our grandchildren’s lives, and astrologers predict our romantic

entanglements decades into the future. But just how important is it to be able to predict

the distant future? Does large long-run uncertainty imply that accurate long-run predictions

would necessarily be highly valuable? Or can long-run predictions perhaps be substituted by

short-run forecasts when decisions can be adjusted dynamically as new information arrives?

What might an ‘optimal’ pattern of predictive accuracy across forecast lead times look like

in different decision environments? This paper attempts to shed light on these questions.

We develop a conceptual model that allows us to compute the value of predictability for

a rational decision-maker who operates in an uncertain, non-stationary, environment. It is

important to distinguish predictability from information at the outset. To fix ideas consider

the following stylized scenario. Anna is the head of a disaster relief organization that operates

on the US East coast. On a certain Sunday evening she receives a weather report showing

that a hurricane is brewing in the mid-Atlantic. The report details the hurricane’s predicted

path over the coming week, showing that it is expected to make landfall somewhere on the

East coast on Friday. While the position of the hurricane on Monday or Tuesday is well

constrained by the forecast, its position at the time of landfall is highly uncertain. Anna

nevertheless makes some initial plans to deploy resources based on the current forecast, with

the knowledge that she will receive an updated forecast tomorrow, which may cause her to

make a costly change of plans. Indeed, Anna knows that a new forecast will be produced

at regular intervals, with each successive forecast providing increasingly accurate information

about the hurricane’s position on Friday.

Clearly the forecast Anna receives on Sunday contains information about where her re-

sources should be deployed on Friday. However, in order to assign a value to our ability to

predict hurricane paths we must account for the continually updated nature of forecasts, their

accuracy as a function of lead time, and the costs Anna’s organization sustains when adjusting

its decisions dynamically in response to new information. To formalize the distinction between

predictability and information we define a prediction system to be an information structure

(Blackwell, 1953) that travels through time with a decision-maker, producing forecasts of all

future events with a given profile of accuracy as a function of lead time in every period. Not

only do prediction systems provide decision-makers with information about future events in

the current period, they also determine their expectations about the information that will be

available when they take future decisions.

One may think of a prediction system as an abstract representation of the dynamic models

economists and natural scientists use for forecasting. These models usually posit a law of

motion that translates current values of state variables into predictions of the future values

of states. They produce an updated view of all future periods in every period, based on
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prevailing conditions. Forecast errors from such models are usually highly dependent on

lead time. Since model errors compound over time, long-run forecasts are almost always less

reliable than short run forecasts.1 The concept of a prediction system captures these aspects

of dynamic models in a tractable and flexible manner, without the need to specify any specific

model based on laws of motion. This approach allows us to flexibly manipulate a prediction

system’s ability to predict events at different temporal distances, making it possible to study

a decision-maker’s appetite for predictability as a function of lead time in a manner that

would be impossible with a traditional dynamic model.

More specifically, our model considers a decision-maker whose period payoffs depend on

how well adapted her choices are to the current, uncertain, state of the world. The decision-

maker may adjust her choices in every period to account for changes in her environment,

but faces convex adjustment costs, which penalize large adjustments more heavily than small

ones. Optimal decisions thus balance the benefits of exploiting current conditions with the

need to anticipate future conditions in order to avoid costly rapid adjustments in the future.

The decision-maker has access to a prediction system that generates forecasts of all future

states in every period. These forecasts have a fixed profile of accuracy as a function of lead

time. Thus, if τm is a measure of the accuracy of forecasts of lead time m, the decision-maker

receives a forecast of accuracy τ1, τ2, . . . of states of the world 1, 2, . . . time steps from the

present in every period. For example, the decision-maker receives a forecast of accuracy τ2

about a state two time steps from now in the current period, but knows that in the next

period she will receive a new forecast of the same state, this time with accuracy τ1. She may

change her decisions in order to react to new predictions once they become available, but

doing so entails a cost, captured by the magnitude of the adjustment costs she faces.

Although the resulting model corresponds to a non-trivial stochastic dynamic program-

ming problem with learning about an infinite number of state variables (corresponding to the

decision-maker’s beliefs about each future period), we are able to find an analytic expression

for the decision-maker’s value function V for arbitrary ‘normal’ prediction systems.2 That is,

we compute the decision-maker’s discounted expected payoffs as a function of the profile of

predictive accuracy that the prediction system exhibits:

V = V (τ1, τ2, τ3, . . .).

1Even if a model is structurally flawless, small uncertainties in the measurement of initial conditions can
grow exponentially with time. This is a defining feature of chaotic dynamics, and can occur in the simplest of
systems. See Taleb (2008, p. 177) for compelling examples.

2The reader may wonder why we don’t simply study a finite horizon model. The reason is simple. Consider
a two period model, in which the decision-maker receives one forecast at the beginning of period 1, and another
at the beginning of period 2. The period 1 forecast will contain both short- and long-run predictions, but the
period 2 forecast will contain only a short-run prediction. There is thus a substantial bias towards short-run
predictions in such a model. An infinite horizon model is necessary in order to place all forecast lead times on
an equal footing.
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This allows us to quantify the essential tradeoffs between predictability at different lead

times. These tradeoffs are concisely captured by Myers et al. (2000) in their work on fore-

casting the emergence of infectious diseases:

‘At the heart of early warning is a basic trade-off between the specificity of predictions...and

the lead times which those predictions can provide. In general, long-range forecasts give the

least specific warnings, but have the advantage of providing planners with relatively long lead

times. At the other extreme, systems based on early detection of cases provide highly specific

information on the timing and location of outbreaks, but allow little time for implementing

remedial measures.’

Although phrased in terms of the time available to react to a warning, translated into

economic terms this quote highlights the fact that warnings that come late are more costly to

react to than warnings that come early (i.e. adjustment costs are convex). But exactly how

do the accuracy of predictions at different lead times and the costs of reacting to them jointly

determine the value of a given prediction system? It is intuitively clear that current planning

decisions need not account much for the future if adjustment costs are small, since the decision-

maker may cheaply react to new conditions as they arise. This suggests that when adjustment

is cheap, short-run predictability will be more important than long-run predictability. What

is less clear intuitively is how demand for predictability as a function of lead time changes

as the costs of adjustment increase. Our solution for the decision-maker’s value function

V provides a general quantitative answer to this question within the context of our model.

Since V is a non-separable function of the τm, the interactions between predictive accuracy at

different lead times are potentially important determinants of the overall value of a prediction

system. These interactions complicate the problem of determining the contribution of each

lead time to the value function. We use two different techniques to extract the information

the value function contains about the importance of predictive accuracy as a function of lead

time.

We first perform a Taylor expansion of the value function, assuming that the precision

of predictions is small. This results in a linear approximation that is separable in the τm,

allowing the contribution of each lead time to overall value to be computed independently. In

this approximation we show that the value function exhibits one of two qualitative patterns

of dependence on predictability as a function of lead time. When agents discount the future

heavily, or have low adjustment costs, the value of a marginal unit of predictive accuracy

about events m time steps in the future is a declining function of m. If however decision-

makers are sufficiently patient, and adjustment costs sufficiently large, the value of a marginal

unit of predictability about events at lead time m is a unimodal function of m, with a global

maximum at some m∗ > 1. The most valuable forecast lead time m∗ is frequently small, even
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when the decision maker faces large adjustment costs and has a low discount rate.

We then extend our analysis to non-marginal prediction systems, focusing on character-

izing an ‘optimal distribution’ of predictive accuracy across forecast lead times. The weight

on lead time m in an optimal distribution is defined as the share of a hypothetical total pre-

dictability budget that the agent would allocate to lead time m. Unlike the marginal analysis,

this approach captures the interactions between forecast lead times. We show that flexible

agents should optimally like predictability to be strongly concentrated on short lead times,

while inflexible agents should prefer a more diffuse distribution of predictability across all lead

times, which nevertheless places more weight on shorter lead-times. Optimal predictability

distributions either assign declining weight to larger lead times, or are unimodal functions.

For a wide range of parameters the most important forecast lead time is small (i.e. one or

two time steps ahead).

Finally, we discuss applications of the insights our model delivers to applied prediction

problems in the natural and social sciences. Our leading empirical example considers changes

in the predictability of Atlantic hurricane paths over the past 45 years. Scientific advances

over this period have improved hurricane predictability at all lead times, with the greatest

reduction in forecast errors coming for long-run forecasts. Nevertheless, we show that even

though gains in the accuracy of short and medium-run forecasts have been more modest, they

account for the dominant share of the increase in value for many decision-makers. We suggest

that these findings could have consequences for how existing proposals to fund research aimed

at improving predictability should be directed if they are to maximize value for decision-

makers. We discuss applications in other areas, suggesting that accounting for the dynamic

nature of decision-making and prediction can substantially alter intuitive conceptions of the

relative importance of short- and long-run predictability, even when long-run uncertainty is

large.

The paper is structured as follows. We discuss related literature next, before presenting

the model and our results in Section 2. Section 3 discusses the findings, their applications,

and limitations, and concludes.

Related literature

As far as we know the questions we seek to address in this paper are novel in the literature.

Nevertheless, our contribution bears a family resemblance to two strands of work. The first

deals with general rankings of information structures in static environments. The second is

concerned with the value of forecasts in applied settings.

The literature on the value of information begins with the pathbreaking work of Blackwell

(1953) and Marschak & Miyasawa (1968), which sought to define a notion of ‘more informa-

tion’ that is independent of the details of agents’ decision problems and preferences. While
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extremely general, the ordering of information structures that Blackwell obtained is partial,

and fails to rank even very simple informational environments (Lehmann, 1988). Subsequent

authors have obtained more decisive rankings of information structures by placing constraints

on the nature of decision-maker’s payoff functions (Lehmann, 1988; Athey & Levin, 1998; Per-

sico, 2000; Cabrales et al., 2013). Our work is notionally related to this literature, in that we

are also concerned with the value of informational systems, but differs from it in important

respects. In order to ensure tractability, our model makes strong assumptions about the na-

ture of agents’ payoff functions and the signals generated by information structures. We thus

depart from this literature’s emphasis on obtaining general informational orderings that rely

on few assumptions about agents’ decision-problems. The return for this loss of generality is

that we are able to study a much richer set of dynamic decisions and information production

systems than are typically used in this literature.3 This allows us to capture essential features

of real-world forecasting products, and enables our analysis of the relative importance of short

and long-run predictability.

