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Abstract

We investigate how irreversibility in “dirty” and “clean” capital stocks affects optimal climate
policy, from both theoretical and numerical perspectives. An increasing carbon tax will reduce
investments in assets that pollute, and so reduce emissions in the short term: our “irreversibility
effect”. As such the “Green Paradox” has a converse if we focus on demand side capital stock
effects. We also show that the optimal subsidy increases with the deployment rate: our “accel-
eration effect”. Considering second-best settings, we show that, although carbon taxes achieve
stringent targets more efficiently, in fact renewable subsidies deliver higher welfare when policy
is more mild.
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1 Introduction

Irreversibility is an important feature of investment decisions. Many productive facilities are firm- or
industry-specific and disinvestment is costly, if at all possible. Once capital is installed, it has little
or no value unless used in production. It is obvious that with inability to disinvest, firms face more
constrained conditions compared with firms undertaking reversible investments. This has important
implications for investment decisions even without uncertainty1. The outstanding example of such
a situation is provided by investment into fossil fuel-fired power plants. The world continues to
make big investments into their construction, particularly coal plants: estimates suggest almost 1
trillion US dollars of such investments are planned (Shearer et al. 2016). Given the long lifetimes of
fossil fuel based power plants, the emissions embodied in this infrastructure potentially undermine
more stringent long-term climate objectives, such as the 2°C target (see Pfeiffer et al. 2016). As
such, a fast coal phase-out strategy is considered as one of the necessary conditions to achieve a
transformation in line with the Paris Agreement. Some countries (e.g. the UK, Finland, France)
have significantly reduced their power production from coal in recent years and announced phasing
out coal completely in the coming 10-15 years. In addition, production of electricity from renewable
sources has become more competitive, expanding dramatically, primarily due to the decline in costs
driven by economies of scale. These considerations prompt three natural questions. When is the
optimal time to stop investment into fossil fuel based power plants when investments are irreversible?
How much should we invest into the clean energy sector? And, which policy instrument (carbon
tax or subsidy) is more efficient in terms of maximizing social welfare when only one instrument is
available (second-best setting)?

In this paper, we study these questions both theoretically and numerically. Our analysis is
in two complementary parts. First, we explore the properties of irreversible investment decisions
(Arrow 1968, Arrow and Kurz 1970, Greenwood et al. 1997) in a simplified model. As well as
serving intuition, the model presents messages that are of a general nature. They characterize op-
timal irreversible investment decisions when it is known that returns on this capital are due to fall.
And similarly, we explore investments, returns and optimal subsidies when the price of investments
undergoes learning-by-doing (Wright 1936, Arrow 1962). We then quantify the importance of irre-
versibility and learning-by-doing in a dynamic general equilibrium climate-economy model. This is
based on DICE (Nordhaus 2014a) but deviates in two important ways. Firstly, the energy sector
is modeled explicitly, incorporating both irreversibilities in a “dirty” sector and learning-by-doing
in a “clean” sector. And secondly, as well as copying the damage function of Nordhaus (2014a),
we also consider scenarios in which global temperature changes do not exceed 2◦C. This stringent
target makes both irreversibilities and learning-by-doing more important; it is better in line with
current international aspirations. Given the two externalities present in our model (global warming
and learning-by-doing), we consider cases in which both carbon tax and subsidy instruments (the
first-best setting) or only one of the two instruments (the second-best) are available.

The four main findings of the paper are as follows. First, we establish a theoretical result on
the relationship between investment in dirty capital stock and climate policies, which we call the
“irreversibility effect”: if dirty capital cannot be converted to other capital, then it is optimal to
stop investing into dirty capital earlier (as compared with a case in which investment is reversible).
Irreversibility in investment implies an earlier shift to investment into the clean sector, to avoid
later stranding of assets in the dirty energy sector. It therefore reduces emissions in the short
term. We thus demonstrate that irreversibility effects on the demand side enhance the effects of
carbon tax in the short-term, and so reduce emissions in the short-term. This is in contrast with

1Irreversibility of investment features prominently in the modern theory of firm-level investment under uncertainty,
e.g., Abel (1983), Pindyck (1991), Dixit (1992).
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the standard Green Paradox (GP) effect,2 which focuses on the suppliers of a fossil fuel resource
and shows that the knowledge of an increasing carbon tax will increase extraction of fossil fuel
and will thus counteract the effects of the carbon tax in the short-term. Moreover, at the time at
which we stop investing into dirty fossil fuel infrastructure, returns on its existing stocks go above
those of the general economy. From the perspective of an investor, this makes perfect sense. In the
long-term, returns on this investment will fall, and thus the current investments are only attractive
when short-term additional gains are sufficient to compensate for future losses.3

Second, we provide a simple expression for the optimal subsidy on technologies whose price
evolves via “learning-by-doing”. This subsidy depends on depreciation and the learning rate, and
also on the rate of deployment of the technology: under normal parameterizations, the subsidy
increases with the rate of deployment. We call this the “acceleration effect” for technology policy.
Thus, if, for example, a carbon tax restricts investment in the dirty sector and enhances future
deployment of clean technology, this implies an additional case for a greater subsidy in the short
term. So the importance of learning-by-doing is accentuated by the early withdrawal from the dirty
energy sector.

Third, quantitative results support our theoretical findings and illustrate that the net (of de-
preciation) rate of returns on dirty capital infrastructure with irreversible investments follows an
unusual trajectory: initially matching the returns in the general economy, we see that it rises above
the returns in the general economy when we stop investing in dirty capital and remains above it
for some period of time; within this period and for some time thereafter, investment will be equal
to zero, although the dirty capital is not underutilized. However, net returns on dirty capital will
fall eventually, reaching zero once the capital is indeed underutilized. Quantitative results illustrate
that the timing of these effects depends on the climate policy target: the irreversibility effect kicks
in only if policy objectives are stringent enough.

Finally, we quantitatively explore which instrument - carbon tax or subsidies - under the second-
best setting yields lowest welfare loss compared with the first-best situation. We show that under
less ambitious climate policy, the economy is better off with the subsidy policy, while carbon pricing
induces lower welfare loss compared with the subsidy policy if climate policies are more ambitious.

These results further relate to the literature in the following ways. On the theory side, the
irreversibility and the acceleration effects are novel, to the best of our knowledge, and are related to
two branches of the literature. First, our theoretical result linking investment irreversibility and an
earlier end to investment in polluting infrastructure is closest in spirit to findings of Arrow (1968),
who was the first one to study investment irreversibility in a deterministic setting. He showed that
optimal irreversible investment is characterized by alternating periods of positive gross investment
and zero gross investment.4 In relation to these studies, we develop a stylized model to explicitly
demonstrate this effect and related pattern in rates of return on irreversible investment and apply
the results to the case of a polluting industry. Second, there is an extensive literature5 that has
explored if the Green Paradox effect remains robust by considering various extensions of the typical

2See e.g., Sinn (2008), Jensen et al. (2015), Sinn (2015).
3Such an extra premium on irreversible investment even without uncertainty is also called the commitment pre-

mium, see e.g., Bernstein and Mamuneas (2007).
4Similar result, but within the Ramsey model of optimal capital accumulation, was obtained by Arrow and Kurz

(1970), who show that it is possible to have as an optimal solution practically any number of alternating intervals in
which the nonnegativity constraint (on investment) is binding or not. As such solutions, as they conclude, become
in essence a computational problem.

5For instance Gerlagh (2011) focuses on strong and weak GP and explores if increasing fossil extraction costs
counteracts the (strong) GP, while imperfect energy substitutes may make the weak and the strong GP vanish.
Michielsen (2014) investigates how the existence of a virtually non-exhaustible resource like coal can work against
the GP mechanism. See also, e.g., van der Ploeg (2013), van der Ploeg and Withagen (2014).

3



resource model that underlies the GP. The irreversibility effect, even though complements other
mechanisms against the GP discussed in the literature, is conceptually different as it focuses on the
demand side of a fossil fuel resource.

On the quantitative side, the results relate to other two strands of research. On the one hand,
there is an extensive literature that investigates relative merits of carbon tax and renewable subsidies
to address climate change.6 However, these studies generally abstract from consideration of different
climate targets under second-best settings with irreversible investment decisions.7 On the other
hand, a rich and growing literature has developed integrated assessment models to study a number
of different climate change issues. Papers assessing future emissions from the energy sector include
Pfeiffer et al. (2016) and Davis et al. (2010). However, these are not dynamically optimizing
frameworks, as in the economics literature. Other climate-economy models generally ignore the
interplay between irreversible investment decisions, inertia in energy systems, and climate policies,
on which this paper focuses.8

Finally, our paper belongs to the literature on path dependence and climate change.9 We
contribute to this literature by analyzing the implications of path dependence embodied in carbon-
intensive infrastructure for the design of optimal climate change policies.

In terms of broader implications of the results, our paper speaks to the debate on characteristics
of optimal policy to combat climate change. Some advocate a “gradual slope” in policy because
economic growth implies that the current generation is poor relative to the future, and so should
not bear the costs of emission reductions. Moreover, doing so reduces pressure for premature
retirement of the existing dirty capital stock, and it provides valuable time to develop low-cost,
low-carbon-emitting technology.10 Others counter this line of reasoning by arguing that an effective
way to reduce abatement costs is to accelerate learning-by-doing.11 We find that early investment
in the renewable sector is crucial, and not only to accelerate the decline in the costs of clean energy
but also to prevent later stranding of assets using fossil fuel. Our quantitative results within the
second-best setting emphasize the importance of adopting carbon pricing - an instrument that can
facilitate a rapid decarbonization of the global power sector under ambitious climate policy target
as set under the Paris Agreement. However, considering the past 10-20 years, relatively unambitious

6For instance the literature has argued that one of the advantages of using carbon pricing is that it can help to
minimize the cost of pollution control. Fischer and Newell (2008) show that reliance on non-price policy instruments
often leads to higher abatement costs. In a more recent study, Fischer et al. (2017) show that even with multiple
market failures, pricing policy remains the most cost-effective option for reducing emissions. See also Gerlagh and
van der Zwaan (2006), who use a top-down energy-economy model to compare five instruments, including carbon
taxes and renewable subsidies, in terms of costs, efficiency and their impacts on the composition of the energy supply
systems. See, e.g., also Baranzini et al. (2017) and references therein.

7A burgeoning theoretical literature investigates the forms of policy interventions in second-best settings. Ex-
amples include an analysis of optimal carbon taxation as part of distortionary fiscal policy (Barrage, 2014); policy
intervention via carbon taxes and research subsidies as well as alternative policies to encourage the transition to a
green economy (Acemoglu et al., 2016); analysis of how carbon taxes combined with green alternatives can increase
fossil fuels abandonment (Rezai and van der Ploeg, 2016). None of these studies, however, has analyzed optimal
policy interventions when investment decisions are irreversible.

8To the best of our knowledge, the only exception is Rozenberg et al. (2014), who however do not find the effects
pertaining to the irreversibility and learning-by-doing as we do in this paper.

9e.g., Fouquet 2016; Aghion et al. 2014, and Aghion et al. 2016. The papers relevant to our analysis are Grubb
et al. (1995), Wigley et al. (1996), Grubler and Messner (1998), Goulder and Mathai (2000), Vogt-Schilb et al. (2012)
and Rozenberg et al. (2014).

10W. Nordhaus was one of those in the past who recommended delay, but he recently argued that a target with a
limit of 2°C “appears to be unfeasible with reasonably accessible technologies” (Nordhaus 2016). Wigley et al. (1996),
e.g., argue that the cost-effective emissions pathway is one that departs only gradually from the emissions baseline.

11Still, some authors find that leaning-by-doing has an ambiguous impact on the timing of emissions abatement
(Tol 1999, Goulder and Mathai 2000).
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policy has manifested in large part through subsidy on renewables; if that level of policy had been
optimal, that choice of one instrument may well have been an excellent second best.

Finally, our paper speaks to the debate on stranded assets and climate policy. The literature so
far has dominated by the studies that estimate the amount of existing fossil fuel reserves that would
be required to remain in the ground to limit climate change to less than two degrees of warming.
For instance, according to McGlade and Ekins (2015), an estimated third of oil reserves, half of
gas reserves and more than 80% of known coal reserves are referred to as “stranded”. As we show,
the economics is different when one considers stranding of assets that use the fuel. Moreover, the
question is not only about the shift away from fossil fuel energy and related physical capital, but also
about how smoothly it is done. Our model is a perfect foresight model and investors form rational
expectations. The model suggests that energy assets, such as coal fired power stations, become
stranded or underutilized early as a rational response to stringent climate policy target. As such, a
credible political signal of stringent climate policy is required, to avoid investments that will in fact
be unprofitable. This in turn will lead to earlier reductions in emissions. The Paris Agreement could
be such a signal, prompting investors to behave rationally and helping politicians to buy time, as
they start implementing the policies which will be required to implement the necessary reductions
in emissions.

The rest of the paper is organized as follows. In the next section we present a simple analytical
model in which we characterize optimal irreversible investment decisions when we anticipate that
returns on those investments will fall in the future. In Section 3 we consider a simple model
of investment with learning by doing. Section 4 describes how we set up the full dynamic general
equilibrium climate-economy model to quantify the theoretical results. Section 5 sets out the results
from the simulations of the climate-economy model. The final section provides a discussion and some
concluding comments. Details on the calibration, and proofs of technical results, are provided in
Appendices.

2 A Simple Model of Irreversible Investments

First we model key features of the economy in isolation, in order to clearly present the theoretical
results. The models analyzed here will be embedded in our full structure in Section 4. We consider
the implications of irreversibility in investments in capital stocks whose economic productivity will
decline (cf. Arrow 1968, Arrow and Kurz 1970). Our key example is investment in a fossil fuel using
power stations, but many other illustrations can be found. For example, the design of cities may
lock in high energy usage, in ways that are difficult and expensive to reverse; this motivates earlier
sustainable design (cf. e.g. Hoornweg and Freire 2013).

2.1 The Household’s problem

Consider a representative household, which holds kt of a certain capital asset and can make an
additional irreversible investment of it in each period t. The asset offers a period-t return of rt and
depreciates at rate δ. There are other opportunities for investment and other sources of income,
written net as ot, and the household’s per-period consumption is ct, so their budget constraint is
it + ct = rtkt + ot where it = kt+1 − (1− δ)kt and it ≥ 0.

Write the standard ratio from the Euler equation as et+1 := u′(ct)
βu′(ct+1) − 1 where u is a utility

function and β is the utility discount factor. Make the minor assumptions that there exist ε > 0
and R � 0 with −δ + ε < et < R for all t, that is, et is bounded and bounded away from minus
depreciation, −δ.

In the following, we analyze this model (proofs are provided in Appendix A). First:
5



Proposition 2.1. For any s0, s1 ∈ Z+, investment it > 0 holds for all t ∈ {s0, . . . , s1} only if
rt − δ = et for t ∈ {s0 + 1, . . . , s1}.