A related applied literature uses stylized models to quantify the economic value of fore-

casting products for rational decision-makers. Much of the early work used simple static

binary decision problems to estimate the value of weather forecasts (Angström, 1919; Nelson

& Winter, 1964). These models have become staples of forecast evaluation (see e.g. Katz

& Murphy, 1997), but because they are static they cannot capture the dynamic character-

istics of forecasting products.4 Two leading handbooks on economic forecasting (Clements

& Hendry, 2011; Elliott et al., 2006; Elliot & Timmermann, 2013) devote little space to the

issue of valuing forecasting products. The former has a single chapter on forecast value that

covers much the same ground as Katz & Murphy (1997). The latter has no explicit discussion

of forecast value, but does discuss the relationship between forecast evaluation and decision

theory (Granger & Machina, 2006), focussing on the specification of loss functions. A sub-

stantial statistical literature delineates the practical difficulties of long-run forecasting in a

variety of contexts (see e.g. Granger & Jeon (2007); Lindh (2011)). Implicit in this work is

an assumption that accurate long-run forecasting is difficult, but would be of considerable

value if achievable. Our work illustrates how a decision-maker’s ability to adapt to new in-

3There is of course a substantial literature that examines the effect of uncertainty and learning on optimal
dynamic decision-making. Most of this work falls into two categories: two period models that examine the
effect of second period learning on optimal first period decisions (Arrow & Fisher, 1974; Epstein, 1980), or
infinite horizon models that involve learning about the realizations of a stochastic state variable (e.g. Dixit &
Pindyck, 1994), or a parameter of a structural dynamic-stochastic model (e.g. Demers, 1991). Neither of these
approaches can capture the effects we study here. Two period models cannot capture the repeatedly updated
nature of prediction and the dependence of forecast accuracy on lead time, both essential features of our model
(see also footnote 2 on the need for an infinite horizon model). Models based on stochastic processes or learning
about parameters of state equations do not allow a prediction system’s accuracy at different lead times to be
controlled independently, meaning that it is impossible to ask questions about the relative importance of short-
and long-run predictability.

4Chapter 6 of Katz & Murphy (1997) discusses some dynamic decision models, but the forecasts they study
only provide information about events one time step ahead. These models are thus of little use for assessing
the relative value of short- and long-run predictions.
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formation dynamically affects the relative importance of long- and short-run predictability.

This demonstrates that lack of long-run predictability need not have a substantial impact on

payoffs, even if long-run uncertainty is large.

2 The model

We consider a decision-maker who faces an uncertain exogenous state of the world at each time

n ∈ N. The units of time are arbitrary, but should be understood to match the frequency

of forecast updates in applications (e.g. days for weather forecasts, quarters for inflation

forecasts). We assume that the decision-maker’s possible activities can be mapped into the

real line, and denote a generic choice by X ∈ R. The decision-maker may adjust her choice

X in each period, at a cost that is convex in the magnitude of the adjustment. The state

of the world at time n, denoted by θ̃n ∈ R, is the loss-minimizing decision in that period.

Values of X that are closer to θ̃n are better adapted to conditions at time n, and give rise to

higher period payoffs. Since adjustment costs are convex, the decision-maker’s choices must

achieve a balance between exploiting current conditions and preparing for future conditions,

thus avoiding excessively large and costly adjustments later on.

We assume that the loss-minimizing decisions θ̃n are independent, but not identically

distributed.5 For any n, let θt = θ̃n+t for t ≥ 0, i.e. θt is the value of θ̃ that will be realized

t time steps in the future. We denote the agent’s beliefs about θt at time n by pn(θt). At

n = 0 the agents’ prior beliefs about the future values θt are captured by a sequence of normal

distributions with means µ0
t and precisions (i.e. inverse variance) λ0

t , i.e.

p0(θt) ∼ N (µ0
t , 1/λ

0
t ). (1)

Let Xn be the value of the decision variable X that the agent inherits at the beginning of

period n. At the beginning of the period the agent chooses a new value for X, i.e. Xn+1. This

is the value of X that will affect payoffs in the current period, and be passed forward to the

next period. The cost of modifying the decision variable from Xn to Xn+1 is 1
2α(Xn+1−Xn)2.

After the choice of Xn+1 is made, the agent experiences the realization of the current value

of θ̃, i.e. θ0, and sustains a loss equal to half the squared distance between Xn+1 and θ0.6

5The independence assumption is essential if we are to cleanly define a notion of predictability as a function
of lead time. Suppose that the θ̃n are correlated, and a prediction system provides information about some
θ̃k. Then learning about θ̃k means that we learn something about all values of θ̃n. Since any signal from
a prediction system about a future event affects information about all future events in a correlated model,
no signal can be uniquely associated with predictability at a specific lead time. See Section 3 for further
discussion.

6The use of quadratic loss functions has been criticized for placing excessively strong restrictions on agent’s
preferences in some decision contexts (Granger & Machina, 2006; Elliott & Timmermann, 2008). While we
acknowledge that this is a potential limitation of our analysis, the fact that our model reduces to a stochastic
dynamic control problem with an infinite number of state variables means that progress is entirely dependent
on being about to solve for the agent’s value function in closed form. This is only possible when the loss
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Thus, the expected period payoff at the beginning of the current period is given by,

W (Xn+1, Xn, pn(θ0)) = −1

2

[∫
(Xn+1 − θ0)2pn(θ0)dθ0 + α(Xn+1 −Xn)2

]
(2)

The decision-maker’s objective function is the usual discounted sum of expected period pay-

offs, which will be defined in full below.

At the end of each period n, the agent receives a sequence of forecasts Sn = (snt )t≥1 of

the values of future states θt for all t ≥ 1. We assume that

snt = θt + εnt (3)

where

εnt ∼ N (0, 1/τt) (4)

and τt ≥ 0 is the precision of forecasts of events t time steps ahead. Thus the prediction

system has an exogenous profile of precision as a function of lead time, parameterized by the

infinite sequence

~τ ≡ (τ1, τ2, τ3, . . .).

The precision sequence ~τ is time invariant, i.e. the prediction system is assumed to produce

forecasts with the same profile of accuracy as a function of lead time at every time n. Consider

two forecast systems A and B, with precision sequences ~τA, ~τB. If, for a fixed lead time t,

τAt > τBt , then system A is more informative (in the sense of Blackwell) than system B about

events t time steps in the future. Although in practice we would expect ~τ to be a decreasing

sequence, we place no constraints on its value in what follows.

Notice that the agent receives a new infinite sequence of forecasts Sn at the end of every

period n. However, the precision of the information she receives about a particular value θ̃k

that lies in her future changes as time progresses and she moves closer to time k. Since the

agent’s prior beliefs about the future values θt in period n = 0 are normal, and the conditional

distributions of signals st given states are normal, her beliefs about the future values of

the states will update according to the standard normal-normal bayesian formulae (see e.g.

DeGroot, 1970). In particular, beliefs about future values θt will be normally distributed in

every period, and are characterized by a mean µnt and precision λnt in period n. Moreover,

the agent also knows that the beliefs she currently holds about the future values θt for t ≥ 1,

will become her beliefs about θt−1 in the next period. For example, her current beliefs about

the next period will become her beliefs about the current period, in the next period. Using

these observations, we can write down the state equations that describe how the forecasting

system changes the agents’ beliefs about the values of the states θt from one period to the

function is quadratic and location independent. See Section 3 for further discussion.
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next:

µn+1
t (snt+1) =

τt+1

τt+1 + λnt+1

snt+1 +
λnt+1

τt+1 + λnt+1

µnt+1

λn+1
t = λnt+1 + τt+1. (5)

As is standard in the normal-normal bayesian updating model, the posterior mean of beliefs

about each future value θt is a convex combination of the prior mean and the signal realization,

with the weight that is placed on the signal increasing in the signal precision. Posterior

precisions, however, evolve deterministically. A complete description of the current state of

the system at the beginning of period n is thus given by the ordered pair (Xn, Yn), where

Yn ≡ ((µnt )t≥0, (λ
n
t )t≥0),

collects together the infinitely many ‘belief’ state variables. The dynamics of Yn are given

by (5), and Xn is a ‘decision’ state variable whose next value is chosen by the agent in each

period. Figure 1 provides a graphical summary of the model setup, and the timing of events.

Bellman equation

Using our new notation, we can write the current expected period payoff as a function of the

state variables (Xn, Yn) and the decision variable Xn+1 as:

W (Xn+1, Xn, Yn) = −1

2

[∫
(Xn+1 − θ0)2pn(θ0;µn0 , λ

n
0 )dθ0 + α(Xn+1 −Xn)2

]
= −1

2

[
(1 + α)X2

n+1 + αX2
n − 2Xn+1(µ0 + αXn) +

1

λn0
+ (µn0 )2

]
. (6)