To understand this intuitively, suppose we have an asset, “general capital”, in which there is
non-zero investment in every period, and whose rate of return rgt may be treated as exogenous.
Then rgt − δ = et for all t ≥ 1 (the Euler equation). So for non-zero investment in two assets over a
time period, their net returns must match.

We make the obvious point of Proposition 2.1 to contrast with the following, more interesting
case. Suppose the net return from the asset drops below et at some time t: changing economic
conditions mean that this capital asset is no longer as productive as it was. Then we stop investing
at an earlier time, and reap excess returns for some of the intervening period. Write ∆t,s =∏s
s′=1

1
1+et+s′

for the compound consumption discount factor. Then

Proposition 2.2. Suppose that i0 > 0, and that rt − δ < et for t ∈ {s1, . . . , s2}. Then there exists
s0 ≤ s1 − 1 such that rs0 − δ > es0 and such that it = 0 for t ∈ {s0, . . . , s2 − 1}. Moreover, then

s1−1∑
s=1

(1− δ)s−1∆0,s((rs − δ)− es) ≥
s2∑
s=s1

(1− δ)s−1∆0,s(es − (rs − δ)) (1)

Thus the net returns rt − δ from this asset follow an unusual trajectory: initially matching the
consumption discount rate path et, or the net returns from a “general capital” stock, we see that
rt − δ rises above et at some point before it falls beneath. Investment is zero while returns follow
this pattern. (We illustrate this pattern in our simulations in Section 5: see Figure 2).

It is mathematically possible that the minimal s0 found by Proposition 2.2 satisfies s0 = s1− 1:
investment merely ends one period before the net economic return drops below the general level in
the economy. However, because equation (1) must hold, such a solution would be surprising when
the time step (and so the depreciation rate) are moderately small. Recall from Proposition 2.1 that
while investment is ongoing, the net return on the asset must match et. So the only non-zero term
on the left hand size of equation (1) would be for s = s1−1. The excess of rs1−1− δ above es1−1, in
that period alone, would have to be great enough to compensate for the entire (though discounted
and depreciated) sequence of periods s ∈ {s1, . . . , s2} in which rs−δ < es. If there is only moderate
change over time in both rs and es, and if depreciation and discounting are not overwhelming, then
returns will have to rise, and investment will have to cease, at some earlier point in time.

From the perspective of an investor, these short-term excess returns make perfect sense. If
the investor knows that, in the long-term, returns on this infrastructure will fall, then it is not
an attractive investment. However, the prospect short-term additional gains will compensate for
long-term losses. These short-terms gains will indeed be realized if all other investors are similarly
ending investment early.12

Both Propositions 2.1 and 2.2 follow straightforwardly from a technical lemma (Lemma A.1)
presenting the shadow price on the irreversibility constraint, it ≥ 0 as the net present value of
investment in this asset, relative to the opportunity cost. See Appendix A.

Now we consider what this means for the quantity of total holdings of this capital stock. If there
are L0 households in the economy, each of size Lt

L0
, then this behavior simply scales up. We use

capital letters to denote total capital Kt and total investment It for the asset under consideration.
12Our results can be illustrated with a historical example, for which we are grateful to Roger Fouquet. In the first

half of the 19th century, the introduction of steam engines brought cheaper and more comfortable medium and longer
distance travel than had previously been provided by stagecoaches (pulled by horses). Coach companies responded
to this heightened competition from railways by ceasing investment into equipment and horses, driving their prices
even higher. This inevitably accelerated the transition to railways (Fouquet, 2012).
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We assume, as is implied by standard models, that in each period, returns rt are monotone strictly
decreasing in capital stock Kt. So the pattern of investment implied by Proposition 2.2 implies a
short-term decrease in the dirty energy capital stock, relative to a world in which investments are
reversible (and so underutilization is never an issue).

To explore this, consider an otherwise identical model in which we relax the constraint it ≥ 0
– allowing holdings of this capital stock to be converted back into cash for consumption or other
purposes. Refer to variables in this modified model as K̃t, Ĩt, etc. We suppose that et is unchanged
by relaxing the constraint it ≥ 0, because the sector concerning the asset in question is very small
in relation to the rest of the economy.

Corollary 2.3. Suppose that I0 > 0 and there exists t1 ≥ 1 such that Ĩt1 < 0. Then there exists
t0 < t1 such that It0 < Ĩt0 and such that Kt < K̃t for t ∈ {t0 + 1, . . . , t1}.

In the short term, less is invested in the irreversible capital stock, relative to a world in which
investments are reversible.

2.2 The Irreversibility Effect in Climate Change Economics

In this paper we apply the observations of Section 2.1 to a model of climate change economics.
We are particularly concerned with capital investments in installations, such as coal fired power
stations, which will burn fossil fuels. The quantity of fuel demanded, and burnt, is associated with
the quantity of appropriate capital infrastructure in the economy. If, in the extreme case, this
relationship is Leontief, then Corollary 2.3 implies:

Corollary 2.4. [The Irreversibility effect]Suppose emissions are directly proportional to dirty
fossil infrastructure. Assume that investment in dirty fossil infrastructure is non-zero in the first
period, but there exists a time t1 ≥ 1 such that this infrastructure would be globally divested if it
could be. Then, for some period leading up to t1, emissions are below the level they would reach if
divestment were possible.

That is, capital stock effects on the demand side for fossil fuels enhance the effect of the carbon
tax in the short term.

Recall and contrast with the Green Paradox from Sinn (2008): if future climate policies are
expected to be more stringent than those currently in place, then resource suppliers accelerate
extraction of their fossil fuel stocks. That is, irreversibilities have opposing implications depending
on whether we consider suppliers, or demanders, of fossil fuel. It is important to bear this distinction
in mind when considering the question of stranded assets.

3 A Simple Model of Investing with Learning-By-Doing

Learning-by-doing is often cited as a rationale for subsidizing renewable electricity. The theory of
learning-by-doing is motivated by simple observation: production performance (either in form of
productivity or cost of technology) tends to improve with the accumulation of experience. We are
particularly interested in the form that was specified both by Wright (1936) and Arrow (1962):
each doubling of cumulative deployment reduces prices by the same factor, the “learning rate”.13

13Wright (1936) was the first one to describe the concept of learning, after observing a uniform decrease in the
number of direct labor hours required to produce an airframe for each doubling of the cumulative production of the
plant under consideration.
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Empirically, the existing literature has found evidence that the price of renewable energy evolves in
this way, although causality may not yet be finally established.14

To model learning, we consider a renewable capital asset, Ht (writing ht for household-level
holdings as usual). The notation reminds us that this asset embodies human capital in the form of
knowledge, as well as the infrastructure itself. The form of this knowledge is the price of installing
this infrastructure: investments will have price pHt , which depends on the total installed capacity
Ht, so pHt = G(Ht). And we generally assume that learning follows Wright’s Law: there exists a
constant λ > 0 with

pHt = G(Ht) = pH0

(
Ht

H0

)−λ
. (2)

Asset ht is priced at pHt , so that iHt = pHt (ht+1 − (1− δ)ht).
This learning is of course an externality. So we first explore the optimal program of investment

found by a social planner. We contrast this with the behavior of households who act as price-takers,
to better identify and understand the optimal subsidy.

3.1 The Social Planner’s Case

The social planner optimizes total welfare
∑∞

t=0 β
tLtu

(
Ct
Lt

)
, where Lt is the population size and Ct

is total consumption. This is subject to the budget constraints IHt +Ct = ft(Ht, Ot), where we have
written Ot = Ltot for the aggregate across the economy of “other” incomes, so that we can write
ft(Ht, Ot) for the production function. In this simple model, the planner will treat Ot as exogenous,
that is, the planner is constrained to provide the individually rational levels of “other” parts of the
economy, and does not attempt to influence them. This assumption is benign if all externalities in
the remainder of the economy have been internalized. Welfare maximization is also subject to the
investment equations IHt = pHt (Ht+1 − (1 − δ)Ht); the investment bounds IHt ≥ 0; and the price
evolution given in (2) above.

We define the shadow returns on our capital stock as the discrete time version of the definition
of Jorgenson (1967):

Rt+1 :=
µHt − β(1− δ)µHt+1

βu′(Ct+1/Lt+1)
(3)

where µHt is the shadow price on the investment equation IHt = pHt (Ht+1 − (1 − δ)Ht). This
definition says that the shadow return tomorrow on investment made today is equal to the shadow
value of additional capital tomorrow, less the discounted depreciated shadow value of this capital
going further forward (as these gains will be realized further in the future). Naturally, everything
is measured relative to the marginal value today of consumption tomorrow.

On the other hand, define the direct return (accounting for the price of capital) to be:

rst+1 :=
1

pHt+1

∂

∂Ht+1
ft+1(Ht+1, Ot+1). (4)

14Lindman and Soderholm (2012) use aggregate data and show that learning externalities are present in wind
turbines and solar panel costs. Such studies based on aggregate data, however, unable to disentangle the effect of
exogenous technological change from the effect of leaning-by-doing thus masking the diverse drivers of technology
costs (see also Nordhaus 2014b). Nemet (2006) for instance finds that after accounting for measures of technological
change and the cost of inputs, learning has only weak explanatory power for solar panel costs. Much more recently,
Lafond et al. (2017) use hindcasting techniques to assess this model, finding it provides a very good fit. Bollinger
and Gillingham (2014) provide evidence for cost reductions due to learning-by-doing across installation contractors
of solar photovoltaics in California from 2002 to 2012.
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We write rst to distinguish from the notation for the market rate of return rt, which we will use in
the decentralized model below.

Proposition 3.1. Suppose that investment into this sector will be non-zero next period, i.e. IHt+1 > 0.
Then:

pHt
pHt+1

Rt+1 = rst+1 −
pHt − pHt+1

pHt+1

(1− δ) − (Ht+2 − (1− δ)Ht+1)
G′(Ht+1)

pHt+1

(5)

shadow return direct return price effect learning effect

First, we note that the shadow return Rt+1 is multiplied by factor pHt /pHt+1 because Rt+1 values
returns from the moment at which the investment is made, while we have defined the direct return
relative to prices at the time at which we receive the return. Next, the shadow return relative to
those prices is composed of three terms. There is an obvious “direct return” from renewable energy
capital, taking into account the price of this capital.

Next, we observe a “price effect”. Every unit of renewable capital we have in period t+ 1, is only
worth pHt+1 today, but was priced at pHt back when investment took place. Thus its value is reduced
by this factor going forward, and hence the shadow return is also reduced. However, the reduction
is mediated by the extent to which capital will in any case depreciate. So we have an incentive to
delay the build-up of our capital holdings because prices will be lower tomorrow; but this is only
important for persistent assets. This effect is important from a social planning perspective because
we assume that prices are constant within each year, and so the gains from learning are only realized
by investments in the following period. Thus, the size of the effect will depend on the time-step we
take.

The final term, which we call the “learning effect”, is the product of the change in the capital
stock, and the marginal change in price achieved by making the final unit of investment, relative
to the price pHt+1. One must not be confused by the negative sign: typically G′(H) < 0 (prices
decrease with capacity), and Ht+1 > (1− δ)Ht (investment is positive), so that the learning effect
is typically positive.

The net effect of the price and learning effects may be positive or negative, and so the total
return on renewables may be greater than, or less than, their direct net return. From Proposition
3.1, we have the following corollary:

Corollary 3.2. Assume that G′(H) < 0 and Ht+1 > (1− δ)Ht. If δ = 1 then pHt
pHt+1

Rt+1 > rst+1. If

δ = 0, if G is convex, and if Ht+2 −Ht+1 = Ht+1 −Ht then
pHt
pHt+1

Rt+1 < rst+1.

Regarding the case in which the price effect dominates the learning effect: the assumption of
convexity for the function G giving the decline in prices, is very natural. The assumption that
capital is increasing by a constant amount, rather than a constant factor, is less so; and increases
in Ht+2 −Ht+1 relative to Ht+1 −Ht will increase

pHt
pHt+1

Rt+1 relative to rst+1. In general we expect
the learning effect to dominate, but it is worth noting that when capital is very persistent, and
when there is a considerably delay in realizing the benefits of learning, then the extent to which the
learning effect pushes the shadow return above the direct return, is mitigated by the price effect.
An important difference between the price and learning effects is that the former will be taken
into account by small rationally optimizing firms, whereas the latter will not: in our specification,
learning-by-doing is a pure externality. As the learning effect is positive, it follows that investing
in this capital stock is worthwhile from a social perspective before it is individually rational: if
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investment will take place in the near future, it is socially optimal to start earlier than an individual
would choose to.

So, as we will see next, the optimal subsidy in a decentralized model is equal to the learning
effect.

3.2 Learning-By-Doing and the Acceleration Effect

We assume that households act as price-takers on the capital stock undergoing learning-by-doing.
There will be under-investment without intervention. So we introduce a subsidy, τt; it is convenient
to express this as a subsidy on the rate of return. Now we may write the household’s budget
constraint as iHt + ct = (rt + τt)p

H
t ht + ot. These investments are characterized by iHt = pHt (ht+1 −

(1 − δ)ht) and iHt ≥ 0; recall ot represents other sources of income. The subsidy is paid for out
of lump sum taxation; as the households are price-takers, this taxation may be incorporated into
ot. Meanwhile, a final goods firm maximizes its profits ft(Ht, Ot)− rtpHt Ht − potOt, where pot is the
price they must pay for access to other assets.

Again there are L0 households in the economy, each of size Lt
L0

, so that the consumption of a
representative individual is L0ct

Lt
.

Proposition 3.3. Suppose that any externalities in ot have been internalized. The subsidy τt which
optimizes consumer welfare

∑∞
t=0 β

tLtu
(
L0
Lt
ct

)
is equal to the learning effect:

τt = − (Ht+1 − (1− δ)Ht)
G′(Ht)

pHt
.

Thus, the subsidy is a straightforward function of the growth rate of the renewables sector.
Contrary to models which prescribe a short-term subsidy to this sector, the specification we use
implies that this subsidy is positive as long as there is any investment in this sector, even only to
replace depreciating stock.

The simple form (2) is what we generally assume for the relationship between price and accu-
mulated capital. It implies:

Corollary 3.4. [The Acceleration Effect] If G(Ht) = pH0

(
Ht
H0

)−λ
, then

τt = λ

(
Ht+1

Ht
− (1− δ)

)
.

In particular, the subsidy τt increases with the deployment rate Ht+1

Ht
.

Thus, if the capital asset in question becomes more attractive in the economy, and so starts to
accumulate faster irrespective of the subsidy, we also increase the subsidy to this asset. We call this
the acceleration effect for technology policy. Very natural contexts are discussed below, in Section
4.9.

4 The Full Model

This section outlines the full dynamic general equilibrium climate-economy model which is used for
quantitative analysis. The derivations of the equations that define the solution of the model are
given in Appendix D. To summarize, the model presents a climate-economy structure, where, unlike
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other leading climate-economy models,15 we differentiate between three capital stocks:16 general
capital, “clean” and “dirty”, with irreversibility in investments characterizing the latter two capital
stocks, as in Section 2 above. We allow underutilization of dirty capital stocks, once they become
uncompetitive. In addition we assume that the “clean” sector is characterized by “learning-by-doing”:
costs of new technologies decline as a function of cumulative installed capacity in the sector, as in
Section 3. The climate module uses the representation of the carbon cycle, temperature system,
and climate-economy feedbacks based on the DICE framework (Nordhaus, 2014a), but calibrated
to an annual time step (Cai et al., 2015, 2016).

There are five production sectors: final goods producing firms, aggregate electricity producing
firms, the dirty electricity producing firms, the fossil-fuel extracting firm and the firms producing
electricity from renewable sources. All firms operate under perfect competition. Notably, fossil
fuel extracting firm maximizes the present value of its profits, subject to the depletion equation,
internalizing the effect of depletion on future extraction costs and on present and future revenue.
Producers of renewable energy maximize the present value of their profits, taking the market price
of renewable energy and the stock of accumulated knowledge about using renewable energy as given.

Turning to the demand side of the economy, we are interested in the behavior of a representative
household who does not internalize the learning-by-doing externality and treats all prices as given.
Finally, there are three sources of carbon dioxide emissions: general output production, electricity
production from dirty energy inputs, and land use. Climate change affects productivity in the final
goods producing sector.

4.1 The households’ problem

We are interested in the behavior of a representative household. There are L0 households (defined
as the population size of the economy at the initial period, which in our calibrated model is 2012),
and the size of the family at time t is Lt

L0
, where Lt is the population size at period t.17

We consider all variables on a per-household basis, so we will write kgt =
Kg
t

L0
, etc., where capital

letters denote aggregate variables (over all households), for instance Kg
t is aggregate general capital

stock and Ht is aggregate renewable energy knowledge and capital stock. The household seeks to
maximize the sum of the welfare of family members as individuals, that is:

∞∑
t=0

βt
Lt
L0
u

(
Ct
Lt

)
=
∞∑
t=0

βt
Lt
L0
u

(
L0

Lt
ct

)
(6)

where Ct is aggregate consumption and we write ct := Ct
L0

as the per-household consumption. The
household owns a representative share of all three capital assets and the five sorts of companies.
We denote rDt , rHt and rgt as the rate of return on capital assets in fossil (dirty) capital, renewable
(clean) capital, and general capital (used in production of final-goods producing firms), respectively.
Further, we write wt for the wage, Πg

t for the total profit from the sale of the final goods, ΠD
t for

the total profit from the sale of dirty fuel based electricity, ΠH
t for the total profit from the sale of

“clean” electricity, ΠDE
t for the total profit from the sale of fossil fuel, and ΠE

t for the total profit
from the sale of aggregate electricity, so that the aggregate profit is Πt = Πg

t +ΠD
t +ΠH

t +ΠDE
t +ΠE

t ,
and the per-household profit is πt := Πt

L0
.

15See, e.g., Golosov et al. (2014), Barrage (2014), Acemoglu et al. (2016), Nordhaus (2008), Rezai and Van Der Ploeg
(2017).

16In a similar way, but within a different context, Greenwood et al. (1997) developed the importance of investment
into differentiated capital stocks for growth and technological change.

17Table A.2 in the Appendix B provides a summary of variables’ notation and definition.
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In each period, the household faces the following budget constraint:

igt + iDt + iHt + ct =
Lt
L0
wt + πt + rgt k

g
t + rDt p

D
t k

D
t + rHt p

H
t ht

+
1

L0

(
τDt (DE

t +Dg
t )− τHt pHt Ht

)
(7)

where igt is investment in general capital, iDt is investment into dirty capital used in production of
dirty electricity, iHt is investment in capital used in the clean sector, kgt , kDt , ht are capital stocks in
the general, dirty and clean sectors respectively, τDt is the carbon tax, τHt is the subsidy, and DE

t

and Dg
t are carbon emissions in the dirty and general sectors. Since we measure fossil and renewable

energy capital in gigawatt (GW), pDt and pHt are the prices of the fossil fuel and renewable capital
in $/GW. The price pHt of renewable energy capital falls with our embodied technological progress
in renewable energy knowledge and capital stock, and evolves as (Arrow, 1962):

pHt = G(Ht) = pH0

(
Ht

H0

)−λ
(8)

However, as we treat a household as very small, we assume that their investment in renewable
energy does not influence its price, so that the learning-by-doing externality arises. That is, the
household takes pHt as given. The price of fossil fuel capital will be fixed, so that pDt = pD.

Finally, we assume that the household receives rebates on the taxes and pays for the subsidies
(the last two terms in the right hand side of the budget constraint), but as we assume they are
small they cannot affect these levels.

The capital stocks in the general, dirty and renewable sectors are accumulated according to the
following equations respectively:

igt = kgt+1 − (1− δg)kgt (9)

iDt = pDt (kDt+1 − (1− δD)kDt ) (10)

iHt = pHt (kHt+1 − (1− δH)kHt ) (11)

where δg, δD, δH are depreciation parameters, and

iDt ≥ 0 (12)

iHt ≥ 0 (13)

are the irreversibility assumptions - a non-negativity constraint on the rate of accumulation of dirty
and clean capital.

4.2 The final-goods firms’ problem

The final goods are produced by identical firms, but output is damaged by climate change. Because
this sector exhibits constant returns to scale, we can work with aggregate variables, and so write
output:

Yt = Ω(Tt)f(Y g
t , Et)

where Tt is the temperature change from pre-industrial levels and Ω(Tt) is the damage factor (1−
Ω(Tt) is the ratio of damage to output); and Et is electricity and Y g

t is “general” output (i.e.
non-electricity).
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The final-goods firms maximize
∞∑
t=0

qtΠ
g
t =

∞∑
t=0

qt

(
Ω(Tt)f(Y g

t , Et)− r
g
tK

g
t − wtLt − petEt −Ψt − pfuelt Dg

t

)
(14)

where qt := βt u
′(ct)
u′(c0) is a compound discount rate for the relative price of consumption in period t,

expressed in period 0 units.18 To produce final goods, these firms rent (aggregate) capital Kg
t , hire

labor Lt, purchase aggregate electricity Et at price pet , buy fossil fuel Dg
t from fossil fuel extracting

firms at price pfuelt . The firms spend on abatement Ψt, which is assumed to abate the ηt fraction
of emissions via the following relation:

Ψt =
φ1,tη

φ2
t

(1− ηt)φ3
Y g
t (15)

so that they face the emissions constraint given by:

Dg
t = σt(1− ηt)Y g

t (16)

where φ2 and φ3 are parameters, σt represents the ratio of carbon-equivalent emissions to output,
which along with the parameter φ1,t evolve exogenously, as in Cai et al. (2016). Firms do not
take into account their emissions’ impact on the pollution stock and thus on productivity. In other
words, firms take Ω(Tt) as a given. This, in a conjunction with the knowledge externality in the
renewable sector, represents a “twin-market failure” (Jaffe et al. (2005)).

For the solution of the model, we assume that the function for production before damages takes
constant elasticity of substitution (CES) form (Hassler et al., 2012):

f(Y g
t , Et) =

[
(1− θ)(Y g

t )1−1/κ + θ (Et)
1−1/κ

] 1
1−1/κ

.

and
Y g
t = fgt (Kg

t , Lt) = Agt (K
g
t )α(Lt)

1−α.

Here, θ, κ, α are parameters, Agt is a technology process in the general sector, Kg
t is general capital

and Lt is labor. Both A
g
t and Lt evolve exogenously in the same way as in Cai et al. (2016).

4.3 Aggregate electricity producing firms’ problem

These firms again work at constant returns to scale, so we can work with aggregate variables. They
produce aggregate electricity Et = fEt (Ht,Γ

ED
t ) which is a combination of fossil fuel production

capacity ΓEDt , and clean production capacity Ht, with these inputs being priced at pEHt and pEDt
respectively. They sell their output at price pet , so that the firms maximize the present value of their
profits :

∞∑
t=0

qtΠ
E
t =

∞∑
t=0

qt
(
petf

E
t (Ht,Γ

ED
t )− pEHt Ht − pEDt ΓEDt

)
(17)

In modeling the electricity sector, we follow Papageorgiou et al. (2016)19 and assume a CES pro-
duction function of renewable production capacity Ht and dirty production capacity ΓEDt :

Et = fEt (Ht,Γ
ED
t ) = AEt

(
wHξ

t + (1− w)(ΓEDt )ξ
)1/ξ

, (18)

where AEt is a technology process in the electricity sector and w and ξ are CES parameters.
18See Appendix D.1 for more detailed discussion on derivation of compound interest for the firms’ problems.
19We do not use their model for overall energy as a combination of electricity and “other dirty energy”, as in their

model the latter requires no capital input and so is disproportionately favored under optimization.
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4.4 The dirty electricity producing firms’ problem

The dirty electricity producing firms are fossil-fuel based power stations, which combines existing
infrastructure (e.g., coal-based power plants) with fossil fuels via a Leontief production function.
Again, due to constant returns, we work at the aggregate scale:

ΓEDt = min[ζtK
D
t , D

E
t /ν] (19)

where KD
t is total capital in dirty electricity production, ζt ∈ [0, 1] is the utilization rate, and ν is

the conversion rate from fossil fuel to electricity. The Leontief function implies a fixed ratio between
utilized fossil energy capital and dirty fuel use:

DE
t = νζtK

D
t . (20)

The firms buy fossil fuel DE
t at price pfuelt , rent the dirty capital infrastructure at rate rDt , and sell

their output ΓEDt to the aggregate electricity producing firms at price pEDt . So, the firms in the
sector maximize the present value of their profits:

∞∑
t=0

qtΠ
D
t =

∞∑
t=0

qt

(
pEDt (ζtK

D
t )− rDt pDKD

t − p
fuel
t DE

t

)
(21)

subject to emissions constraint (20), and a constraint on utilization rate: ζt ≤ 1.

4.5 The fossil-fuel extracting firm’s problem

We treat fossil fuel extraction as being handled by a single large firm (to give rise to the Hotelling
equation and the Green Paradox). This firm maximizes the present value of its profits, by taking
the market price of fossil fuel, pfuelt as given and internalizing the effect of depletion on future
extraction costs and resource availability:

∞∑
t=0

qtΠ
DE
t =

∞∑
t=0

qt[p
fuel
t − τDt −GD(St)](D

E
t +Dg

t ) (22)

where τDt is tax on production of fossil fuels. Fossil fuels are extracted from finite reserves; the stock
remaining at time t is denoted St. The evolution of this stock follows from the standard depletion
equation (e.g., Rezai and Van Der Ploeg (2017)):

St+1 = St − (DE
t +Dg

t ). (23)

The fossil fuel extraction cost per unit is given by:

GD(St) = γ1

(
S0

St

)γ2
, (24)

so less stock will incur higher extraction cost, where γ1 and γ2 are parameters.

4.6 The renewable firms’ problem

The renewable sector is composed of small firms, which do not internalize the learning-by-doing
externality (8). That is, they take the stock of accumulated knowledge about using the renewable
energy Ht as given, with a rent rate rHt . And they receive a subsidy of τHt on their dollar-valued
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holdings of renewable energy capitalHt. They sell their output to the aggregate electricity producing
firm at price pEHt . The firms take all prices as given, so on aggregate they maximize:

∞∑
t=0

qtΠ
H
t =

∞∑
t=0

qt[p
EH
t − pHt (rHt − τHt )]Ht. (25)

Note that in the “simple model” of Section 2 we did not model renewable firms explicitly, for
simplicity there, and so in that model we wrote the subsidy as accruing to the householder, who
also owns the capital.

4.7 Climate system, emissions and damages

The carbon dioxide emissions Dt have three sources: “general” output production Dg
t ; electricity

production from using fossil fuel DE
t ; and land use Dland

t .

Dt = DE
t +Dg

t +Dland
t (26)

Land-use emissions Dland
t are set exogenously as by Cai et al. (2016). We use the climate system

of Cai et al. (2016), which adapts the climate system of DICE2013 (Nordhaus, 2014a) to an annual
time step. As this component of our model has been described extensively elsewhere, we omit it
here, instead we simply denote the mapping from emissions to temperature by:

Tt =Wt(D0, . . . , Dt−1) (27)

where Tt is global atmospheric temperature change over pre-industrial levels, Ds is fossil pollution
at time s < t and these are related via the warming function Wt.

Finally, the damage factor for “DICE damages” is given by

Ωt(Tt) =
1

1 + ς1T
ς2
t

, (28)

where ς1 and ς2 are two parameters. The damage function in climate change economics is very
controversial (see, e.g. Weitzman 2009, 2010; Cai et al. 2015). In fact there do not exist well-founded
estimates of damages for even moderate temperature changes, and so their ability to dictate optimal
climate policy is limited. However, a great deal of discussion in real-world policy-making focuses on
limiting global temperature changes to 2°C. We simulate this constraint by letting

Ωt(Tt) =
1

(1 + ς1T
ς2
t ) (1 + ς3 (Tt/2)ς4)

(29)

with a small positive parameter ς3 = 0.001 and a large exponent parameter ς4 = 50. Thus, when
atmospheric temperature increase Tt is smaller than 2°C, the new damage factor (29) is almost the
same as (28), but when Tt is larger than 2°C, the new damage factor will imply large damage. This
new damage factor (29) will be referred as the stringent damage factor.

4.8 Decentralized equilibrium vs social planner’s problem

To find an optimal solution of the decentralized model, we formulate it as that of a principal who
must choose an allocation from among those that can be implemented as a decentralized equilib-
rium, bearing in mind how the other economic participants (the “agents”) will respond. In the
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optimal taxation literature such conditions imposed on the (Ramsey) principal are known as imple-
mentability conditions. We solve it using mathematical programming with equilibrium constraints.
The details are in Appendix D.

The previous sections laid out the decentralized equilibrium model. To retrieve the values
of optimal carbon tax and optimal subsidies that could replicate the first-best allocation in the
decentralized equilibrium model, we also outline a social planner model where the social planner
maximizes the social welfare given constraints describing the carbon cycle, temperature, damages
and fossil fuel depletion, and the capital accumulation equations. See Appendix C for details.

4.9 Subsidy and carbon tax

In the decentralized equilibrium, there are two instruments: a subsidy on renewable capital, τHt ,
and a carbon tax, τDt . There are various scenarios related to the choice of policy instruments. We
differentiate between four cases: (1) a no policy scenario in which we set τDt = 0 and τHt = 0; (2)
the optimal policy version, in which both instruments are freely chosen to maximize the principal’s
objective; (3) τDt = 0 and subsidy is chosen freely to maximize the principal’s objective; (4) τHt = 0
and carbon tax is chosen freely to maximize the principal’s objective. Clearly, the second policy
yields the same outcome as the social planner’s problem, and it is the first-best, which we prove in
the appendices. Cases (3) and (4) are situations with second-best policies.