Let V (Xn, Yn) be the current value of the infinite dimensional state (Xn, Yn). The next period

value of the state depends on the sequence of signals Sn that the agent will receive at the end

of the current period. At the beginning of period n the agent’s beliefs about signal snt (t ≥ 1)

are given by:

q(snt ;Yn) =

∫
p(snt |θt)pn(θt)dθt

∼ N (µnt , 1/λ
n
t + 1/τt), (7)

where the last line follows from a simple calculation using (3–4). We denote the agent’s beliefs

about the probability of receiving a sequence of signals Sn = (snt )t≥1 by

Q(Sn;Yn) =

∞∏
t=1

q(snt ;Yn). (8)
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t 

0 

1 2 3 0 

Figure 1: Illustration of the model setup. The figure depicts the agent’s beliefs, choices, and
the information provided by the prediction system, in the first two periods n = 0, 1. At the
beginning of period n = 0 the agent holds a sequence of prior beliefs about the future values
of the state of the world θt. Beliefs about each future value of θt are normally distributed,
indicated by the dark blue distributions at each value of t. The initial value of the decision
variable is X = X0, and the agent must choose a new value X1 at the beginning of the period.
At the end of the period the agent receives the infinite sequence of forecasts S0 = (s0

t )t≥1,
indicated by the dark red dots, which allow her to update her beliefs about the future values
θt. The brown distributions at each t capture the agent’s initial expectations about the signals
s0
t she will receive (i.e. q(s0

t ;Y0) in (7)). Smaller values of τt, which are assumed to occur
at longer lead times in this example, correspond to wider distributions of expected forecast
realizations, and weaker belief updating towards the realized signal. This is demonstrated by
the agent’s updated beliefs at n = 1, where once again beliefs about future values of θt at
the beginning of the period appear in dark blue, and for comparison the agent’s n = 0 beliefs
and signal realizations are represented by the light blue distributions and dots respectively.
Once again, the agent must choose a new value for the decision variable X2 at the beginning
of the period n = 1, and will receive a new sequence of forecasts S1 = (s1

t )t≥1 (indicated by
dark red dots), with the same profile of precisions at the end of period n = 1.
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We are now ready to state the Bellman equation for the value function V (Xn, Yn). Denote

the next period value of the belief states Yn+1 as a function of the previous value Yn and the

realized signal sequence Sn as

Yn+1 = F (Yn, S
n). (9)

where F (Yn, S
n) is given by (5). Then,

V (Xn, Yn) = max
Xn+1

W (Xn+1, Xn, Yn) + β

∫
V (Xn+1, F (Yn, S

n))Q(Sn;Yn)dSn. (10)

where dSn =
∏∞
t=1 ds

n
t , and β ∈ (0, 1) is the agent’s discount factor. Note that the dependence

of the value function on the profile of forecast precisions ~τ comes both through the updating

rule F (Yn, S
n) (see eq. (5)), and through the agents’ expectations about the values of future

signal realizations (see eq. (7)). Thus, increases in predictability affect both the quality of

future decisions (by reducing the variance of outcomes), and the agent’s expectations about

the information that will be available in the future.

Optimal policy

The model is a stochastic dynamic control problem with an infinite number of state variables,

since the agent holds an independent belief about each future value θt. Despite the infinite

dimensionality of the state space in our model, standard methods based on the Benveniste-

Scheinkman condition (Benveniste & Scheinkman, 1979) yield simple closed form solutions

for the optimal control rule.

Proposition 1. The optimal policy Xn+1 = π(Xn, Yn) is given by

π(X,Y ) = aX +

∞∑
t=0

btµt (11)

where

a =
1 + α(1 + β)−

√
(1 + α(1 + β))2 − 4α2β

2αβ

bt =
a

α
(aβ)t .
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and the coefficients a, bt satisfy:

lim
α→0

a = 0, lim
α→∞

a = 1,
∂a

∂α
> 0 (12)

a+
∞∑
t=0

bt = 1 (13)

lim
α→0

bt =

{
1 t = 0

0 t > 0
, lim
α→∞

bt = 0 (14)

∂

∂α

(
bt+1

bt

)
> 0,

∂b0
∂α

< 0. (15)

This proposition shows that the optimal policy function π(X,Y ) chooses the next value

of X to be a convex combination of the current value of X and the expected values of θt. The

policy rule exhibits the certainty equivalence property, i.e. it is independent of the agent’s

uncertainty about future events. This is a well-known consequence of the quadratic payoff

function in our model, which makes the model tractable. We emphasize however that although

the policy rule does not depend on uncertainty, the value function certainly will. Since our

goal is to study the value of predictability, it is the dependence of the value function on the

precision profile ~τ that we are ultimately interested in.

The coefficients of the policy rule have an intuitive dependence on the adjustment cost

parameter α. Consider the extreme cases α→ 0, and α→∞. The proposition shows that

lim
α→0

π(X,Y ) = µ0

lim
α→∞

π(X,Y ) = X.

When adjustment costs tend to zero, the policy rule does not depend on either X or µt

for t ≥ 1. This occurs since with costless adjustment the decision problem separates into a

sequence of static optimization problems, and the payoff maximizing choice in each of these

problems is simply to choose X equal to the expected value of the current value of θ̃, i.e.

µ0. When α → ∞, any change in the value of X is very costly, so the optimal action is

to leave X where it is. In between these extremes the policy rule depends on expectations

about all future values θt. As α increases from zero the decision maker’s choice depends more

on both the inherited value of X, and her expectations about the future. This occurs since

the convexity of adjustment costs penalizes large adjustments later on. Current choices thus

account for both the benefits of adjusting to current conditions and the need to anticipate

future conditions. The larger is α, the more important it is to anticipate future conditions,

and this is reflected in the fact that coefficients bt decrease at a slower rate as α increases. At

the same time, larger α makes adjustments more costly, leading the policy rule to place greater

weight on the inherited value of X. Finally, to understand the finding that a+
∑∞

t=0 bt = 1,
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Figure 2: Asymptotic variability of the decision variable X relative to the variability of the
loss-minimizing decisions θ̃, assuming that the values of θ̃n are deterministic and given by a
fixed sequence of draws from a random variable with variance σ2.

consider the case in which µt = X for all t. In this case the agent believes that her choice

is perfectly adapted to conditions now and in the future, and she should thus not want to

change X. This occurs if aX +
∑∞

t=0 btX = X.

To illustrate how the adjustment cost parameter α affects decisions quantitatively, consider

a deterministic version of the model in which the values θ̃n are chosen be a fixed sequence

of draws from an arbitrary univariate random variable with finite variance σ2. When α = 0,

optimal decisions coincide with the current value of θ̃n, i.e. Xn = µ0 = θ̃n for all n. As α

increases, adjustment becomes more costly, and the values of Xn fluctuate less than θ̃n itself.

Using the formula (11) and some simple ergodic arguments one can show that

lim
n→∞

Var(Xn, Xn+1, . . .) =

∑∞
t=0 b

2
t

1− a2
σ2

=

[( a
α

)2 1

(1− a2)(1− a2β2)

]
σ2

for arbitrary initial condition X0. Figure 2 plots the asymptotic variance of the sequence of

decisions as a function of α for several β. The figure illustrates how α controls the magnitude

of the adjustments the decision-maker makes to adapt to fluctuations in a stationary envi-

ronment. For a wide range of β, α > 1.5 implies that the decision maker adjusts to less than

13



20% of the variability in θ̃, and α > 3 implies adjustment to less than 10% of the variability.

Thus, α = 3 is already a fairly large value of the adjustment cost parameter. In addition,

changes in α have a greater effect on behaviour when α is small (e.g. α < 1) than when it is

large.

Value function

In order to understand the effect of the precision sequence ~τ on the agent’s welfare, we need

to compute the value function. This would seem to be difficult, as the model’s state space

is infinite dimensional, the period payoff depends non-quadratically on the precision state

variables λt (see eq. 6)7, and we need to take expectations of the value function over an

infinite sequence of signals, the distribution of which depends on all the belief state variables.

Despite these apparent obstacles it is possible to obtain a closed form solution for the value

function, which enables the remainder of our analysis:

Proposition 2. The value function V (X,Y ) has the form

V (X,Y ) = kX2 +
∞∑
t=0

ctµtX +
∞∑
t=0

∞∑
p=t+1

Dt,pµtµp +
∞∑
t=0

dtµ
2
t +

∞∑
t=0

t∑
i=0

fi,t
λt + hi,t

. (16)

Closed form expressions for the parameters k, ct, Dt,p, dt, fi,t, hi,t may be obtained. The only

terms of the value function that depend on the forecast precision profile ~τ are

T = T (~τ) ≡
∞∑
t=1

t∑
i=1

fi,t
λt + hi,t

(17)

where for t ≥ 1, 1 ≤ i ≤ t,

hi,t =
t∑

k=t+1−i
τk, (18)

fi,t = −1

2

a

α
βt(a2β)t−i. (19)

To interpret T , begin by letting F (λk) be the λk component of the belief updating rule

F (Y, S) in (5), where we suppress the dependence on signals S, as precisions update deter-

ministically. In addition, let F t be the t-th iterate of F . Then by reordering terms we see

7One could of course write the model in terms of the variance of the agent’s beliefs about θt, in which case
payoffs would be linear in variances, but then the state equations for the variances would be non-linear (see
(5)), rendering standard methods from linear quadratic control inapplicable.
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that

T =− 1

2

aβ

α

[(
1

λ1 + τ1
+ (a2β2)

1

λ2 + τ2
+ (a2β2)2 1

λ3 + τ3
+ . . .

)
+ β

(
1

(λ2 + τ2) + τ1
+ (a2β2)

1

(λ3 + τ3) + τ2
+ (a2β2)2 1

(λ4 + τ4) + τ3
+ . . .

)
+β2

(
1

(λ3 + τ3 + τ2) + τ1
+ (a2β2)

1

(λ4 + τ4 + τ3) + τ2
+ (a2β2)2 1

(λ5 + τ5 + τ4) + τ3
+ . . .

)
+ . . .

]
=− 1

2

aβ

α

[(
1

F (λ0)
+ (a2β2)

1

F (λ1)
+ (a2β2)2 1

F (λ2)
+ . . .

)
+ β

(
1

F 2(λ0)
+ (a2β2)

1

F 2(λ1)
+ (a2β2)2 1

F 2(λ2)
+ . . .

)
+β2

(
1

F 3(λ0)
+ (a2β2)

1

F 3(λ1)
+ (a2β2)2 1

F 3(λ2)
+ . . .

)
+ . . .

]
=− 1

2
b0

[ ∞∑
t=1

βt
∞∑
k=0

(
bk
b0

)2 1

F t(λk)

]
(20)

where in the last line we’ve used the solution for bt in (35). The term
∑∞

k=0

(
bk
b0

)2
1

F t(λk) in

(20) represents the contribution to the value function from the uncertainty the agent faces

when she takes a decision t time steps in the future. 1/F t(λk) is the agent’s uncertainty

about events that are k+ 1 time steps in the future, in period t. The exponentially declining

factor (bk/b0)2 = (a2β2)k captures the importance of uncertainty about events at temporal

distance k for decision-making, as can be seen from the fact that bk is the coefficient of µk

in the optimal policy rule (11). T is thus the discounted sum of the cost of uncertainty

for each future decision. The forecasting system reduces this uncertainty cost by providing

information about all future periods, in every period. The agent’s uncertainty about events

that are k time steps in the future in a period t time steps from now is reduced by forecasts

of precision τt+k, τt+k−1, . . . , τk.