Next, we define:

Definition 4.1. The social cost of carbon, χt is the shadow price on carbon emissions, relative to
the shadow value of output. That is, if µDt is the shadow price of Equation (26) constraining total
emissions, then:

χt :=
µDt

u′ (Ct/Lt)
.

Next, we prove (see Appendix D.8):

Proposition 4.2. The decentralized equilibrium allocation coincides with the solution to the social
planner’s problem if carbon taxes are set as the social cost of carbon χt and if subsidies are set equal
to the “learning effect”:

τHt = −(Ht+1 − (1− δH)Ht)
G′(Ht)

pHt
(30)

This verifies that the theoretical insights on learning-by-doing from the “simple model” in Section
3 all carry across to the full model. That is, Corollary 3.4 holds and we have an “acceleration effect”.
In particular, an increase in the carbon tax which reduces investment in and utilization of dirty
energy capital and so increases deployment of the substitute renewable energy capital, also implies
an increase in the optimal renewable energy subsidy.

Naturally, Proposition 4.2 also shows that we can examine optimal policy by using a social
planner’s model, which is easier computationally. However, we do not restrict attention to this
simpler case; we are also very interested in worlds without optimal (first-best) policy. If only the
tax, or only the subsidy, are in use, then Proposition 4.2 does not apply. We explore such scenarios
with our numerical results.
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5 Quantitative results from the calibrated model

This section presents the quantitative results in three parts.20 The first investigates the links
between irreversible investment decisions and climate policies. We compare optimal policies with
and without a stringent climate target (i.e., use the DICE damage factor (28) or the stringent
damage factor (29)). In addition, we illustrate the importance of the irreversibility in investment
decisions relative to the case when investments are reversible (the irreversibility effect). In the
second part we study the acceleration effect pertaining to an early start of investment into the
renewable sector. And finally, we study the implications of the second-best policies for the welfare
and dynamics of the model.

The initial period in our model is 2012. The model could be run under various scenarios that
can be differentiated along three different dimensions: (1) damage function: DICE damage factor
(28) vs stringent damage factor (29); (2) irreversible vs reversible investments; and (3) the choice of
policy instruments: optimal tax and subsidy vs second-best policies. The runs of the decentralized
equilibrium under combined optimal tax and subsidy are equivalent to the runs of the social planner
model (the first-best policy).

5.1 Irreversible investment and climate policies

First, we want to understand how the optimal paths of variables depend on the irreversibility
assumption coupled with different climate policy targets. We notice that the effect of irreversibility
(compared with when the investment is reversible) becomes quantitatively important only if the
climate policy objective is ambitious enough. Figure 1 shows that the paths of the investment on
dirty energy are almost the same with reversible and irreversible investments under a mild climate
policy objective (i.e., the DICE damage factor) in this century, but they are distinctly different
under more ambitious climate policy target (i.e., the stringent damage factor).

These results emphasize the importance of setting ambitious climate policies in inducing perma-
nent fuel energy switching. The strong path dependence embodied in carbon-intensive infrastructure
suggests that mild climate change policies (i.e., those induced by DICE damage factor) would not
induce shifts away from dirty energy towards green energy, as would be required to meet the Paris
Agreement objectives,21 as we see in Figure 6 in Section 5.3.

Further, Figure 1 shows that with the irreversible investments and stringent policy, there is no
investment in dirty energy after 2020. In contrast, when investment is reversible, the decumulation
rate of dirty capital stock is unlimited, and we keep investing into this capital stock for another seven
years until 2027, when we start shifting dirty capital stock into general capital stock, a process that
continues until about 2075. However, we never entirely stop using the dirty capital stock because
of the imperfect substitutability between dirty and clean energy in electricity production. So, since
we decumulated the dirty capital stock sufficiently in the preceding decades, investment into dirty
capital stock resumes after 2075 under reversible investment.

These dynamic patterns of investment into dirty energy with the (ir)reversible investments and
the stringent damage factor correspond to the dynamics of return on those investments shown in
Figure 2. The theoretical counterpart of this figure is Proposition 2.2 in Section 2. First, the figure
shows that we end investment into the dirty capital stock when the investment is still attractive
with the rate of return, rDt −δD, exceeding the rate of return on the general economy rgt −δg. This is

20The calibration of the model is described in Appendix B.
21This finding echoes the one in Meng (2016), who estimates the strength of path dependence in the electricity

sector for the U.S. Midwest and shows that a permanent decline in U.S. electricity sector emissions would require
shocks of larger magnitude and longer duration that that of recent natural gas prices.
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Figure 1: Investment on Dirty Energy

because we invest into infrastructure that will become obsolete in the future only if the short-term
benefits from such investment compensate for future losses. Thus even without uncertainty, returns
to irreversible investment require a premium.22 Even we end investment around 2020, we continue
to fully utilize the dirty capital stock for about another 25 years, till 2045, when the return on dirty
capital (i.e., rDt ) reaches zero and we start underutilizing the dirty capital stock.

Next, as we end investment “earlier” than in the counter-factual (i.e., when disinvestment is a
viable option), the economy continues to hold less dirty capital stock under irreversibility than in
the reversible case in the medium-term, till about 2037 (solid lines in Figure 3). After that year,
however, the economy holds larger stocks of dirty capital in the long-run if investment is irreversible.
This is due to the path dependence: capital cannot be converted into other forms of capital stock.
But, if we take into consideration the underutilization of the dirty capital stock in the irreversible
investment case (circles in Figure 3), then, in the long-run, the same total amount of the dirty
capital stock will be utilized under both irreversible and reversible investment decisions (Figure 3).

5.2 Acceleration Effect

For convenience here we reproduce the theoretical result related to the optimal subsidy, when the
optimal carbon tax also applies (Corollary 3.4):

τHt = λ

(
Ht+1

Ht
− (1− δH)

)
(31)

22Previous studies such as Bernstein and Mamuneas (2007) develop a simple model of production and investment
with costly disinvestment to estimate the magnitude of the premium associated with irreversible investment in
telecommunications industry, assuming future telecommunications capital acquisition prices are random variables.
Their findings indicate that the premium increases the user cost of capital by 70%, with implies an average hurdle
rate of 14% over the period 1986-2002. Using different methods and framework, Pindyck (2005) provides similar
estimates of the telecommunications hurdle rate.
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Figure 2: Return on general and dirty capital

This formula implies that (i) the subsidy continues as long as there is investment in the sector;
(ii) the subsidy increases with learning coefficient λ; and (iii) the optimal subsidy is higher when
renewable capital grows faster. There are three different mechanisms that can lead to higher capital
accumulation in the renewable sector and consequently to a higher level of subsidies: (1) more
stringent climate policies; (2) the dirty sector could be shrinking faster than otherwise due to the
irreversibility effect; and (3) under second-best policies in the absence of a carbon tax, it could be
optimal to grow the renewable sector faster to crowd out the dirty energy sector. We here investigate
the first two of these channels. We consider second-best policies, which encompass many important
effects, in Section 5.3.

Recall that (31) presents the subsidy to the rate of return on investment in H. It is useful also
to consider the subsidy level, multiplying by the cost of investment.

5.2.1 Channel 1: stringent climate policy

Figure 4 plots the optimal subsidy to the rate of return under mild and stringent climate policy
targets. Figure 5 plots the total level of this subsidy.

We observe in Figure 4 that the subsidy to the interest rate is always higher under the stringent
climate policy. Because we use less fossil fuel in this scenario, we must generate more of our
electricity from renewables, and so the latter sector is always growing faster than it is in the mild
policy scenario. Thus, by the acceleration effect, the subsidy to the rate of return is always higher.
Moreover, interestingly, the subsidy to the rate of return increases over time in all cases. The growth
in Ht is increasing over time, because there are two reasons to switch to this clean sector: the fact
that its own price is decreasing, and the withdrawal from the fossil sector.

Note that it does not follow that the total subsidy is always higher, however. Figure 5 makes
this clear, giving the product pHt τHt in each case. The decline in the price of H means that the
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Figure 3: Utilization of dirty capital

total subsidy declines, rapidly in the early periods. Prices are eventually so much lower under the
stringent policy that the total subsidy is lower – even though (recall from Figure 4) the subsidy to
the interest rate is higher.

5.2.2 Channel 2: interaction with the irreversibility effect

Figures 4 and 5 plot the optimal subsidies under the stringent climate policy with both irreversible
and reversible investment decisions. Due to the irreversibility effect discussed above, the dirty
sector shrinks faster in the irreversible case. Once we start building fewer coal-based power plants,
we need to develop other sources of energy generation. This increases deployment of the substitute
renewable energy capital, which in turn also implies an increase in the optimal renewable energy
subsidy relative to when the irreversibility effect is absent that is in the case of reversible capital.
But once the renewable energy capital is built, due to this short-term aggressive policy, the opposite
happens and the subsidy becomes lower than in the counter-factual.23

5.3 Second-best policies

The decentralized equilibrium with the optimal carbon tax on the externality created by fossil fuel
use, and with the optimal subsidy on the leaning-by-doing externality in the renewable sector,
implements the optimal allocation obtained in the social planner’s problem (the first-best). In
practice, however, one of those two policy instruments may be unavailable, and policy makers might
have to rely on second-best policies. In this section we compare the relative performance of these
two policy instruments under alternative climate policy objectives and (ir)reversible investment

23Related literature has investigated the optimal time path for innovation policy, see, e.g., Gerlagh et al. (2009)
and Gerlagh et al. (2014). For instance, the latter show that if the patent lifetime is finite, the optimal subsidy starts
at a high level, providing an incentive to accelerate R&D investments, and then falls over time.

20



Figure 4: Optimal subsidy to the rate of return

decisions. This is an important exercise given debates on instruments to tackle climate change.
There are two extreme views: on one hand, many argue that innovation policies with subsidies
are sufficient for effective climate policy; on the other hand, some criticize adoption of subsidies as
expensive and inefficient policies instead advocating carbon pricing (e.g., Helm 2012). In between,
many advocate necessity of mixed policies, but stressing the critical importance of carbon pricing.24

We contribute to this debate, arguing that in a second-best world, which policy instrument
should be used depends on how stringent climate policy objectives are. More specifically, under
mild climate policy targets, as in case with ‘DICE’ damage factor (28), the economy is better off
with optimal subsidy as an instrument for climate policy. In contrast, under more stringent climate
policy targets, as in case with the stringent damage factor (29), the economy is better off if optimal
carbon pricing policy is adopted (see Table 1).25 As the results reported in the Table 1 further
indicate, irreversibility in investment decisions does not affect the relative ranking of these policy
instruments.

In what follows, we attempt to unpack the reasons why the economy is doing better with
innovation policy (i.e., optimal subsidy and zero tax) in the low-damage case. And why it is less
desirable to use the same policy under the stringent climate policy.

Figure 6 shows the temperature, emission, and tax levels under mild climate policy targets
(the left panels) or stringent climate policy targets (the right panels), both assuming reversible
investments. The top-left and middle-left panels show that with only carbon pricing, temperature

24Bowen (2011) argues that “other policies are needed, too, particularly to promote innovation and appropriate
infrastructure investment, but cannot be relied upon by themselves to bring about the necessary reductions to
emissions. Carbon pricing is crucial”.

25These findings are in line with ones in Gerlagh and van der Zwaan (2006) who use a long-term top-down model
with a decarbonization option through CCS to show that carbon taxes do better for stringent targets, and subsidies
do better for modest targets. Instead, this paper analyzes the implications of the second-best instruments for climate
policy in a transparent setting.
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Figure 5: Optimal subsidy: total subsidy

Optimal tax Optimal subsidy
zero subsidy zero tax

Reversible investment 1.90% 1.59%
mild climate policy target
Reversible investment 2.52% 5.59%
stringent climate policy target
Irreversible investment 2.49% 3.56%
stringent climate policy target

Table 1: Second-best policies: welfare loss, % of initial period consumption

and emissions paths closely follow those under the first-best policy. This is accomplished with a
(slightly) higher level of carbon tax than under the first-best scenario. If we consider the more
stringent climate policy case (but still with reversible investments), we observe a similar pattern of
paths for temperature and emissions: with carbon pricing only, they closely follow the paths of the
first-best (the top-right and middle-right panels of Figure 6). The second-best tax level is again
higher than the first-best counterpart. The intuition behind these results is as follows.

With only carbon pricing, there is a risk of lock-in into the ways of producing electricity which
are currently cheap: coal-based power plants.26 Meanwhile, the alternative of producing electricity
from renewables, is currently more expensive and might not become competitive. As a result,
the principal imposes a higher level of carbon taxes on the fossil fuel extracting firms compared
with the first-best. But since the size of the dirty sector in the energy sector of the economy is
large, this policy of making the sector “less competitive” through carbon taxes is relatively more
costly, in terms of welfare, than the policy of making competitive the renewable sector through

26see, e.g., Unruh (2002) and Jaffe et al. (2005).
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Figure 6: Temperature, Emission, and Tax level under the mild or stringent climate policy targets

direct subsidies. Contrary to carbon pricing, subsidies directly stimulate investment into renewable
energy and, once clean technologies develop and become competitive, the renewable sector crowds
out the dirty energy sector. Under less ambitious climate policy, this appears sufficient, as well as
less costly than carbon pricing (given also the relatively smaller size of the clean sector).

On the other hand, achievement of the more stringent climate policy through innovation policy
is extremely difficult as it requires decarbonization of the large dirty energy sector. Adoption of the
instrument - carbon pricing - which directly targets that sector is an policy that is associated with
relatively higher welfare.

Finally, the emissions and temperature paths with carbon pricing only, irrespective of the as-
sumptions about stringency of climate policy, closely follow the ones of the first-best because carbon
pricing internalizes the global warming externality, and thus is better suited to target climate policy
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objectives.

6 Discussion

In this paper we have studied implications of two capital stock effects - path dependence in infras-
tructure and learning-by-doing effect in the renewable sector - for the design of optimal climate
policies, using both simple analytical models and simulations of the full dynamic general equilib-
rium climate-economy model. We define path dependence as irreversibility of investment in both
the clean and dirty energy sectors (as opposed to allowing aggregate divestment). We compare
the simulation results from our model with irreversibility, with those coming from a model without
inertia in the energy sectors.

The simulation results speak to the debate on the characteristics of optimal policy to combat
climate change, which involve issues about the timing as well as choice of the instruments to address
the problem. On the timing of the climate policy, the debate has centered on whether we should
adopt a “gradual slope” approach to the policy, according which we should delay investment into
low-carbon emitting technologies and focus on a carbon price that rises gradually. In an alterna-
tive approach, it has been urged to accelerate learning-by-doing and to reduce abatement costs of
mitigation policies.

We demonstrate that it is optimal to stop investment into the dirty sector earlier - the irre-
versibility effect - and consequently start earlier investment into the renewable sector. Previous
literature has justified the early investment in the renewable sector on the basis of the learning-
by-doing effect (see, e.g., van der Zwaan et al. (2002)). We bring a new argument based on the
existence of inertia in the dirty sector - the acceleration effect.

On the debate on instruments choice for effective climate policy, our results on the relative
performance of carbon pricing versus subsidies in a second-best setting reflect the broad trends in
the global climate political landscape. Nowadays we observe rapid expansion of the use of renewable
energy technologies.27 Renewable energy technologies are viewed today as tools to mitigate climate
change, to improve local air quality, to advance economic development and to create jobs. Declining
costs have played a pivotal role in the expansion of renewable energy technologies in the recent years.
The stage for such expansion was set more than decades ago when a handful of countries, such as
Germany, Denmark, Spain and the United States, created a critical market for renewables, which
drove early economies of scale and led to the changes we witness today (REN21, 2014). During
that period and effectively till 2016, when the Paris Agreement came into force, progress in the
area of international climate policy had been modest at best. Although the European Union had
started campaigning for the 2°C in the mid-1990s, this target was not formally adopted until 2010
at the UN Climate Change Conference in Cancun (Geden, 2013). As such, we could characterize
the international climate policy up to 2015 as having unambitious climate policy objectives.

The Paris Agreement, however, rebooted climate political landscape, at least in theory. After
Paris, there is a larger recognition of urgency of the measures to set up more ambitious emissions
reductions. The agreement has also revived the discussion about importance of adopting carbon
pricing to implement the emissions mitigation pledges submitted by 186 countries for the December
2015 Paris Agreement,28 which is in line with the message from simulations of our model under the
second-best setting that more ambitious climate policy should adopt carbon pricing.

27Renewables accounted for nearly half of all new power generation capacity in 2014, led by growth in China, the
United States, Japan and Germany, with costs continuing to fall (EIA, 2015).

28Baranzini et al. (2017) provide a summary of the main arguments in favor of carbon pricing in a post-Paris world.
See also Farid et al. (2016) who urge for carbon taxes (or equivalently carbon trading systems) for implementation
of the Paris pledges.
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Finally, our model has important implications for understanding the problem of stranded assets
in the climate policy literature. The narrative on stranded assets that emerges through the results
of our model has two principal components. First, to make low carbon alternatives widely available,
there is a need to start investment in those technologies earlier enough, to take advantage of scale
effects, as well as acceleration effect. Second, a stringent target is necessary as it helps to anchor
expectations of both investors and politicians giving them sufficient flexibility and time to make
rational decisions regarding investment into fossil fuel energy and related physical capital.

7 Conclusion

This paper has shown that capital stock effects of infrastructure such as coal based power plants
are important for design of optimal climate policies. Specifically, we characterize and then quantify
the optimal time of ending investments into fossil fuel power plants in a dynamic general equilib-
rium climate-economy model with irreversible “dirty” and “clean” investments. We find that for
temperature changes to not exceed 2°C, investments in dirty infrastructure should end very soon.

We show that the “Green Paradox” – that future stringent climate policy raises short-term
emissions – has a converse if we focus on demand side capital stock effects. If the dirty capital stock
cannot be converted to other capital, then it is optimal to stop investing into the dirty capital stock
earlier than when the capital investments are reversible.

Learning-by-doing significantly advances the timing of investment in renewables, not only to
prevent later stranding fossil fuel assets but also to accelerate decline in the costs of clean energy.

The timing of these effects depends, of course, on the stringency of climate policy. Climate policy
induces earlier shift to clean energy and away from dirty energy only if it is stringent. Otherwise,
path dependence in energy systems and low substitutability between the dirty and clean sources
imply a prolonged period of using the dirty capital stock.
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Online Appendix for “To Build or Not to Build?
Capital Stocks and Climate Policy” (For
Online-Only Publication)

A Proofs of Theoretical Results: Simplified Model

To start with, we define:

Pt :=
∞∑
s=1

(1− δ)s−1∆t,s (rt+s − δ − et+s) . (A.1)

This is the net present value of investment in the irreversible asset, infrastructure, relative to the
opportunity cost. The following technical lemma is very illuminating:

Lemma A.1. Given the framework above,

1. Pt ≤ 0 for all t.

2. it > 0 only if Pt = 0.

3. it > 0 only if both rt − δ ≤ et and rt+1 − δ ≥ et+1.

4. it > 0 with rt+1 − δ > et+1 only if it+1 = 0.

Proof of Lemma A.1. Write ot for all other sources of income, net of any other investments
(which may also be irreversible). We maximize

∞∑
t=1

βtu(ct) (A.2)

subject to constraints

µbct it + ct = rtkt + ot (A.3)

µit it ≥ 0 (A.4)

µkt it ≥ kt+1 − (1− δ)kt (A.5)

The Lagrangian is:

Lt =
∞∑
t=0

βt
(
u(ct)− µbct (it + ct) + µbct (rtkt + ot) + µitit (A.6)

+ µkt (it − (kt+1 − (1− δ)kt))
)

(A.7)
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Leading to FOCs and complementary slack conditions

ct u′(ct) = µbct (A.8)

it µbct = µit + µkt (A.9)

kt+1 µkt = β(µbct+1rt+1 + µkt+1(1− δ)) (A.10)

µit ≥ 0 (A.11)

µitit = 0 (A.12)

µkt ≥ 0 (A.13)

µkt (it − (kt+1 − (1− δ)kt)) = 0 (A.14)

Substitute (A.8) and (A.9) into (A.10) and divide by βu′(ct+1):

u′(ct)

βu′(ct+1)

(
1− µit

µbct

)
= rt+1 +

(
1−

µit+1

µbct+1

)
(1− δ) (A.15)

Write et+1 := u′(ct)
βu′(ct+1) −1 and ∆t,s =

∏s
s′=1

1
1+et+s′

. Re-arrange so that this will provide a forward-

looking formula for µit
µbct

:

µit
µbct

=
et+1 − (rt+1 − δ)

et+1 + 1
+

(1− δ)
(et+1 + 1)

µit+1

µbct+1

=
et+1 − (rt+1 − δ)

et+1 + 1
+

1− δ
et+1 + 1

(
et+2 − (rt+2 − δ)

et+2 + 1
+

(1− δ)
(et+2 + 1)

µit+2

µbct+2

)

=
T∑
s=1

(1− δ)s−1∆t,s (et+s − rt+s + δ) + (1− δ)T∆t,T

µit+T
µbct+T

. (A.16)

Next we will show that the final term in (A.16) tends to zero as T → ∞. Since we assumed that
there exist ε > 0 and R� 0 with −δ+ε < et < R for all t, it follows that 1−δ

1+et
< 1− ε

1+et
< 1− ε

R+1

for all t and so that (1− δ)T∆t,T → 0 as T →∞. Finally, 0 ≤ µiT ≤ µbcT for all T , by consideration
of (A.9) and (A.13). It follows that 0 ≤ µiT

µbcT
≤ 1, and hence the final term in (A.16) tends to 0 as

T →∞, and we conclude:

µit
µbct

=
∞∑
s=1

(1− δ)s−1∆t,s (et+s − rt+s + δ) =: −Pt (A.17)

with per-period equation: ∆−1
t,1

µit
µbct

= (et+1 − rt+1 + δ) + (1− δ)
µit+1

µbct+1

(A.18)

Part 1 of Lemma A.1 follows from (A.17). Next, if it > 0, complementary slackness (A.12) tells us
µit = 0 and so Part 2 follows from (A.17).

If it > 0 then by (A.12) µit = 0, and since µit+1 ≥ 0 and µit−1 ≥ 0, (A.18) implies rt+1− δ ≥ et+1

and rt − δ ≤ et. In addition, Part 4 follows, in the same way as the previous result: if it > 0 with
rt+1 − δ > et+1, then (A.18) implies µit+1 > 0 and then it+1 = 0 from (A.12). �

Proof of Proposition 2.1. Immediate from Lemma A.1 Part 3. �
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Proof of Proposition 2.2. If rs1 − δ < es1 then is1−1 = 0 (by Lemma A.1 Part 3). However, by
assumption, i0 > 0. Let t0 be maximal such that t0 < s1 and it0 > 0. Now, by Lemma A.1 Part 2,
Pt0 = 0. So:

0 = Pt0 =

s1−t0∑
s=1

(1− δ)s−1∆t0,s(rt0+s − δ − et0+s) +

∞∑
s=s1−t0+1

(1− δ)s−1∆t0,s(rt0+s − δ − et0+s)

=

s1∑
s=t0+1

(1− δ)s−t0−1∆t0,s−t0(rs − δ − es) +
∞∑
s=1

(1− δ)s1−t0+s−1∆t0,s1−t0+s(rs1+s − δ − es1+s)

(A.19)

It is easy to show that, for any t1, t2, we have ∆0,t1∆t1,t2 = ∆0,t1+t2 . Thus ∆0,t0∆t0,s1−t0+s =
∆0,s1+s. It also follows that ∆0,s1∆s1,s = ∆0,s1+s, and that ∆0,t0∆t0,s1−t0 = ∆0,s1 . Putting these
facts together we see that ∆t0,s1−t0+s = ∆t0,s1−t0∆s1,s So, continuing from (A.19), we see

Pt0 =

s1∑
s=t0+1

(1− δ)s−t0−1∆t0,s−t0(rs − δ − es)

+ (1− δ)s1−t0∆t0,s1−t0

∞∑
s=1

(1− δ)s−1∆s1,s(rs1+s − δ − es1+s)

=

s1∑
s=t0+1

(1− δ)s−t0−1∆t0,s−t0(rs − δ − es) + (1− δ)s1−t0∆t0,s1−t0Ps1 . (A.20)

But Ps1 ≤ 0 by Lemma A.1 Part 1. And it0 > 0 so rt0 − δ ≤ et0 by Lemma A.1 Part 3. Thus:

s1∑
s=t0+1

(1− δ)s−t0−1∆t0,s−t0(rs − δ − es) ≥ 0.

Since rs1 − δ − es1 < 0 it follows that there exists s ∈ {t0 + 1, . . . , s1 − 1} such that rs − δ > es.
Letting s0 be the minimal such s, it is clear that this meets our requirements.

Next, by exactly the same arguments as those used to prove (A.20), and by Ps2 ≤ 0, it follows
that

0 = P0 =

s2∑
s=1

(1− δ)s−1∆0,s(rs − δ − es) + (1− δ)s2∆0,s2Ps2

≤
s2∑
s=1

(1− δ)s−1∆0,s(rs − δ − es)

By splitting the sum into terms with s ∈ {1, . . . , s1 − 1} and s ∈ {s1, . . . , s2}, and rearranging, we
obtain the expression given. �

Proof of Corollary 2.3. First, see that without the constraint It ≥ 0 we have r̃t− δ = et for all t.
Next, since I0 > 0 we know P0 = 0 by Lemma A.1 Part 2. If rt − δ = et = r̃t − δ for all t then

Kt = K̃t for all t, but this is not possible since Ĩt1 < 0 and It1 ≥ 0. If we assume rt − δ ≥ et for
all t we must conclude also rt − δ > et for some t, whence P0 > 0, which is a contradiction. So
there exist some minimal s1 such that rs1 − δ < es1 and some maximal s2 ∈ R ∪ {∞} such that
s2 ≥ s1 and rt − δ < et for t ∈ {s1, . . . , s2}. Applying Proposition 2.2 we conclude that there exists
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s0 ≤ s1 − 1 such that rs0 − δ > es0 and such that It = 0 for t ∈ {s0, . . . , s2 − 1}. Pick s0 minimal
with these properties.

We show that s0 is minimal such that rt − δ 6= et. First, by definition of s1, there is no t < s0

with rt− δ < et. Next, if rt− δ > et for t < s0 then there exists t′ ∈ {t, . . . , s0−1} such that It′ > 0
(for otherwise s0 is not minimal as defined). But P0 = 0 and Pt′ = 0 imply that there must also
exist t′′ ∈ {1, . . . , t′} such that rt′′ − δ < et′′ , and we already know this is not so.

Since rt − δ = et = r̃t − δ for t ∈ {0, . . . , s0 − 1}, it follows that Kt = K̃t for t ∈ {0, . . . , s0 − 1}
and so that It−1 = Ĩt−1 ≥ 0 for t ∈ {0, . . . , s0 − 1}. So we know t1 ≥ s0.

Next, rs0 − δ > es0 = r̃s0 − δ so Ks0 < K̃s0 ; but Ks0−1 = K̃s0−1, so Is0−1 < Ĩs0−1. So set
t0 := s0 − 1.

Finally, by definition rs1−δ < es1 = r̃s1−δ, which impliesKs1 > K̃s1 . ButKt0+1 < K̃t0+1 and so,
since It = 0 for t ∈ {t0 +1, . . . , s2−1} we conclude that Kt < K̃t for t ≤ {t0 +1, . . . ,min(s2−1, t1)}.
Since s1 ≤ s2 − 1 and since Ks1 > K̃s1 we conclude that min(s2 − 1, t1) = t1, i.e. that Kt < K̃t for
t ∈ {t0 + 1, . . . , t1} as required. �

The Social Planner’s problem for Section 3.1 The planner optimizes

∞∑
t=0

βtLtu

(
Ct
Lt

)
(A.21)

subject to the constraints:

Λst It + Ct = ft(Ht, Ot) (A.22)

µIt It ≥ 0 (A.23)

µHt It = pHt (Ht+1 − (1− δ)Ht) (A.24)

µpt pHt = G(Ht) (A.25)

where Ot = Ltot represents all other factors of production in the economy. In our model the planner
treats this as exogenous.

At time t, the Lagrangian is

Lt =
∞∑
t=0

βt

(
Ltu

(
Ct
Lt

)
− Λst

(
It + Ct − ft(Ht, Ot)

)
+ µIt It

+ µHt (It − pHt (Ht+1 − (1− δ)Ht)) + µpt (p
H
t −G(Ht))

)

the first order conditions are:

∂Ct : Λst = u′
(
Ct
Lt

)
(A.26)

∂Ht+1 : pHt µ
H
t = β

(
Λst+1

∂ft+1

∂Ht+1
+ µHt+1p

H
t+1(1− δ)

)
− βµpt+1G

′(Ht+1) (A.27)

∂It : Λst = µHt + µIt (A.28)

∂pHt : µpt = µHt (Ht+1 − (1− δ)Ht) (A.29)
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together with the constraints above and the inequality µIt ≥ 0, which is complementary slack with
(A.23).