Given prior uncertainty ~λ = (λt)t≥1, the term T (~τ) is a function of the sequence of forecast

precisions ~τ . Our goal now is to understand the dependence of T (~τ) on its arguments.

In general this is a complex task, as T (~τ) is a non-separable function. The following two

subsections consider two methods for extracting the information T (~τ) contains about the

relative importance of predictability at different lead times.

2.1 Valuing marginal predictability

To make initial progress we begin by finding a linear approximation to T (~τ) at ~τ = ~0. The

linearized version of T has the advantage of being a separable function of τt, allowing the

contribution of each τt to the value function to be computed independently. The results in

this section hold only when the precision of predictions is small, or equivalently, when the
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interactions between forecast lead times in the value function can be neglected.

Proposition 3. Define

g(m) ≡
∞∑
k=0

βk

λ2
m+k

, (21)

and assume that

lim
t→∞

λ2
t+1

λ2
t

> β, (22)

implying that g(m) is finite for all m. Then for small forecast precisions (i.e. τt = dτt � 1),

the increase in the value function due to the prediction system (relative to an uninformative

baseline) is approximately

dV = T (d~τ)− T (~0) ≈ a

α(1− a2β)

∞∑
m=1

rmdτm, (23)

where

rm ≡ g(m)βm
(
1− (a2β)m

)
. (24)

To understand the intuition behind this result we now derive it heuristically (the appendix

contains a formal proof). Recall that the agent receives a forecast of lead time m in every

period. The effect of the forecast the agent receives in the current period is to reduce un-

certainty about events at temporal distance m. But, in doing so, this forecast gives rise to a

cascade of uncertainty reductions at shorter lead times in future periods. This occurs since

a reduction in uncertainty about lead time m events in the current period is equivalent to a

reduction in uncertainty about events at lead time m − 1 in the next period, and lead time

m − 2 in the period after that, etc. As (20) makes clear, the importance of a reduction in

uncertainty of events k time steps in the future is proportional to (a2β2)k. Since uncertainty

reductions in future periods are discounted, a marginal unit of precision in the first forecast

of lead time m that the agent receives increases payoffs by an amount proportional to

m−1∑
k=0

βm−k(a2β2)k+1 ∝ βm
m−1∑
k=0

(a2β)k.

The change in payoffs due to the uncertainty reduction from this forecast must also be pro-

portional to d
dλ (−1/λm) = 1/λ2

m. Thus, the total effect of the first forecast of lead time m is

to increase payoffs by an amount proportional to

1

λ2
m

βm
m−1∑
k=0

(a2β)k

This quantity accounts for the uncertainty reduction effect of the first forecast of lead time m,

which the agent receives at the end of the current period. At the end of the next period, the
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agent receives another forecast of lead time m. This forecast gives rise to the same cascade of

uncertainty reductions, and has the same value as the initial forecast, up to a normalization.

The normalization is simply the discounted value of the change in lead time m uncertainty

that the agent faces in the next period, i.e. β 1
λ2m+1

. This occurs in all future periods. Thus,

the total value of a marginal unit of precision in forecasts of lead time m is proportional to:

1

λ2
m

(
βm

m−1∑
k=0

(a2β)k

)
+

β

λ2
m+1

(
βm

m−1∑
k=0

(a2β)k

)
+

β2

λ2
m+2

(
βm

m−1∑
k=0

(a2β)k

)
+ . . .

∝

( ∞∑
t=0

βt

λ2
m+t

)
βm
(
1− (a2β)m

)
This is exactly the expression we obtained in (24).

The dependence of prior uncertainty on lead time can have an important influence on the

value of predictions of different lead times through the function g(m). To understand these

effects in a parsimonious way we will focus on a simple parametric model of prior beliefs. We

suppose that the precision of prior beliefs about the location of θt is given by,

λ2
t = λ2

0φ
t. (25)

where φ ∈ [0, 1] is a parameter, and λ0 is the precision of beliefs about the current loss-

minimizing decision θ0. This implies that,

g(m) =

∞∑
k=0

βk

λ2
m+k

=
1

λ2
0φ

m

∞∑
k=0

(
β

φ

)k
.

In order for g(m) to be defined for all m (see (22)), we must restrict attention to φ > β.

Under this constraint, the ratio
g(m)

g(1)
=

(
1

φ

)m−1

.

is uniquely defined. In this parametric model, we can thus define a measure of the value

of a unit of predictability about events at distance m, relative to the value of a unit of

predictability about events at distance 1:

Rm ≡
rm
r1

=

(
β

φ

)m−1 [1− (a2β)m

1− a2β

]
(26)

Using this expression, the relative value of the predictability of events at different lead times

may be computed as a function of the three parameters α, β and φ. These parameters char-

acterize the decision-maker’s flexibility, impatience, and prior uncertainty about the future
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Figure 3: Dependence of Rm on adjustment costs (α) and discount factor (β). Prior uncer-
tainty is assumed to be a constant function of time in this example (i.e. φ = 1).

respectively.

Some simple analysis (see Appendix D) shows that Rm can exhibit only two kinds of

qualitative behaviour. Either it decreases monotonically with m, or it is a unimodal function

with a global maximum at some m ≥ 2. Figure 3 plots Rm for several values of the parameters.

For low α, Rm is a declining function of m, indicating that agents who face low adjustment

costs value short-run predictability more than long-run predictability. When α is sufficiently

large however, Rm becomes a unimodal function.

Appendix D characterizes the regions of parameter space under which these two qualitative

behaviours occur, demonstrating that the qualitative findings in Figure 3 extend to the entire

parameter space of the model. In general, when β is sufficiently small, Rm will be declining

in m for all values of α. However, when β exceeds some critical value β̂, there exists an α̂ > 0

such that for all α > α̂ Rm is unimodal. Appendix D derives analytic expressions for β̂ and

α̂. These show that the faster prior uncertainty increases with lead time (i.e. the lower is φ),

the lower are β̂ and α̂. Figure 4 demonstrates these results graphically.

If Rm is decreasing, the most valuable forecast lead time is m = 1. Figure 4 shows that

this occurs in a large region of parameter space, associated with lower values of β and α.

Thus, in many decision environments, short-run predictability is more important than long-

run predictability. The intuition for this finding is clear. When α is small the agent can

18



β

α

β̂

R
m

 is decreasing R
m

 is

unimodal

0 0.25 0.5 0.75 1
0

1

2

3

4

5

6

7

8

9

10

(a) φ = 1

φ

α

β

R
m

 is decreasing

R
m

 is unimodal

0.9 0.92 0.94 0.96 0.98 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b) β = 0.9

Figure 4: Qualitative behaviour of Rm in different regions of parameter space.

19



0 10 20 30 40 50

α

0

2

4

6

8

10

12

14

16

18

20
m

*
β  = 0.9

φ = 0.901

φ = 0.934

φ = 0.967

φ = 1

0 10 20 30 40 50

α

0

2

4

6

8

10

12

14

16

18

20

m
*

β  = 0.99

φ = 0.991

φ = 0.994

φ = 0.997

φ = 1

Figure 5: m∗, the most valuable forecast lead time when forecast precisions are small.

cheaply adjust her strategy to capitalize on current conditions. Since short run predictability

improves her ability to capitalize on current conditions, she values this highly, but places

comparatively little weight on long-run predictability.

If Rm is unimodal, its maximum occurs at one of the two integers closest to

m∗ =
ln
(

ln(β/φ)
ln(a2β2/φ)

)
ln(a2β)

.

m∗ summarizes the forecast lead times that are most important to the decision-maker. The

larger is m∗, the more important is long-run predictability. It is straightforward to show that
∂m∗

∂α > 0, ∂m
∗

∂β > 0 and ∂m∗

∂φ < 0. Figure 5 plots m∗ as a function of α for several values of φ and

β. The figure shows that even when α is very large (recall that α = 3 is already a large value,

see Figure 2), m∗ is often fairly small . Thus, even when the agent is highly inflexible, she will

often value short to medium-term predictability more highly than long-term predictability.

2.2 Optimal predictability distributions

The preceding analysis provides a characterization of the dependence of the agent’s value

function on predictability at different lead times when forecast precisions are small. In this

section we move beyond these results, aiming to summarize the dependence of T (~τ) on ~τ

when ~τ is non-marginal. When forecast precisions are non-marginal, the interactions between
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predictability at different lead times in the value function cannot be neglected. It is intuitively

clear that these interactions are potentially important determinants of the overall value of a

prediction system. If we are able to predict events at lead time m very accurately, the value

of a marginal improvement in the predictability of events at lead time m+ 1 must surely be

quite low. Indeed, inspection of the expression for T (~τ) in (20) shows that for any positive

integers m, k,
∂T

∂τm
> 0,

∂2T

∂τm∂τk
< 0.

Thus, T (~τ) is a concave function of ~τ , and the value of an additional unit of precision in

forecasts of events at lead time m is smaller the larger is the precision of forecasts of events

at lead time k. Capturing the effects of the interactions between forecast lead times in the

value function in an analytically tractable and intuitively appealing way is however difficult,

as the function T (~τ) has a complex dependence on its arguments.

In order to make progress we focus on the following question: what would an optimal

distribution of predictability across lead times look like? At first sight this question may

seem to be ill-posed, since the function T (~τ) is strictly increasing in each of the τm, so clearly

‘optimal’ predictability occurs when τm → ∞ for all m. We can however formulate a more

enlightening version of it as follows. Suppose that the decision-maker has a fixed budget of

forecast precisions across all lead times, i.e.
∑∞

m=1 τm = B for some constant B > 0. Given

this constraint, how would the agent prefer this predictability budget to be distributed across

different lead times? Since T (~τ) is a concave function a unique answer to this question exists

for any B > 0. Now recall that ~λ = (λ1, λ2, . . .) is the sequence of precisions of prior beliefs

about future states, and consider the following quantity:

~σ ≡ lim
~λ→~0

1

B

(
argmax~τ T (~τ) s.t.