Proof of Proposition 3.1. Divide (A.27) through by pHt βΛst+1, substitute in (A.29) and
re-arrange to obtain:

Rt+1 =
µHt − β(1− δ)µHt+1

βΛst+1

=
1

pHt

∂ft+1

∂Ht+1
+
µHt+1

Λst+1

pHt+1 − pHt
pHt

(1− δ)

−
µHt+1

Λst+1

Ht+2 − (1− δ)Ht+1

pHt
G′(Ht+1) (A.30)

if It+1 > 0 then, by complementary slackness, µIt+1 = 0 and so µHt+1 = Λst+1. Thus, multiplying

both sides by pHt
pHt+1

, and substituting in the definition for direct returns we obtain the expression
given. �

Proof of Proposition 3.3. Considering first the firm, there is no inter-temporal element to
their objective function or constraints and so we can consider their optimization period-by-period;
obviously the relevant first-order condition is that

∂ft
∂Ht

= rtp
H
t . (A.31)

Meanwhile, the household maximizes:

∞∑
t=0

βt
Lt
L0
u

(
L0

Lt
ct

)
(A.32)

subject to the constraints:

Λt it + ct = (rt + τt)p
H
t ht + ot (A.33)

µit it ≥ 0 (A.34)

µht it = pHt (ht+1 − (1− δ)ht) (A.35)

Additionally, the price is constrained by pHt = G(Ht), but the household does not take this into
account. At time t, the Lagrangian is

Lt =
∞∑
t=0

βt

(
Lt
L0
u

(
L0

Lt
ct

)
− Λt

(
it + ct − (rt + τt)p

H
t ht − ot

)
+ µitit

+ µht (it − pHt (ht+1 − (1− δ)ht))

)

the first order conditions are:

∂ct : Λt = u′
(
L0

Lt
ct

)
= u′

(
Ct
Lt

)
(A.36)

∂ht+1 : pHt µ
h
t = βΛt+1(rt+1 + τt+1)pHt+1 + βµht+1p

H
t+1(1− δ) (A.37)

∂it : Λt = µht + µit (A.38)
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together with the constraints above and the inequality µit ≥ 0, which is complementary slack with
(A.34).

Substitute (A.31) into (A.37) and rearrange: now this first order condition reads:

pHt µ
h
t = β

(
Λt+1

∂ft+1

∂Ht+1
+ µht+1p

H
t+1(1− δ)

)
+ βΛt+1τt+1p

H
t+1 (A.39)

We seek the equation for τt+1 that will lead to the same solution as in the social planner’s problem;
as derived above, this is defined by constraints (A.22)–(A.25), first order conditions (A.26)–(A.29)
and the inequality µIt ≥ 0, which is complementary slack with (A.23). Those equations are all
counterparts to the equations of this model, with the exception of A.39: we wish this to imply
(A.27). But this will be the case if we set (substituting in also (A.29))

Λt+1τt+1p
H
t+1 = −µht+1(Ht+2 − (1− δ)Ht+1)G′(Ht+1)

⇔ τt+1 = −
µht+1

Λt+1

Ht+2 − (1− δ)Ht+1

pHt+1

G′(Ht+1) (A.40)

So if it > 0, which implies µht+1 = Λt+1, then the two models are defined by the same first-order
conditions in variables Ct, Ht and It. In each case pHt is defined by Ht, so if Ot = L0ot for all t then
the solutions are equal – that is, this level of subsidy achieves the social optimum (subject to Ot).

We have treated ot and Ot as exogenous for both the household and the social planner. More
generally, a model will allow optimization in all factors of production and sources of income. How-
ever, if all externalities except for the learning-by-doing in pHt have been internalized, then by the
Coase Theorem and the First Welfare Theorem, it follows that the optimal O∗t for the planner
satisfies O∗t = L0o

∗
t , where o∗t is optimal for the household, so the solutions to the models coincide.

�

Proof of Corollary 3.4. If pHt = G(Ht) = pH0

(
Ht
H0

)−λ
, then

G′(Ht) = −λp
H
0

H0

(
Ht

H0

)−λ−1

= −λp
H
0

Ht

(
Ht

H0

)−λ
= −λp

H
t

Ht

Hence, in this case,

τt = λ

(
Ht+1

Ht
− (1− δ)

)

B Calibration

This section describes calibration of the model. We build on the seminal “DICE 2013” climate-
economy model of Nordhaus (2014a), which serves as benchmark in the literature and policy ap-
plications. Some of the parameter values are drawn from the existing studies, in particular, from
Hassler et al. (2012), Papageorgiou et al. (2016) and Rezai and Van Der Ploeg (2017). All the
parameter values are summarized in Table A.1. Details of the calibration are as follows:

B.1 Production

Labor L0 is given for 2012 using United Nations data. We assume it continues to evolve as in DICE
2013. We set the value of elasticity of substitution between general output, Y g, and electricity, E,
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in the final-goods production function, κ = 0.46, following Rezai and Van Der Ploeg (2017), as a
compromise between short-term insubstitutability (Hassler et al. (2012)) and longer-term substi-
tutability. We take the value of θ from Papageorgiou et al. (2016) to be 0.003. The technology
weightings Ag0 and AEt will be set to match other data. Subsequently, Agt evolves as in DICE, and
AEt evolves in step with it. We set α = 0.4 as an approximation of the values Papageorgiou et al.
(2016) get in their various specifications, but this is also commonly-used value in the literature. We
set the deprecation rate of the general capital stock at δg = 0.05 following Rezai and Van Der Ploeg
(2017).

In modeling the electricity sector we follow Papageorgiou et al. (2016): we set the value of w
at 0.32 (across various specifications, they find w = 0.19 to 0.70, with a mean of 0.32). We set
the value of the substitution parameter ξ = 0.46, in line with their estimates. We find the initial
generating capital stocks for the dirty and renewable generating capacity from EIA data.29 We set
AE0 so that electricity output in the first period matches the EIA data on electricity output in 2012.

In calibrating the prices of fossil and renewable energy capital pDt , pHt , we set pDt to be constant
and to match the current price of new coal-fired power stations in China, as these may be the
marginal new plants in consideration.30 For pHt , see the section below. Exponential depreciation
for fossil and renewable energy capital is calculated so that the net lifetime availability of capital is
equal to the general expected lifetime of plants in this sector: 40 and 25 years respectively.

We know the initial value of KD
t from EIA data for 2012, and Dt from Europe Union data. We

assume that initially ζt = 1.
The function form of fossil fuel extraction cost is taken from Rezai and Van Der Ploeg (2017),

but we calibrate it differently because we are more concerned with the price of coal than oil. So we
set γ1 to represent the cost of coal in 2012 (IEA2014 data), which we have converted to give this
cost as a price per GtC CO2 pollution (so that fuel and pollution will be in a straightforward 1:1
ratio), to give a cost of 0.09 trillion 2010$ / GtC. We take S0 = 2000.31 Using the IEA estimate
of the cost of coal in 2040 along a given trajectory, and the additional fractional fossil stock use
that this would represent, the second parameter of the resource cost equation is calculated to be
γ2 = 1.64.

We set the value of φ2 in the mitigation expenditure function Ψt from DICE2013.
29All fossil generating capacity has been included on the ‘dirty’ side. For renewables, we exclude hydropower,

because it is a relatively mature source of electricity (cost are not falling very fast) and its use is constrained
by physical geography, with a large fraction of suitable sites already in use (its use cannot expand fast), so this
technology does not well represent the features of interest in the model. Since extensive hydropower capacity already
exists, the inclusion of existing capacity would severely bias the trajectory of the equation relating renewable capital
to cost of renewable capital.

30Numbers taken from Energy and Environmental Economics, Inc. (2012).
31The proven resource of all fossil fuel resource may be estimated to be 1003 GtC using EIA data. However

continued exploration will enlarge these stocks. We use stock figure of 2000 GtC.
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Parameter Value Units Definition
L0 7.10 billion people Population
Ag0 2.53 productivity
Kg

0 150.00 trillion 2010$ initial ‘general’ capital stock
θ 0.003 energy share parameter, global output
α 0.4 share of capital, global output
κ 0.46 elas of substitution bwt energy and capital/labor
ξ 0.46 elas of subs between clean and dirty electricity capital
w 0.32 weight on renewable capital in electricity output
D0 9.4 GtC CO2 emissions in year 2012
Dland

0 0.90 GtC Land-use CO2 emissions in year 2012
DE

0 3.30 GtC Electricity CO2 emissions in year 2012
Dg

0 5.22 GtC General economy CO2 emissions in 2012
ν 0.91 GtC/(tW capacity) Fuel use & emissions from dirty electricity production
S0 2000 GtC Existing stock of fossil fuel (as of 2012)
Y0 60.11 trillion 2010$ initial gross world output
KD

0 3.61 tW initial capital stock of fossil technology
H0 0.46 tW Initial renewable-knowledge capital stock
pD 0.57 trillion 2010$/tW Price of dirty electricity capital
pH0 2.11 trillion 2010$/tW Initial price of clean electricity capital
δg 0.05 year−1 capital stock depreciation rate
δD 0.025 year−1 Fossil energy capital depreciation
δH 0.04 year−1 Renewable energy capital depreciation
γ1 0.09 trillion 2010$/GtC Parameter of fuel extraction costs
γ2 1.64 Parameter of fuel extraction costs
AE0 6.93 productivity of energy production
λ 0.295 rate of learning.
ς1 0.00267 damage function parameter.
ς2 2 damage function parameter.
ς3 0.001 damage function parameter.
ς4 50 damage function parameter.
φ2 2.8 mitigation expenditure parameter.
φ3 0.01 mitigation expenditure parameter.
σ0 0.0904 GtC/trillion 2010$ the carbon-equivalent emissions to output ratio.
φ1,0 0.041 backstop costs.

Table A.1: Parameter values
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Variable Definition
ct per-household consumption
Lt population at period t
Kg
t aggregate capital stock in general economy

KD
t aggregate dirty capital stock

Ht aggregate clean (renewable) capital stock
Igt aggregate investment in general economy
IDt aggregate investment in dirty capital stock
IHt aggregate investment in clean (renewable) capital stock
Ψt abatement
St fossil fuel stock at period t
GD(St) the fossil fuel extraction costs
rDt rate of return on fossil (dirty) capital
rHt rate of return on renewable (clean) capital
rgt rate of return on general capital
Πg
t the total profits from sale of the final goods

ΠD
t the total profits from sale of the dirty fuel based electricity

ΠH
t the total profits from sale of the clean electricity

ΠDE
t the total profits from sale of the fossil fuel

ΠE
t the total profits from sale of the aggregate electricity

Πt the sum of all profits
πt the total profits per-household
pDt the cost of fossil fuel capital
pHt the cost of renewable energy capital
pEHt the price of electricity generated by clean power stations
pEDt the price of electricity generated by fossil fuel based power plants
pet the price of aggregate electricity
pfuelt the price of dirty fossil fuel
ΓEDt electricity generated by fossil-fuel based power plants
Yt = f(Y g

t , Et) total output before damages
Y g
t output of the general economy
Et = fEt (Ht,Γ

ED
t ) aggregate electricity

ψt utilization rate of dirty capital stock
DE
t fossil fuel (e.g., coal) used in production of electricity

Dg
t fossil fuel used in the general economy

Table A.2: Variables notation and definition

C The Setup of Social Planner’s Problem

We will consider two alternative perspectives for returns on investment, which will be relevant in
different contexts. First, as in the section 3.1, we define:

Definition C.1. The shadow returns on investment in the general, dirty and renewable capital
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stocks are defined to be respectively Rgt , RDt and RHt so that:

Rgt+1 :=
µKgt − β(1− δg)µKgt+1

βu′ (Ct+1/Lt+1)
(A.41)

RDt+1 :=
µKDt − β(1− δD)µKDt+1

βu′ (Ct+1/Lt+1)
(A.42)

RHt+1 :=
µKHt − β(1− δH)µKHt+1

βu′ (Ct+1/Lt+1)
(A.43)

where µKgt , µKDt and µHt are the shadow prices on the capital accumulation constraints as below.

On the other hand, one might consider the more immediate definitions for direct economic
returns to investment:

Definition C.2. The direct economic returns on investment in the general, dirty and renewable
capital stocks are defined respectively to be rgt , rDt and rHt so that:

rgt+1 :=
∂

∂Kg
t+1

(Yt+1 −Ψt+1) (A.44)

rDt+1 :=
1

pDt+1

∂

∂KD
t+1

(Yt+1 −Ψt+1) (A.45)

rHt+1 :=
1

pHt+1

∂

∂Ht+1
(Yt+1 −Ψt+1) (A.46)

Here we measure the direct effects of investment on output net of mitigation costs, and the
output is

Yt = Ω(Tt)f(Y g
t , Et) (A.47)

with Y g
t = fgt (Kg

t , Lt).
The social planner’s problem is outlined below. Specifically, it maximizes the social welfare:

∞∑
t=0

βtLtu

(
Ct
Lt

)
(A.48)
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subject to constraints:

Yt = Igt + IDt + IHt + Ct +GD(St)(D
E
t +Dg

t ) +
φ1,tη

φ2
t Y

g
t

(1− ηt)φ3
µBCt (A.49)

St+1 = St −DE
t −D

g
t µSt (A.50)

Dt = DE
t +Dland

t +Dg
t µDt (A.51)

Tt =Wt(D0, . . . , Dt−1) µWt (A.52)

Et = fEt (Ht, ζtK
D
t ) = AEt

(
w(Ht)

ξ + (1− w)(ζtK
D
t )ξ
)1/ξ

µEt (A.53)

DE
t = νζtK

D
t µDEt (A.54)

Dg
t = σt(1− ηt)Y g

t µDgt (A.55)

ζt ≤ 1 µζt (A.56)

pHt = G(Ht) µpHt (A.57)

Igt = Kg
t+1 − (1− δg)Kg

t µKgt (A.58)

IDt = pD(KD
t+1 − (1− δD)KD

t ) µKDt (A.59)

IHt = pHt (Ht+1 − (1− δH)Ht) µKHt (A.60)

IDt ≥ 0 µIDt (A.61)

IHt ≥ 0 µIHt (A.62)

(We do not need to specify ζt ≥ 0 as this will never be violated in the optimum.) So we calculate
the Lagrangian L as

L =
∞∑
t=0

βt
[
Ltu

(
Ct
Lt

)
− µSt (St+1 − St +DE

t +Dg
t ) + µDt (Dt −DE

t −Dland
t −Dg

t )

]

+

∞∑
t=0

βtµWt (Tt −Wt(D0, . . . , Dt−1))

+
∞∑
t=0

βtµBCt

[
Ω(Tt)f(Y g

t , Et)− I
g
t − IDt − IHt − Ct −GD(St)(D

E
t +Dg

t )−
φ1,tη

φ2
t Y

g
t

(1− ηt)φ3
]

−
∞∑
t=0

βt
[
µEt (Et − fEt (Ht, ζtK

D
t ))
]

+

∞∑
t=0

βt
[
µDEt (DE

t − νζtKD
t ) + µDgt (Dg

t − σt(1− ηt)Y
g
t ) + µpHt (pHt −G(Ht)) + µζt (1− ζt)

]
+
∞∑
t=0

βt
[
µKgt

(
Igt −K

g
t+1 + (1− δg)Kg

t

)]
+

∞∑
t=0

βt
[
µKDt

(
IDt − pDKD

t+1 + pD(1− δD)KD
t

)
+ µIDt IDt

]
+
∞∑
t=0

βt
[
µKHt

(
IHt − pHt Ht+1 + pHt (1− δH)Ht

)
+ µIHt IHt

]
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We obtain first order conditions (write as shorthand ft for f(Y g
t , Et), f

g
t for fgt (Kg

t , Lt), etc.)