∞∑
m=1

τm = B

)
. (27)

The m-th component of ~σ, denoted σm, is the share of the total predictability budget B that

the agent would optimally allocate to lead time m, in the limit as the precision of prior beliefs

about all future periods approaches zero. By definition, ∀m,σm ∈ [0, 1] and
∑∞

m=1 σm = 1.
~λ → ~0 corresponds to the limiting case in which the agent’s beliefs about the future are

entirely determined by the prediction system.8 Inspection of the expression (20) shows that

for any k ∈ R,

lim
~λ→~0

T (k~τ) = lim
~λ→~0

1

k
T (~τ).

This scale invariance property implies that ~σ is independent of the value of the constraint

B. ~σ may thus be interpreted as the optimal distribution of predictability across lead times,

when prior beliefs are arbitrarily diffuse. The fact that T (~τ) is a well-behaved concave function

8If ~λ = ~0, the value function V is undefined, however the limit in (27) exists since the solution of the

optimization problem is continuous in the parameters ~λ.

21



2 4 6 8 10 12 14 16 18 20

Lead time (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

σ
m

α = 2
-2

α = 2
-1

α = 1

α = 2

α = 2
2

α = 2
3

Figure 6: The optimal distribution of predictability across lead times ~σ. β = 0.95 in this
example.

means that it is straightforward to find an arbitrarily good approximation to ~σ using standard

numerical constrained optimization routines. Figure 6 demonstrates the typical dependence

of ~σ on α. Optimal predictability distributions either assign decreasing weight to larger lead

times (small α), or are unimodal functions (large α), which are nevertheless skewed towards

shorter lead times.

To understand how the distributions in Figure 6 capture the interactions between forecast

lead times it is helpful to consider how this figure would change in a different limiting case

of the model in which these interactions are effectively switched off. Suppose that instead of

examining optimal budget allocations in the limit as ~λ→ ~0, we allowed ~λ to be unconstrained,

but considered the limit as the predictability budget B → 0. In this case, all forecast precisions

would be infinitesimally small, implying that the value function is linear in τm for all m, and

is given by the expression in (23). Since the value function is linear in the τm in this case, it

is optimal to assign the entire budget B to the forecast lead time m for which the coefficient

of τm, i.e. rm in (23), is largest. Thus if the interactions between forecast lead times were

negligible, the agent would focus all her attentions on the most valuable lead time. When
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interactions between lead times are non-negligible however, a more diffuse distribution of

predictability across all lead times becomes desirable. The distributions in Figure 6 may thus

be thought of as a non-marginal generalization of the most valuable lead time m∗ depicted in

Figure 5.

Figure 6 demonstrates that although the marginal analysis in Section 2.1 provides a

tractable first order estimate of the value of predictability as a function of lead time, in-

teractions between forecast lead times are likely to be quantitatively important, and account-

ing for them leads to an even greater emphasis on short-run predictability. While Figure 3

might seem to suggest that predictability at lead times of 10-20 time units still carries a good

amount of value, these estimates neglect interaction effects. The optimal predictability distri-

butions in Figure 6 account for these interactions, leading them to place very little weight on

lead times beyond 10 time units for a wide range of adjustment costs. This finding is easily

understood. Since short-run predictability can partially substitute for long-run predictabil-

ity, in addition to providing information relevant to near-term conditions, accounting for the

interactions between lead times tips the balance further towards the short run.

3 Discussion

The model we have developed is a conceptual tool that allows us to compute decision-maker’s

induced preferences over alternative prediction systems, i.e. forecasting products with a fixed

profile of accuracy as a function of lead time. Valuing prediction systems correctly requires

an explicitly dynamic model that accounts for the fact that forecasts of events at different

temporal distance have different accuracies, and that agents may adapt their decisions to new

information once it becomes available. The essential novel feature of our model is that it

allows us to compute the contribution of predictive accuracy at each lead time to the overall

value of a forecasting product, enabling a study of the relative importance of short- and

long-run predictability that is, we believe, novel in the literature.

The model provides potentially important conceptual lessons for decision-makers. The

tendency towards excessive emphasis on the importance of predicting the long-run is well

illustrated by an anecdote related by Kenneth Arrow about his time as a military weather

forecaster during World War Two (Arrow, 1991):

‘Some of my colleagues had the responsibility of preparing long-range weather forecasts, i.e.,

for the following month. The statisticians among us subjected these forecasts to verification

and found they differed in no way from chance. The forecasters themselves were convinced

and requested that the forecasts be discontinued. The reply read approximately like this: The

Commanding General is well aware that the forecasts are no good. However, he needs them

for planning purposes.’
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The General’s implicit conflation of the presence of long-run uncertainty with the need

for long-run predictions – no matter how imperfect – can also be found in current policy

discussions. In December 2016 the US congress passed the Weather Research and Forecasting

Innovating Act, which “aims to bolster the capacity of the National Oceanic and Atmospheric

Administration (NOAA) to make seasonal weather predictions between 2 weeks and 2 years

out” (Voosen, 2016). While improved seasonal predictions (i.e. 3 months to a year out) could

doubtless improve decisions with a natural seasonal time scale (e.g. planting decisions), it is

less clear a priori what the benefits of improving the predictability of weather events say 2-4

weeks out will be. We illustrate this point by examining historical advances in predictability

on these temporal scales.

Figure 7a depicts advances in the accuracy of hurricane track predictions between 1970

and 2015. The figure shows there has been remarkable scientific progress in this domain, with

predictability increasing at all lead times, but especially at longer lead times. To attribute

changes in the value of hurricane forecasts to error reductions at each lead time we use

the data in Figure 7a to calibrate the values of two forecast precision vectors, ~τ2015 and

~τ1970. The contribution of changes in each component of ~τ to the change in the value of

the prediction system, i.e. T (~τ2015) − T (~τ1970), can be estimated using an analogue of the

Shapley value from cooperative game theory (Shapley, 1953; Shorrocks, 2013, see Appendix

E for details). Figure 7b plots an estimate of the share of the change in value attributable

to error reductions at each lead time between 12 and 120 hours. Although error reductions

are significantly larger for longer lead times (e.g. 48 hours and beyond), much of the increase

in value is attributable to comparatively minor changes in short run predictability when

decision-makers are moderately flexible (e.g. α ≤ 1). One needs large values of α (e.g. α > 4)

for improvements in predictability at lead times greater that 48 hours to play a significant

role, and even then the substantial improvements beyond 96 hours account for less than 15%

of the increase in value. If these large improvements at lead times of 5 days contribute little

to the change in value, how much impact can we expect even very significant changes in our

ability to forecast events 2-4 weeks out to have?

The assumption that long-run predictability is necessary for successful decision-making is

also prevalent in discussions of policies that aim to facilitate adaptation to climate change.

Many commentators have suggested that the lack of reliable projections of the local impacts

of climate change, most of which will occur many decades hence, is a significant barrier to

effective anticipatory planning. Füssel (2007) contends that ‘the effectiveness of pro-active

adaptation to climate change often depends on the accuracy of regional climate and impact

projections, which are subject to substantial uncertainty’, while scientists at the World Mod-

elling Summit for Climate Prediction in 2008 suggested that ‘adaptation strategies require

more accurate and reliable predictions of regional weather and climate extreme events than are
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(a) Increase in the accuracy of Atlantic hurricane track forecasts, 1970-2015. Forecasts with
lead times greater than 72 hours were introduced for the first time in 2001. Data from the
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Figure 7: Valuing improvements in the predictability of Atlantic hurricanes
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possible with the current generation of climate models’ (Dessai et al., 2009). Taken together

these quotes suggest that it is all too easy to conflate the presence of substantial long-run

uncertainty with the need for long-run predictability. Since the long-run today will become

the short-run in the future, successful adaptation to a changing climate is not necessarily

contingent on our ability to predict the long run. Our model suggests that even if accurate

long-run forecasts were available, accounting for the continually updated nature of decision-

making and prediction means that in many circumstances long-run predictability contributes

relatively little to decision-makers’ expected payoffs.

While our analysis has focussed on the benefits of predictability, we expect our conclusions

to be reinforced by an analysis of the costs of improving predictability at different lead times.

The marginal cost of a unit increase in the predictability of events at lead time m is likely

to be an increasing function of m in most cases. While short-run predictability may often

be increased by reducing measurement errors in initial conditions (e.g. by expanding the

observation network, in the case of weather) or other marginal statistical improvements,

long-run uncertainty is often dominated by model misspecification errors, which reflect our

lack of understanding of the structural dynamics of natural or social phenomena (e.g. Hawkins

& Sutton, 2009). These deeper uncertainties often yield only to new scientific breakthroughs

or methodologies, making reducing them both riskier, and more costly than reductions in

short-run uncertainty. Although increasing long-run predictability may serve scientific goals,

the instrumental consequences of such improvements for decision-makers are less clear, and

depend strongly on the costs incurred when adapting activities to new information.

Although we believe that our model provides important conceptual insights into the de-

terminants of agents’ demand for predictability at different lead times, it is clearly limited in

some respects. The modeling exercise is made possible by judicious assumptions which render

an otherwise impossibly complex infinite dimensional stochastic control problem solvable in

closed form. We highlight two of these assumptions here.

First, the model relies on a location-independent quadratic payoff function. It is clear that

if some states of the world are intrinsically more valuable than others, information about these

states will be of greater importance. Since our model assumes a payoff function that penalizes

actions purely according to their distance from some state-dependent optimal choice, the costs

of a maladapted choice do not depend on the state of the world. It is therefore best to think of

our results as defining a symmetric baseline case in which the ability of the decision-maker to

adapt to her environment is not state-contingent. Extending the model to more complex cases

in which this symmetry is broken will be a technical challenge, since the infinite dimensional

stochastic control problem we study will no longer be analytically tractable in this case.

Nevertheless, this would naturally be of interest in future applications. The limitations of the

quadratic payoff function are well-known, and we will not reprise them here. Suffice to say

that this choice proves analytically convenient, and we believe it captures the essence of the

26



problem we study.

Second the model does not consider correlations between signals at different lead times.

This is by design. There is no clear notion of predictability as a function of lead time in

a correlated model, as in this case all signals convey information about all future events.