∂Ct : u′
(
Ct
Lt

)
= µBCt (A.63)

∂St+1 : βµSt+1 = µSt + βµBCt+1

dGD

dS
(St+1)(DE

t+1 +Dg
t+1) (A.64)

∂DE
t : µDEt = µSt + µDt + µBCt GD(St) (A.65)

∂Dg
t : µDgt = µSt + µDt + µBCt GD(St) (A.66)

∂Dt : µDt =
∞∑
m=0

βmµWt+m
∂Wt+m

∂Dt
(A.67)

∂Tt : µWt = −µBCt Ω′(Tt)ft (A.68)

∂Et µEt = µBCt Ω(Tt)
∂ft
∂Et

(A.69)

∂Kg
t+1 : µKgt = βµKgt+1(1− δg) + βµBCt+1

(
Ω(Tt+1)

∂ft+1

∂Y g
t+1

−
φ1,t+1η

φ2
t+1

(1− ηt+1)φ3

)
∂fgt+1

∂Kg
t+1

(A.70)

∂Igt µKgt = µBCt (A.71)

∂KD
t+1 pDµKDt = βpDµKDt+1 (1− δD) + βζt+1

(
µEt+1

∂fEt+1

∂(ζt+1KD
t+1)

− µDEt+1ν

)
(A.72)

∂IDt µKDt = µBCt − µIDt (A.73)

∂Ht+1 pHt µ
KH
t = βpHt+1µ

KH
t+1 (1− δH) + βµEt+1

∂fEt+1

∂Ht+1
− βµpHt+1G

′(Ht+1) (A.74)

∂IHt µKHt = µBCt − µIHt (A.75)

∂pHt : µpHt = µKHt (Ht+1 − (1− δH)Ht) (A.76)

∂ζ : µζt = KD
t

(
µEt

∂fEt
∂(ζtKD

t )
− µDEt ν

)
(A.77)

∂ηt : σtµ
Dg
t = µBCt

φ1,tη
φ2−1
t

(1− ηt)1+φ3
[φ2(1− ηt) + ηtφ3] (A.78)

together with constraints (A.49)–(A.62) and inequalities µζt ≥ 0, µIDt ≥ 0, µIHt ≥ 0 which are
complementary slack with corresponding equations (A.56) and (A.61)-(A.62).

Before we proceed, we substitute (A.63) and (A.71) into (A.70) and use Definitions C.1 and C.2
to prove that Rgt+1 = rgt+1. It has been presented in a more compact form from the observations that

Yt+1 = Ω(Tt+1)ft+1 and Ψt+1 =
φ1,t+1η

φ2
t+1

(1−ηt+1)φ3
Y g
t+1. The form that is most useful for further derivations

is (from (A.71)):

Rgt+1 = rgt+1 − δ
g =

µBCt
βµBCt+1

− 1. (A.79)

To prove the proposition 4.2 of the main text, we will use the following results.
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Proposition C.3 (The social cost of carbon). In an optimal solution:

χt = −u′
(
Ct
Lt

)−1 ∞∑
m=1

βmu′
(
Ct+m
Lt+m

)
∂Yt+m
∂Dt

. (A.80)

That is, the social cost of carbon is the marginal effect on future welfare of present emissions.

Proof of Proposition C.3 (Social Cost of Carbon). Substitute (A.68) into (A.67), and divide
through by µBCt , to obtain:

µDt
µBCt

= −
∞∑
m=0

βm
(
µBCt+m
µBCt

Ω′(Tt+m)ft+m

)
∂Wt+m

∂Dt
(A.81)

= −
∞∑
m=1

βm
(
µBCt+m
µBCt

Ω′(Tt+m)ft+m

)
∂Wt+m

∂Dt
(A.82)

where the sum is from m = 1 because ∂Wt
∂Dt

= 0. Next, note that

∂Yt+m
∂Dt

= Ω′(Tt+m)
∂Wt+m

∂Dt
ft+m (A.83)

Substituting (A.83), as well as (A.63), into (A.82), we obtain and write this as

χt :=
µDt

u′(Ct/Lt)
=

µDt
µBCt

= −u′
(
Ct
Lt

)−1 ∞∑
m=1

βmu′
(
Ct+m
Lt+m

)
∂Yt+m
∂Dt

. (A.84)

Since Ω′(Tt+m) < 0, we have ∂Yt+m/∂Dt < 0, then χt > 0. We call this term the social cost of
carbon. It represents the marginal future welfare effect of emissions in terms of current welfare. �

Proposition C.4. [Hotelling with fossil stocks] Write µSt for the shadow price on Equation
(A.50) constraining the stock of fossil fuel. Then:

µSt+1

u′ (Ct+1/Lt+1)
=

µSt
u′ (Ct/Lt)

(1− δg + rgt+1) +
dGD

dS
(St+1)(DE

t+1 +Dg
t+1) (A.85)

and so
µSt

u′ (Ct/Lt)
= −

∞∑
s=1

∆t,s(G
D)′(St+s)(D

E
t+s +Dg

t+s) (A.86)

where ∆t,s =
∏s
s′=1

1
1−δg+rg

t+s′
is the compound discount factor.

That is, the return on extracting a unit of fossil tomorrow should be equal to the return on
extracting an extra unit today, selling it and getting return on it at the rate of interest, less the
increase in future extraction cost.

Proof of Proposition C.4 (Hotelling with fossil stocks). Divide (A.64) through by µBCt+1:

β
µSt+1

µBCt+1

=
µSt
µBCt

µBCt
µBCt+1

+ β
dGD

dS
(St+1)

(
DE
t+1 +Dg

t+1

)
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Substitute in (A.79) and divide by β, to obtain the Hotelling rule:

µSt+1

µBCt+1

=
µSt
µBCt

(1− δg + rgt+1) +
dGD

dS
(St+1)

(
DE
t+1 +Dg

t+1

)
(A.87)

That is, we proved Equation (A.85) as µBCt = u′(Ct/Lt) from (A.63). To get the infinite sum,
repeatedly substitute:

µSt
µBCt

=
1

1− δg + rgt+1

(
µSt+1

µBCt+1

− (GD)′(St+1)(DE
t+1 +Dg

t+1)

)
(A.88)

=
1

1− δg + rgt+1

(
1

1− δg + rgt+2

(
µSt+2

µBCt+2

− (GD)′(St+2)(DE
t+2 +Dg

t+2)

)
(A.89)

− (GD)′(St+1)(DE
t+1 +Dg

t+1)

)
(A.90)

= −
∞∑
s=1

∆t,s(G
D)′(St+s)

(
DE
t+s +Dg

t+s

)
(A.91)

where

∆t,s =

s∏
s′=1

1

1− δg + rgt+s′
(A.92)

That is, we proved Equation (A.86). �

Proposition C.5. [Returns on dirty fuel]

∂Yt

∂DE
t

=
µSt

u′ (Ct/Lt)
+ χt +GD(St) +

pDRDt
ζtν

. (A.93)

That is, in an optimal solution, the marginal productivity of fossil fuel in final output is equal
to the shadow value of fossil stocks plus the social cost of carbon, the extraction cost and fraction
of the rate of return on investment in KD (gross of depreciation) which represents fuel use.

Proof of Proposition C.5 (Returns on dirty fuel). Now take (A.65), divide by µBCt and
substitute in (A.80):

µDEt
µBCt

=
µSt
µBCt

+ χt +GD(St)

For RDt+1, divide (A.72) by βpDµBCt+1 and substitute (A.69), and then (A.73) and (A.63) to obtain

µKDt
βµBCt+1

=
µKDt+1

µBCt+1

(1− δD) +
ζt+1

pD

(
Ω(Tt+1)

∂ft+1

∂Et+1

∂fEt+1

∂(ζt+1KD
t+1)

−
µDEt+1

µBCt+1

ν

)

⇒ ζt+1

pD

(
∂Yt+1

∂(ζt+1KD
t+1)

−
µDEt+1

µBCt+1

ν

)
=

µKDt
βµBCt+1

−
µKDt+1

µBCt+1

(1− δD) = RDt+1 (A.94)
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which could be written as:

RDt+1 =
ζt+1

pD

(
Ω(Tt+1)

∂ft+1

∂Et+1

∂fEt+1

∂(ζt+1KD
t+1)

− ν

(
µSt+1

µBCt+1

+ χt+1 +GD(St+1)

))
. (A.95)

Now, differentiating (A.47) by DE
t and multiplying by ν:

ν
∂Yt+1

∂DE
t+1

= Ω(Tt+1)
∂ft+1

∂Et+1

∂fEt+1

∂(ζt+1KD
t+1)

(A.96)

So:

RDt+1 =
νζt+1

pD

(
∂Yt+1

∂DE
t+1

−
µSt+1

µBCt+1

− χt+1 −GD(St+1)

)
(A.97)

⇒ ∂Yt

∂DE
t

=
µSt
µBCt

+ χt +GD(St) +
pDRDt
ζtν

(A.98)

�

Lemma C.6. In the optimal social planner’s solution, If IHt > 0 and IHt+1 > 0 then:

pHt+1

pHt
rHt+1 = 1 + rgt+1 − δ

g −
pHt+1

pHt
(1− δH) +

(Ht+2 − (1− δH)Ht+1)

pHt
G′(Ht+1) (A.99)

Proof of Lemma C.6. Consider the equation for renewable capital (A.74). Dividing by βpHt µBCt+1,
and substituting in equations (A.69) and (A.76) as well as (A.75), we see

µKHt
βµBCt+1

=
pHt+1

pHt

(µBCt+1 − µIHt+1)

µBCt+1

(1− δH) +
Ω(Tt+1)

pHt

∂ft+1

∂Et+1

∂fEt+1

∂Ht+1

−
(µBCt+1 − µIHt+1)

µBCt+1

(Ht+2 − (1− δH)Ht+1)

pHt
G′(Ht+1).

=

(
1 +

pHt+1 − pHt
pHt

)(
1−

µIHt+1

µBCt+1

)
(1− δH) +

1

pHt

∂Yt+1

∂Ht+1

−

(
1−

µIHt+1

µBCt+1

)
(Ht+2 − (1− δH)Ht+1)

pHt
G′(Ht+1).

From (A.75) and (A.79), we have

µKHt
βµBCt+1

=
µBCt − µIHt
βµBCt+1

= (1 + rgt+1 − δ
g)

(
1− µIHt

µBCt

)
(A.100)
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Combining the above two equations and Definition C.2, we have

(1 + rgt+1 − δ
g)

(
1− µIHt

µBCt

)
=

(
1 +

pHt+1 − pHt
pHt

)(
1−

µIHt+1

µBCt+1

)
(1− δH) + rHt+1

pHt+1

pHt

−

(
1−

µIHt+1

µBCt+1

)
(Ht+2 − (1− δH)Ht+1)

pHt
G′(Ht+1).

This gives the more general form; when IHt > 0 and IHt+1 > 0, implying µIHt = µIHt+1 = 0, then
the version given in the lemma follows. �

D Decentralized Equilibrium

A representative household maximizes:

∞∑
t=0

βt
Lt
L0
u

(
L0

Lt
ct

)
(A.101)

subject to the constraints:

Λt igt + iDt + iHt + ct =
Lt
L0
wt + πt + rgt k

g
t + rDt p

D
t k

D
t + rHt p

H
t ht

+
1

L0

(
τDt (DE

t +Dg
t )− τHt pHt Ht

)
(A.102)

µiDt iDt ≥ 0 (A.103)

µiHt iHt ≥ 0 (A.104)

µkgt igt = kgt+1 − (1− δg)kgt (A.105)

µkDt iDt = pDt (kDt+1 − (1− δD)kDt ) (A.106)

µkHt iHt = pHt (kHt+1 − (1− δH)kHt ) (A.107)

At time t, the Lagrangian is

Lt =
∞∑
t=0

βt

(
Lt
L0
u

(
L0

Lt
ct

)
− Λt

(
igt + iDt + iHt + ct

)
+ Λt

(
Lt
L0
wt + πt + rgt k

g
t + rDt p

D
t k

D
t + rHt p

H
t ht

)
+

Λt
L0

(
τDt (DE

t +Dg
t )− τHt pHt Ht

)
+ µiDt iDt + µiHt iHt + µkgt

(
igt − (kgt+1 − (1− δg)kgt )

)
+ µkDt (iDt − pDt (kDt+1 − (1− δD)kDt )) + µkHt (iHt − pHt (ht+1 − (1− δH)ht))

)
(A.108)
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the first order conditions are:

∂ct : Λt = u′
(
L0

Lt
ct

)
= u′

(
Ct
Lt

)
=

(
Ct
Lt

)−ψ
(A.109)

∂kgt+1 : µkgt = β(Λt+1r
g
t+1 + µkgt+1(1− δg)) (A.110)

∂kDt+1 : pDt µ
kD
t = β

(
Λt+1p

D
t+1r

D
t+1 + µkDt+1p

D
t+1(1− δD)

)
(A.111)

∂ht+1 : pHt µ
kH
t = β

(
Λt+1p

H
t+1r

H
t+1 + µkHt+1p

H
t+1(1− δH)

)
(A.112)

∂igt : Λt = µkgt (A.113)

∂iDt : Λt = µkDt + µiDt (A.114)

∂iHt : Λt = µkHt + µiHt (A.115)

together with the constraints above and the inequalities µiDt ≥ 0, µiHt ≥ 0, which are complementary
slack with (A.103) and (A.104).

As usual we combine (A.110) with (A.113) to write:

Λt
βΛt+1

= 1− δg + rgt+1 (A.116)

Substitute (A.115) into (A.112), divide by Λt+1, and then substitute in (A.116) and divide by
β:

pHt

(
Λt

Λt+1
− µiHt

Λt+1

)
= β

(
pHt+1r

H
t+1 +

(
1−

µiHt+1

Λt+1

)
pHt+1(1− δH)

)
(A.117)

⇔ pHt (1− δg + rgt+1)

(
1− µiHt

Λt

)
= pHt+1r

H
t+1 +

(
1−

µIHt+1

Λt+1

)
pHt+1(1− δH) (A.118)

⇔ pHt+1r
H
t+1 = pHt (1− δg + rgt+1)

(
1− µiHt

Λt

)
− pHt+1(1− δH)

(
1−

µiHt+1

Λt+1

)
(A.119)

Recall that also µiHt iHt = 0. So we will be able to combine this result with others below to obtain
equations determining iHt , and thus we will be able to scale up the household’s problem.