Indeed, we conceived of our model precisely so that we could overcome this problem. There

is no great conceptual obstacle to allowing for correlated signals in our framework, however

in practice this gives rise to analytical and interpretational difficulties. As in other things, we

have opted for conceptual clarity over empirical comprehensiveness on this front.

Finally, we emphasize that the model is intended to represent a decision-maker who faces

an exogenously changing environment. Thus, its conceptual lessons apply to individuals and

firms, but less to large entities whose actions may affect the uncertainties in their operating

environments. For example, we feel that the model is a fair abstract representation of the

problem of adapting to climate change at the local level, but not of mitigating climate change

at the global level. In the latter case actions the world takes to reduce greenhouse gas

emissions clearly affect uncertainties, whereas in the former any small country or firm may

reasonably take changes in the climate as exogenous to its own activities.
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A Proof of Proposition 1

We use the Bellman equation (10) to solve for the optimal policy function Xn+1 = π(Xn, Yn).

Let primed variables denote next period quantities, and unprimed variables denote current

period quantities, i.e. W = W (X ′, X, Y ) and V = V (X,Y ). Then the first order condition

for Xn+1 is

∂W

∂X ′
(π(Xn, Yn), Xn, Yn) + β

∫
∂V

∂X
(π(Xn, Ym), F (Yn, S))Q(S;Yn)dS = 0. (28)

By the envelope theorem,

∂V

∂X
(Xn, Yn) =

∂W

∂X
(π(Xn, Yn), Xn, Yn) (29)

From (6), we have

∂W

∂X ′
(π(Xn, Yn), Xn, Yn) = µ0 + αXn − (1 + α)π(Xn, Yn)

∂V

∂X
(π(Xn, Ym), F (Yn, S)) =

∂W

∂X
(π(π(Xn, Yn), F (Yn, S)), π(Xn, Yn), F (Yn, S))

= α(X ′ −X)
∣∣
X′=π(π(Xn,Yn),F (Yn,S)),X=π(Xn,Yn)

= α(π(π(Xn, Yn), F (Yn, S))− π(Xn, Yn)).

Substituting into (28), we find that the policy rule must satisfy

µ0 + αXn − (1 + α)π(Xn, Yn) + β

∫
[α(π(π(Xn, Yn), F (Yn, S))− π(Xn, Yn))]Q(S;Yn)dS = 0.

(30)

We solve this equation by the ‘guess and verify’ method. The certainty equivalence property

of the quadratic control problem suggests that we should look for a control rule of the form

π(X,Y ) = aX +

∞∑
t=0

btµt

where the coefficients (a, (bt)t≥0) are to be determined. Plugging this guess into (30) we find:

[µ0 + αX − (1 + α)(aX +
∞∑
t=0

btµt)]+

βα

[∫ (
a(aX +

∞∑
t=0

btµt) +

∞∑
t=0

btµ
′
t(st+1)− (aX +

∞∑
t=0

btµt)

)
Q(S, Yn)dS

]
= 0
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Since Estµ
′
t(st+1) = µt+1, we can simplify this to:

µ0 + αX − (1 + α)(aX +
∞∑
t=0

btµt)+

β[αa2X + aα

∞∑
t=0

btµt + α

∞∑
t=0

btµt+1 − aαX − α
∑
t

btµt] = 0.

Since this equation must hold for all values of X,µt, we must equate the coefficients of each

state variable to zero. The equation for the coefficient of X is:

αβa2 − (1 + α(1 + β))a+ α = 0 (31)

⇒a =
1 + α(1 + β)±

√
(1 + α(1 + β))2 − 4α2β

2αβ
(32)

To pick the correct root, note that if α→ 0, the policy rule should reduce to

π(X,Y ) = µ0.

This follows since when adjustment is costless, the optimal policy simply maximizes period

payoffs. For the positive root we have

lim
α→0

a(α)→∞,

thus giving incorrect behaviour. By contrast, we show below that the correct behaviour is

obtained if we select the negative root. Thus we conclude that

a = a(α, β) =
1 + α(1 + β)−

√
(1 + α(1 + β))2 − 4α2β

2αβ
(33)

The equation for b0 is:

1− (1 + α)b0 + aβαb0 − αβb0 = 0

⇒b0 =
1

1 + α+ αβ(1− a)
. (34)

For t ≥ 1, the equation for bt is:

− (1 + α)bt + aβαbt + αβbt−1 − αβbt = 0

⇒bt =
αβ

1 + α+ αβ(1− a)
bt−1.
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Thus for all t ≥ 0,

bt =
1

1 + α+ αβ(1− a)

[
αβ

1 + α+ αβ(1− a)

]t
(35)

We can simplify this further by using the equation for a in (31). Define

Λ ≡ 1 + α+ αβ(1− a) (36)

From (31) we have

(αβ)a2 − (1 + α(1 + β))a+ α = 0

Now

1 + α(1 + β) = Λ + αβa

⇒ (αβ)a2 − (Λ + αβa)a+ α = 0

⇒ Λ =
α

a
.

Thus

bt =
a

α
(aβ)t . (37)

We now prove the properties of the coefficients a, bt stated in the proposition:

1. limα→0 a(α, β) = 0

Use l’Hopital’s rule: differentiate the numerator and denominator of a with respect to

α, and evaluate the limit of each as α→ 0:

lim
α→0

a(α, β) =
1 + β − 1

2×1(2× 1× (1 + β)− 0)

2β

= 0.

2. limα→∞ a(α, β) = 1:

lim
α→∞

a(α, β) =
1 + β

2β
− 1− β

2β

= 1.

3. ∂a
∂α > 0.

From (33) we have

∂a

∂α
= −1

2

−αβ +
√
α2(1− β)2 + 2α(1 + β) + 1− α− 1

α2β
√
α2(1− β)2 + 2α(1 + β) + 1

. (38)
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Hence, ∂a
∂αa > 0 iff

− αβ +
√
α2(1− β)2 + 2α(1 + β) + 1− α− 1 < 0

⇐⇒
√
α2(1− β)2 + 2α(1 + β) + 1 < 1 + α+ αβ

⇐⇒ α2(1− β)2 + 2α(1 + β) + 1 < α2(1 + β)2 + 2α(1 + β) + 1

which is obviously satisfied for all α > 0, β ∈ (0, 1).

4. a+
∑∞

t=0 bt = 1.

From the previous calculations we know that a ∈ [0, 1] ⇒ aβ ∈ [0, 1]. It follows from

(37) that

a+

∞∑
t=0

bt − 1 = a+
a

α

1

1− aβ
− 1

=
−αβa2 + a(1 + α(1 + β))− α

α(1− aβ)

= 0

where the last equality follows from the defining equation for a in (31).

5. ∂
∂α(bt+1/bt) > 0, ∂b0

∂α < 0.

Since a+
∑∞

t=0 bt = 1, and a is increasing in α, we know that
∑∞

t=0 bt must be decreasing

in α. From (37) we see that
bt+1

bt
= aβ

and hence this ratio is increasing in α. Since bt declines more slowly as α increases, it

must be the case that ∂b0
∂α < 0 in order to ensure that

∑∞
t=0 bt is decreasing in α.

B Proof of Proposition 2

As in the derivation of the optimal policy function, we use the ‘guess and verify’ method.

Begin by guessing that the value function has the form

V (X,Y ) = kX2 +

∞∑
t=0

ctµtX +

∞∑
t=0

∞∑
p=t+1

Dt,pµtµp +

∞∑
t=0

dtµ
2
t +

∞∑
t=0

∞∑
i=0

fi,t
λt + hi,t

. (39)

All except the last term of this expression are straightforward to guess simply by inspection

of the formula for the period payoff in (6). The last term will however be the most important,

as it will turn out that this is the only term that depends on the precision sequence (τt)t≥0.

Consider the quadratic terms in this guess of the form µtµp. We are going to need to know

how these will transform under the updating rule (5) and after the expectation over signal
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realizations has been applied. Letting a prime denote the next period value of a variable, we

are interested in computing expectations of the form

ESµ
′
tµ
′
p = Est+1,sp+1µ

′
t(st+1)µ′p(sp+1)

where signals are distributed according to the agents’ current posterior predictive distribution,

given by (7). Recall that

µ′t(st+1) =
τt+1

τt+1 + λt+1
st+1 +

λt+1

τt+1 + λt+1
µt+1

When t 6= p, we can immediately write down the answer, as means are martingales, and

signals are independent:

Est+1,sp+1µ
′
t(st+1)µ′p(sp+1) = µt+1µp+1

For t = p however, things are different:

Est+1µ
′
t(st+1)µ′t(st+1) = Est+1

[
τt+1

τt+1 + λt+1
st+1 +

λt+1

τt+1 + λt+1
µt+1

]2

Consider the quadratic term in st+1 in this expression:

Est+1

(
τt+1

τt+1 + λt+1

)2

s2
t+1 =

(
τt+1

τt+1 + λt+1

)2

[Var(st+1) + µ2
t+1]

=

(
τt+1

τt+1 + λt+1

)2

[
λt+1 + τt+1

λt+1τt+1
+ µ2

t+1]

=
τt+1

λt+1(λt+1 + τt+1)
+

(
τt+1

τt+1 + λt+1

)2

µ2
t+1

When we combine this expression with the other terms in the expression for Est+1µ
′
t(st+1)µ′t(st+1),

the factor in front of µ2
t+1 in the second term will cancel to 1 (as occurs in the case t 6= p),

and we are left with

Est+1µ
′
t(st+1)µ′t(st+1) =

τt+1

λt+1(λt+1 + τt+1)
+ µ2

t+1. (40)

Hence, in summary:

Est+1,sp+1µ
′
t(st+1)µ′p(sp+1) =

{
µt+1µp+1 t 6= p
τt+1

λt+1(λt+1+τt+1) + µ2
t+1 t = p.

(41)

It will be more convenient in what follows to write the terms that depend on λt+1 is this
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expression as
τt+1

λt+1(λt+1 + τt+1)
=

1

λt+1
− 1

λt+1 + τt+1
. (42)

We now want to write down the Bellman equation for our assumed functional form for the

value function. The first step is to compute the period payoff:

W (π(X,Y ), X, Y ) = −1

2

[
(1 + α)[π(X,Y )]2 + αX2 − 2π(X,Y )(µ0 + αX) +

1

λ0
+ (µ0)2

]
= −1

2

[
(1 + α)(aX +

∞∑
t=0

btµt)
2 + αX2 − 2(aX +

∞∑
t=0

btµt)(µ0 + αX) +
1

λ0
+ (µ0)2

]

= −1

2

(1 + α)(a2X2 + 2aX

∞∑
t=0

btµt +
∞∑
t=0

∞∑
p=t+1

2btbpµtµp +

∞∑
t=0

b2tµ
2
t ) + αX2

−2aXµ0 − 2aαX2 − 2µ0

∞∑
t=0

btµt − 2αX

∞∑
t=0

btµt + (µ0)2 +
1

λ0

]

We also have

ESV (π(X,Y ), F (Y, S)) = ES

k(π(X,Y ))2 +
∞∑
t=0

ctµ
′
t(st+1)π(X,Y ) +

∞∑
t=0

∞∑
p=t+1

Dt,pµ
′
t(st+1)µ′p(sp+1)

+

∞∑
t=0

dt(µ
′
t(st+1))2 +

∞∑
i=0

∞∑
t=0

fi,t
λ′t + hi,t

]

= k[aX +
∑
t

btµt]
2 +

∞∑
t=0

ctµt+1[aX +

∞∑
p=0

bpµp] +

∞∑
t=0

∞∑
p=t+1

Dt,pµt+1µp+1

+

∞∑
t=0

dt(µt+1)2 +

∞∑
t=0

dt

[
1

λt+1
− 1

λt+1 + τt+1

]
+
∞∑
i=0

∞∑
t=0

fi,t
λt+1 + τt+1 + hi,t

We now have expressions for each of the three terms V (X,Y ),W (π(X,Y ), X, Y ),ESV (π(X,Y ), F (Y, S)),

and must choose the free coefficients of the value function so that

V (X,Y ) = W (π(X,Y ), X, Y ) + βESV (π(X,Y ), F (Y, S))

holds as an identity. We begin by focussing on the terms that depend on λt. If we focus just

on these terms, the Bellman equation reads

∞∑
i=0

∞∑
t=0

fi,t
λt + hi,t

= −1

2

1

λ0
+ β

( ∞∑
t=0

dt

[
1

λt+1
− 1

λt+1 + τt+1

]
+

∞∑
i=0

∞∑
t=0

fi,t
λt+1 + τt+1 + hi,t

)
(43)

We must determine values for the sequences fi,t, hi,t such that this equation holds as an

identity. Since the right hand side of this equation contains terms of the form 1/λt for all t,
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we must have terms of this form on the left hand side as well. We thus begin by choosing

h0,t = 0

for all t ≥ 0. Then if (43) is to hold as an identity for all λt, τt we require

f0,0 = −1

2
(44)

f0,t = βdt−1 for t ≥ 1. (45)

Notice that setting h0,t = 0 creates an imbalance of terms of the form

∞∑
t=0

f0,t

λt+1 + τt+1

on the right hand side of the Bellman equation through the last term in (43). To correct this

imbalance through terms on the left hand side, we must choose

h1,t = τt

implying in turn that we must choose

f1,0 = 0

f1,t = β[−dt−1 + f0,t−1] for t ≥ 1.

Again we create an imbalance of terms on the right hand side, which we correct by picking

h2,t = τt + h1,t−1 = τt + τt−1

and we find that

f2,0 = 0

f2,t = βf1,t−1.

We can complete this imbalance/rebalance procedure indefinitely to solve for all the coeffi-
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cients fi,t, hi,t. We find:

h0,t = 0; hi,t = τt + hi−1,t−1 i ≥ 1 (46)

f0,0 = −1

2
; f0,t = βdt−1 t ≥ 1 (47)

f1,0 = 0; f1,t = β[−dt−1 + f0,t−1] t ≥ 1 (48)

fi,0 = 0; fi,t = βfi−1,t−1. n ≥ 2, t ≥ 1. (49)

It is straightforward to solve the set of recurrence relations for fi,t. It is convenient to write

the solution as an infinite dimensional matrix:

f =



−1
2 βd0 βd1 βd2 βd3 . . .

0 −β(d0 + 1
2) β(βd0 − d1) β(βd1 − d2) β(βd2 − d3) . . .

0 0 −β2(d0 + 1
2) β2(βd0 − d1) β2(βd1 − d2) . . .

0 0 0 −β3(d0 + 1
2) β3(βd0 − d1) . . .

...
...

...
...

... . . .


(50)

The i, t entry of this matrix corresponds to fi−1,t−1, i.e. the rows correspond to fixed values

of i, and the columns to fixed values of t, both starting at zero.9

Clearly fi,t = 0 for any i > t. Thus the only parameters hi,t that are relevant have

0 ≤ i ≤ t. It is straightforward to solve the recurrence relation (46) to find

h0,t = 0

hi,t =

t∑
k=t+1−i

τk, 1 ≤ i ≤ t

The matrix f makes it clear that we will need to understand the parameters dt if we are to

solve for fi,t. We can find these parameters by solving the µ2
t terms of the Bellman equation.

9Notice that
∑∞
i=0 fi,t = − 1

2
βt. To understand this suppose that τt = 0 for all t, i.e. the agent receives

no forecasts. Then her beliefs will not change over time, and the variance of her beliefs about θ̃n+t will be
the same once time n + t rolls around as they are in the current period n. The contribution of the variance
terms to the value function in this case is thus straightforward to compute, since variance terms only enter the
period payoff through the term − 1

2
λ0. Thus, when τt = 0, we should expect the following term in the value

function: − 1
2

∑∞
t=0 β

t 1
λt

. Now when τt = 0 for all t, we have

∞∑
i=0

∞∑
t=0

fi,t
λt + hi,t

=

∞∑
t=0

∑∞
i=0 fi,t

λt

= −1

2

∞∑
t=0

βt
1

λt

as expected.
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Define

δi,j =

{
1 i = j

0 i 6= j
(51)

Then the Bellman equation for the µ2
t terms yields

dt = −1

2
[(α+ 1)(bt)

2 + (1− 2b0)δt,0] + β(k(bt)
2 + ct−1bt(1− δt,0) + dt−1(1− δt,0)

=

(
kβ − 1

2
(α+ 1)

)
(bt)

2 − 1

2
(1− 2b0)δt,0 + βct−1bt + βdt−1 (52)

where d−1 ≡ 0 ≡ c−1. This equation in turn depends on the coefficients of X2 and µtX, i.e.

k and ct. The X2 terms of the Bellman equation give:

k = −1

2
((1 + α)a2 + α− 2aα) + β(ka2)

⇒ k = −1

2

(
(1 + α)a2 + α− 2aα

1− βa2

)
, (53)

which is a known quantity. As a check, another way to compute k is to use the envelope

theorem result:

∂V

∂X
= α(π(X,Y )−X)

= α((a− 1)X +
∑
t

btµt)

Integrating this, we should find that

k = α
a− 1

2
.

Using (31) it can be shown that these two formulae for k agree, and we thus use the second,

simpler, expression.

Equating coefficients of the µtX terms in the Bellman equation gives:

ct = −1

2
((1 + α)2abt − 2aδt,0 − 2αbt) + β(2kabt + act−1(1− δt,0))

= (α− a(1 + α) + 2βka)bt + aδt,0 + aβct−1

Consider the factor in front of bt in this expression. Substituting k = α
2 (a−1) into this factor

we see that it is equal to

αβa2 − a(1 + α(1 + β)) + α

But from the definition of a in (31) this expression is identically zero. Thus ct satisfies

ct = aδt,0 + aβct−1
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where c−1 = 0. Thus, we conclude that

ct = a(aβ)t (54)

for all t ≥ 0.

Equation (52) thus becomes:

dt =

(
αβ

a− 1

2
− 1

2
(α+ 1)

)
b2t +

(
b0 −

1

2

)
δt,0 + (aβ)tbt + βdt−1

= −1

2
(1 + α+ αβ(1− a))b2t + (aβ)tbt + (b0 −

1

2
)δt,0 + βdt−1

From (35) and the definition of Λ in (36) we have

bt =
1

Λ

(
αβ

Λ

)t
.

Thus

d0 = −Λ

2
b20 + b0 −

1

2

= −Λ

2
(

1

Λ
)2 +

1

Λ
− 1

2

=
1

2
(

1

Λ
− 1)

Also for t ≥ 1:

dt = − 1

2Λ

(
αβ

Λ

)2t

+ (aβ)t
1

Λ

(
αβ

Λ

)t
+ βdt−1

= − 1

2Λ

(
αβ

Λ

)2(αβ
Λ

)2(t−1)

+
1

Λ

aαβ2

Λ

(
aαβ2

Λ

)t−1

+ βdt−1
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This is a non-homogeneous first order difference equation. The solution for t ≥ 1 is

dt = βtd0 −
1

2Λ

(
αβ

Λ

)2 t−1∑
k=0

βt−k−1

(
αβ

Λ

)2k

+
1

Λ

aαβ2

Λ

t−1∑
k=0

βt−k−1

(
aαβ2

Λ

)k

= βtd0 −
1

2Λ

(
αβ

Λ

)2

βt−1
t−1∑
k=0

(
α2β

Λ2

)k
+

1

Λ

aαβ2

Λ
βt−1

t−1∑
k=0

(
aαβ

Λ

)k

= βtd0 −
1

2Λ

(
αβ

Λ

)2

βt−1

(
1− (α2β/Λ2)t

1− α2β/Λ2

)
+

1

Λ

aαβ

Λ
βt

1−
(
aαβ
Λ

)t
1− aαβ

Λ

= βt

 1

2Λ
− 1

2
− 1

2Λ

α2β

Λ2

(
1− (α2β/Λ2)t

1− α2β/Λ2

)
+

1

Λ

aαβ

Λ

1−
(
aαβ
Λ

)t
1− aαβ

Λ


Since Λ = α

a we see that

α2β

Λ2
=
aαβ

Λ
= a2β.

Thus the solution for dt simplifies to

dt =
1

2
βt
[
a

α
− 1 +

a

α

a2β

1− a2β
(1− (a2β)t)

]
. (55)

We can use this solution for dt, and the matrix f to find an explicit solution for the

coefficients fi,t. Let i = t− n where 1 ≤ n < t. Then the matrix f shows that

ft−n,t = βt−n(βdn−1 − dn)

= βt−n
[
β

(
1

2
βn−1

[
a

α
− 1 +

a

α

a2β

1− a2β
(1− (a2β)n−1)

])
− 1

2
βn
[
a

α
− 1 +

a

α

a2β

1− a2β
(1− (a2β)n)

]]
= −1

2
βt−n

a

α
(aβ)2n

For t = i ≥ 1, f gives

ft,t = −βt(d0 +
1

2
)

= −βt
[

1

2
(
a

α
− 1) +

1

2

]
= −1

2
βt
a

α
.

Thus we conclude that for any t ≥ 1, 1 ≤ i ≤ t,

fi,t = −1

2

a

α
βi(aβ)2(t−i).

The values of f0,t and fi,0 can be read directly off the matrix f .
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In the process of solving for the parameters that enter the term T we solved for k, ct, dt,

fi,t and hi,t. To show that our guess for the value function does indeed yield the solution, we

now derive expressions for the final outstanding coefficients of the value function, Dt,p. From

the Bellman equation we see that

Dt,p = −1

2
[(1 + α)2btbp − δt,02bp] + β

[
2kbtbp + (1− δt,0)ct−1bp + btcp−1 + (1− δt,0)Dt−1,p−1

]
.

For t = 0, we find

D0,p = A(aβ)p , A =
a

α
.

For t ≥ 1,

Dt,p = A(aβ)t+p + βDt−1,p−1 , A =
a

α
.

The recursive equation

y(m,n) = Aξm+n +By(m− 1, n− 1) , m < n

has the solution

y(m,n) = Aξm+n
1−

(
B
ξ2

)m
1− B

ξ2

+Bmy(0, n−m) .

Applying this general formula with ξ = aβ leads to

Dt,p =
a

α
(aβ)t+p

1− (a2β)−t

1− (a2β)−1
+
a

α
βt(aβ)p−t .

Thus we have found unique solutions for all the free coefficients of our guess for the value

function, confirming that the initial guess does indeed yield the solution.

C Proof of Proposition 3

From Proposition 2 we have

dV

dτm
=

dT

dτm
= −

∞∑
i=1

∞∑
t=1

fi,t
(λt + hi,t)2

dhi,t
dτm

.

From (46),

dhi,t
dτm

=

{
1 t ≥ m and t ≥ i ≥ t+ 1−m
0 otherwise

Hence,

dV

dτm
= −

∞∑
t=m

t∑
i=t+1−m

fi,t

(λt +
∑t

k=t+1−i τk)
2
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Evaluate this quantity at τt = 0 for all t:

dV

dτm

∣∣∣∣
0

= −
∞∑
t=m

1

λ2
t

t∑
i=t+1−m

fi,t

Let t = m + k where k ≥ 0, and consider the sum
∑t

i=t+1−m fi,t =
∑m+k

i=k+1 fi,m+k. This

sum is equivalent to starting at diagonal element m + k + 1,m + k + 1 of the matrix f , and

summing the m terms above this diagonal element (including the diagonal). Reading off the

matrix, we see that this sum simplifies to:

m+k∑
i=k+1

fi,m+k = −βk+1dm−1 −
1

2
βm+k.

and hence

dV

dτm

∣∣∣∣
0

= −
∞∑
t=m

1

λ2
t

t∑
i=t+1−m

fi,t

=

(
dm−1

∞∑
k=0

βk+1

λ2
m+k

+
1

2
βm

∞∑
k=0

βk

λ2
m+k

)
.

Using the definition of g(m) this expression becomes

dV

dτm

∣∣∣∣
0

= βg(m)

(
dm−1 +

1

2
βm−1

)
.

From (55) we have

dm−1 +
1

2
βm−1 = βm−1

(
a

α
+
a

α

a2β

1− a2β
(1− (a2β)m−1)

)
=
a

α
βm−1

(
1 +

a2β

1− a2β
(1− (a2β)m−1)

)
=
a

α
βm−1

[
1− (a2β)m

1− a2β

]
.

The result follows.

D Behaviour of Rm

From the formula (26), and the requirement φ > β, it is clear that limm→∞Rm = 0. Here we

show that Rm is either monotonically decreasing in m, or has a unique global maximum for

some m ≥ 2, and characterize the parameter ranges where these two behaviours occur.

The fact that Rm has at most one maximum at m ≥ 2 can be shown by treating m as
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a continuous variable. Then Rm has a stationary point iff d
dmRm = 0, which a little algebra

shows occurs if

(a2β)m ln

(
a2β2

φ

)
= ln

(
β

φ

)
. (56)

This condition has at most one solution for m ≥ 1. Since Rm > 0 for all m, R1 = 1,

limm→∞Rm = 0, and dRm/dm changes sign at most once, Rm cannot have a local minimum.

Thus Rm must be either monotonically declining, or be unimodal with a global maximum at

some m ≥ 2.

It is simple to determine conditions under which these different qualitative behaviours

occurs. Since if Rm is not monotonically declining it must be unimodal, the condition R2 >

R1 = 1 is both necessary and sufficient for Rm to be unimodal. A little algebra shows that

R2 > 1 ⇐⇒ ∆ ≡ a2β2 + β − φ > 0. Since a = 0 at α = 0, we know ∆ = β − φ < 0 when

α = 0. Also, since a is increasing in α, so is ∆. Combining these facts we see that the set of

parameters values for which ∆ > 0 must either be empty, or of the form α > α̂(β, φ), where

α̂(β, φ) is some critical value of α at which ∆ = 0. Solving the condition ∆ = 0 for α, we find

two solutions:

α1 =
(φ− β)(1 + β) + φ

√
φ− β

β2 + (φ− β)2 − (φ− β)(1 + β2)
, α2 =

(φ− β)(1 + β)− φ
√
φ− β

β2 + (φ− β)2 − (φ− β)(1 + β2)
.

α2 is negative for all β and φ ∈ [β, 1] so we conclude that

α̂(β, φ) =
(φ− β)(1 + β) + φ

√
φ− β

β2 + (φ− β)2 − (φ− β)(1 + β2)
. (57)

Observe that α̂(0, φ) = φ(1+
√
φ)

φ(φ−1) < 0 so ∆ is negative at β = 0 irrespective of α. To find the

conditions on β under which α̂(β, φ) ≥ 0 we solve α̂(β, φ) = 0 for β, finding the following

three roots:

β1 = φ , β2 = −1 +
√

1 + 4φ

2
, β3 =

√
1 + 4φ− 1

2
.

β1 violates the condition β < φ, β2 is always negative, but β3 < φ which makes the latter the

relevant critical level of β at which α̂(β, φ) ≥ 0. Thus we define the critical value of β as

β̂(φ) =

√
1 + 4φ− 1

2
. (58)

Thus, when β ∈ [β̂, φ), Rm has a maximum at some m > 1 if α > α̂, otherwise Rm is

decreasing.
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E Valuing improvements in the predictability of hurricane

tracks

Figure 8 depicts data from the US National Hurricane Center on the history of Atlantic hurri-

cane track forecast errors (http://www.nhc.noaa.gov/verification/pdfs/1970-present_

OFCL_ATL_annual_trk_errors_noTDs.pdf). The dots represent the forecast errors for dif-

ferent lead times from 1970 to 2015 together with a linear trend for each lead time. 36 hr

forecasts were first reported in 1988, and 96 and 120 hr forecasts were first reported in 2001.

The forecast errors in 1970 and 2015 displayed in Figure 7a are calculated based on the lin-

ear trend at each lead time, and missing data at intermediate lead times in 1970 have been

linearly interpolated from the 1970 estimates.

Determining the value T (~τ) of a forecast system τ requires the sequence of precisions

~τ = (τt)t≥1. The time unit is 12 hrs. Precision sequences are calibrated based on the

procedure described above, with precision levels beyond the forecast horizon (>72 hrs before

2001, >120 hrs after 2001) set to a minimum precision level τmin. We choose τmin = 1/e2
max,

where emax = 1276.4 km is the highest forecast error in the data set. In the following we

assume that the decision-maker’s priors are arbitrarily diffuse, i.e. λt → 0 for all t. This

makes the function T (~τ) scale invariant, meaning that the units in which we measure forecast

errors are unimportant for computing relative changes in value. Our results apply when the

loss minimizing decision θ̃ is any linear function of the hurricane’s physical location.

We use the Shapley value to estimate the contribution of error reductions at each lead
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Figure 8: Historical errors in Atlantic hurricane track forecasts.
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time to the overall change in value. Consider two vectors ~τ and ~τ ′ whose elements differ a

finite number of times. Let the set of indices where the two vectors differ be A, with generic

index i, and define the vector

~∆ ≡ ~τ ′ − ~τ .

The ith non-zero element of ~∆ is denoted by ∆i. Without loss of generality, assume that

T (~τ ′) > T (~τ). To disentangle the contribution of ∆i to the overall change in forecast value,

we view the vector ~τ ′ as a ‘coalition’ of changes in the value of ~τ at each lead time, which

is assembled one by one. For any permutation π of the indices in A, let ~τπ,i be a precision

vector in which the elements that precede i in the permutation π are given by the elements

of ~τ ′, with the remaining elements of ~τπ,i given by the corresponding elements of ~τ . Then the

share of the change in value attributable to lead time i is defined to be

si ≡
1

|A|!
∑

π∈P (A)

T (~τπ,i + ~∆ · 1i)− T (~τπ,i)

T (~τ ′)− T (~τ)
, (59)

where P (A) is the set of permutations of the indices in A, and 1i is a unit vector with all

elements equal to zero except element i. In words, we compute the marginal contribution of

the change in ~τ in component i in each possible way of assembling the new vector ~τ ′ from

discrete changes in the components of ~τ , and average the results. This procedure inherits the

well-known properties of the Shapley value, and in particular is agnostic as to the order in

which the changes in each component of ~τ are applied so as to construct the new precision

vector ~τ ′.
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