Similarly, considering dirty capital, we can substitute (A.114) into (A.111), then substitute in
(A.116) to obtain:

pDt+1r
D
t+1 = pDt (1− δg + rgt+1)

(
1− µiDt

Λt

)
− pDt+1(1− δD)

(
1−

µiDt+1

Λt+1

)
(A.120)

And, again, µiDt iDt = 0.
Of course, if investment is ongoing (µiHt = µiHt+1 = µiDt = µiDt+1 = 0) then these two equations are

identities between variables we are claiming are “exogenous”. In that case, these provide necessary
conditions on investment being non-zero (and non-infinite).

Moreover, because the economy is made up of identical agents behaving in this same way, we
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may sum complementary slack equations over all these agents to obtain

µiHt IHt = 0 (A.121)

µiDt IDt = 0 (A.122)

Moreover, now we have equations for the solution to the maximization problem, we can scale up
from the household level. We have determined that, given prices and rates of return (equations for
which follow) aggregate consumption Ct and investments Igt , IDt , IHt are determined by (also using
that pDt = pD):

Igt + IDt + IHt + Ct = Ltwt + πt + rgtK
g
t + rDt p

D
t K

D
t + rHt p

H
t Ht

+
(
τDt (DE

t +Dg
t )− τHt pHt Ht

)
(A.123)

IDt ≥ 0 (A.124)

IHt ≥ 0 (A.125)
Igt = Kg

t+1 − (1− δg)Kg
t (A.126)

IDt = pD
(
KD
t+1 − (1− δD)KD

t

)
(A.127)

IHt = pHt
(
KH
t+1 − (1− δH)KH

t

)
(A.128)

u′ (Ct/Lt)

βu′ (Ct+1/Lt+1)
= 1− δg + rgt+1 (A.129)

rDt+1 = (1− δg + rgt+1)

(
1− µiDt

u′ (Ct/Lt)

)
− (1− δD)

(
1−

µiDt+1

u′ (Ct+1/Lt+1)

)
(A.130)

µiDt ≥ 0 (A.131)

IDt µ
iD
t = 0 (A.132)

rHt+1 =
pHt
pHt+1

(1− δg + rgt+1)

(
1− µiHt

u′ (Ct/Lt)

)
− (1− δH)

(
1−

µiHt+1

u′ (Ct+1/Lt+1)

)
(A.133)

µiHt ≥ 0 (A.134)

IHt µ
iH
t = 0 (A.135)

D.1 Compound interest for the firms’ problems

Recall our term Πt = Πg
t + ΠD

t + ΠH
t + ΠDE

t + ΠE
t . We treated that as a lump-sum above. However,

in fact the firms are owned by the households, so they choose their activity to maximize the utility
pay-off to the households. Thus, for example, the final-goods firms seek to maximize

∞∑
t=0

βtΛtΠ
g
t (A.136)

subject to its production constraints, where Λt is exactly the shadow price on the household’s
budget constraint above. It is equivalent to divide by Λ0 and so to use a compound discount rate of
qt := βt Λt

Λ0
= βt u

′(ct)
u′(c0) for the relative price of consumption in period t, expressed in period 0 units.
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Moreover, recall from (A.116) that Λt
Λt+1

= β(1− δg + rgt+1). Thus

qt = βt
Λt
Λ0

=
βΛt
Λt−1

· βΛt−1

Λt−2
· · · βΛ1

Λ0
=

t∏
j=1

1

1− δg + rgj
(A.137)

qt+1

qt
=

1

1− δg + rgt+1

(A.138)

D.2 The final-goods firms’ problem

The final-good firms maximize

∞∑
t=0

qtΠ
g
t =

∞∑
t=0

qt

(
Ω(Tt)f(Y g

t , Et)− r
g
tK

g
t − wtLt − petEt −

φ1,tη
φ2
t

(1− ηt)φ3
Y g
t − p

fuel
t Dg

t

)
(A.139)

(remember that Y g
t ≡ fgt (Kg

t , Lt)) where Dg
t are fossil fuels used by these firms, pet is the price of

electricity and φ1,tη
φ2
t

(1−ηt)φ3
Y g
t is spending on abatement by these firms, so that firms face emissions

constraint given in every period by:

Dg
t = σt(1− ηt)Y g

t (A.140)

The first order conditions are then:

∂Kg
t : Ω(Tt)

∂f

∂Y g
t

∂fgt
∂Kg

t

= rgt +
φ1,tη

φ2
t

(1− ηt)φ3
∂fgt
∂Kg

t

+ pfuelt σt(1− ηt)
∂fgt
∂Kg

t

(A.141)

∂Lt : Ω(Tt)
∂f

∂Y g
t

∂fgt
∂Lt

= wt +
φ1,tη

φ2
t

(1− ηt)φ3
∂fgt
∂Lt

+ pfuelt σt(1− ηt)
∂fgt
∂Lt

(A.142)

∂Et : Ω(Tt)
∂ft
∂Et

= pet (A.143)

∂ηt : pfuelt σt =
φ1,tη

φ2−1

(1− ηt)1+φ3
[φ2(1− ηt) + ηtφ3] (A.144)

Equation (A.141) is an optimal condition for demand of aggregate capital and states that the return
on capital is the marginal product of capital minus additional spending on abatement to clean a
given fraction of extra emissions and costs of fuel. Equation (A.141) is the counterpart of equation
(A.142) for labor demand. Equation (A.143) is an optimal condition for demand of electricity.
Finally, equation (A.144) says that the firm reacts to the price of fuel (implicitly to carbon tax)
by choosing the level of abatement (equivalently the level of emissions) such that the price of fuel
would be equal to the marginal cost of emissions reduction.

D.3 Aggregate electricity producing firms’ problem

The firms produce aggregate electricity by combining both electricity generated by fossil-fuel based
power plants and electricity generated by renewable energy based power stations. Note that we are
taking the output from these two plants, in GW, as inputs priced by pEHt and pEDt respectively and
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so we do not need to convert by pHt and pD here.

∞∑
t=0

qtΠ
E
t =

∞∑
t=0

qt
(
petf

E
t (Ht, ζtK

D
t )− pEHt Ht − pEDt (ζtK

D
t )
)

(A.145)

FOCs are:

pet
∂fEt
∂Ht

= pEHt (A.146)

pet
∂fEt

∂(ζtKD
t )

= pEDt (A.147)

D.4 The dirty electricity producing firms’ problem

The dirty electricity producing firms are fossil-fuel based power stations, which combine existing
infrastructure (e.g., coal-based power plants) with fossil fuel, and so maximizes:

∞∑
t=0

qtΠ
D
t =

∞∑
t=0

qt

(
pEDt (ζtK

D
t )− rDt pDKD

t − p
fuel
t DE

t

)
(A.148)

where firms face emissions constraint: DE
t = νζtK

D
t , and constraint ζt ≤ 1. So the Lagrangian is

(making the obvious substitution)

∞∑
t=0

qt

(
pEDt (ζtK

D
t )− rDt pDKD

t − p
fuel
t νζtK

D
t + µζt (1− ζt)

)
(A.149)

And the first order conditions and constraints are

∂KD
t : rDt p

D =
(
pEDt − pfuelt ν

)
ζt (A.150)

∂ζt : µζt = KD
t

(
pEDt − pfuelt ν

)
(A.151)

µζt (1− ζt) = 0 (A.152)

µζt ≥ 0 (A.153)

where µζt is Lagrangian multiplier attached to the above constraint. Thus, if ζ < 1 then pEDt =

pfuelt ν, and rDt pD = 0 or rDt = 0. Intuitively, when there is underutilization, the market pushes the
return on dirty energy capital to zero.

D.5 The fossil-fuel extracting firm’s problem

The firm maximizes
∞∑
t=0

qtΠ
DE
t =

∞∑
t=0

qt[p
fuel
t − τDt −GD(St)](D

E
t +Dg

t ) (A.154)

where τD is tax on production of fossil fuels. The firm faces the constraint:

St+1 = St − (DE
t +Dg

t ) (A.155)
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to which we assign the shadow price µ̃t. So the Lagrangian is

Lt =
∞∑
t=0

qt

(
[pfuelt − τDt −GD(St)](D

E
t +Dg

t ) (A.156)

− µ̃t
(
St+1 − St + (DE

t +Dg
t )
))

(A.157)

FOCs are:

∂(DE
t +Dg

t ) : µ̃t = pfuelt − τDt −GD(St) (A.158)

∂St+1 : qtµ̃t = qt+1

(
µ̃t+1 − (DE

t+1 +Dg
t+1)

(
GD
)′

(St+1)
)

(A.159)

Combining the firm’s first order conditions yields the standard Hotelling condition, into which we
then substitute from (A.138)

pfuelt − τDt −GD(St) =
qt+1

qt

(
pfuelt+1 − τ

D
t+1 −GD(St+1)− (DE

t+1 +Dg
t+1)

(
GD
)′

(St+1)
)

(A.160)

=
1

1− δg + rgt+1

(
pfuelt+1 − τ

D
t+1 −GD(St+1)− (DE

t+1 +Dg
t+1)

(
GD
)′

(St+1)
)

(A.161)

which states that the return on extracting an extra unit of fossil fuels, selling and getting a return
on it must be equal to the expected capital gain from keeping an extra unit of fossil fuels in the
earth, but extracting it tomorrow minus the increase in future extraction costs. As before, we may
repeatedly substitute forward to obtain

pfuelt − τDt −GD(St) = −
∞∑
s=1

∆t,s(D
E
t+s +Dg

t+s)
(
GD
)′

(St+s) (A.162)

where ∆t,s :=
s∏

s′=1

1

1− δg + rgt+s′
(A.163)

D.6 The renewable firms’ problem

In contrast to other sectors, we assume that the firms in the renewable sector are small in the sense
that they take the the stock of accumulated knowledge about using the renewable energy Ht as
given. The renewable firms receive subsidy of τHt on its dollar-valued holdings of renewable energy
capital Ht. The firms take all prices as given, so they maximize:

∞∑
t=0

qtΠ
H
t =

∞∑
t=0

qt[p
EH
t − pHt (rHt − τHt )]Ht. (A.164)

The first order condition is just:
pEHt = pHt (rHt − τHt ) (A.165)
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D.7 The Principal’s Problem

In this section we collect all equations we need to solve the decentralized equilibrium model and
formulate it as the principal-agent problem:

max
τD,τH

∞∑
t=0

βtLtu

(
Ct
Lt

)
(A.166)

subject to:

Igt + IDt + IHt + Ct = Ltwt + Πt + rgtK
g
t + rDt p

DKD
t + rHt p

H
t Ht

+
(
τDt (DE

t +Dg
t )− τHt pHt Ht

)
(A.167)

IDt ≥ 0 (A.168)

IHt ≥ 0 (A.169)
Igt = Kg

t+1 − (1− δg)Kg
t (A.170)

IDt = pD
(
KD
t+1 − (1− δD)KD

t

)
(A.171)

IHt = pHt
(
KH
t+1 − (1− δH)KH

t

)
(A.172)

pHt = G(Ht) (A.173)

DE
t = νζtK

D
t (A.174)

Dg
t = σ(1− ηt)Y g

t (A.175)
u′ (Ct/Lt)

βu′ (Ct+1/Lt+1)
= 1− δg + rgt+1 (A.176)

rDt+1 = (1− δg + rgt+1)

(
1− µiDt

u′ (Ct/Lt)

)
− (1− δD)

(
1−

µiDt+1

u′ (Ct+1/Lt+1)

)
(A.177)

µiDt ≥ 0 (A.178)

IDt µ
iD
t = 0 (A.179)

rHt+1 =
pHt
pHt+1

(1− δg + rgt+1)

(
1− µiHt

u′ (Ct/Lt)

)
− (1− δH)

(
1−

µiHt+1

u′ (Ct+1/Lt+1)

)
(A.180)

µiHt ≥ 0 (A.181)

IHt µ
iH
t = 0 (A.182)

rgt =

(
Ω(Tt)

∂f

∂Y g
t

− φ1,tη
φ2
t

(1− ηt)φ3
− pfuelt σt(1− ηt)

)
∂fgt
∂Kg

t

=

(
Ω(Tt)(1− θ)

[
(1− θ)(Y g

t )1−1/κ + θ(Et)
1−1/κ

] 1/κ
1−1/κ

(Y g
t )−

1
κ − φ1,tη

φ2
t

(1− ηt)φ3

− pfuelt σt(1− ηt)
)
Agtα(Kg

t )α−1(Lt)
1−α (A.183)
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wt =

(
Ω(Tt)

∂f

∂Y g
t

− φ1,tη
φ2
t

(1− ηt)φ3
− pfuelt σt(1− ηt)

)
∂fgt
∂Lt

=

(
Ω(Tt)(1− θ)

[
(1− θ)(Y g

t )1−1/κ + θ(Et)
1−1/κ

] 1/κ
1−1/κ

(Y g
t )−

1
κ − φ1,tη

φ2
t

(1− ηt)φ3

− pfuelt σt(1− ηt)
)
Agt (1− α)(Kg

t )α(Lt)
−α (A.184)

pet = Ω(Tt)
∂ft
∂Et

= Ω(Tt)θ
[
(1− θ)(Y g

t )1−1/κ + θ(Et)
1−1/κ

] 1/κ
1−1/κ

E
−1/κ
t (A.185)

pfuelt σt =
φ1,tη

φ2−1
t

(1− ηt)1+φ3
[φ2(1− ηt) + ηtφ3] (A.186)

pEHt = pet
∂fEt
∂Ht

= petA
E
t wH

ξ−1
t

(
wHξ

t + (1− w)(ΓEDt )ξ
) 1−ξ

ξ (A.187)

pEDt = pet
∂fEt

∂(ζtKD
t )

= petA
E
t (1− w)(ζtK

D
t )ξ−1

(
wHξ

t + (1− w)(ΓEDt )ξ
) 1−ξ

ξ

(A.188)

pDrDt =
(
pEDt − pfuelt ν

)
ζt (A.189)

µζt = KD
t

(
pEDt − pfuelt ν

)
(A.190)

µζt (1− ζt) = 0 (A.191)

µζt ≥ 0 (A.192)

pEHt = pHt (rHt − τHt ) (A.193)

pfuelt − τDt −GD(St) = −
∞∑
s=1

∆t,s(D
E
t+s +Dg

t+s)
(
GD
)′

(St+s) (A.194)

∆t,s =

s∏
s′=1

1

1− δg + rgt+s′
(A.195)

Dt = DE
t +Dland

t +Dg
t (A.196)

Tt =Wt(D0, . . . , Dt−1) (A.197)

St+1 = St − (DE
t +Dg

t ) (A.198)

D.8 Social planner problem versus decentralized equilibrium

Proof of proposition 4.2 First, from (A.185) and (A.188), we note that:

pEDt = Ω(Tt)
∂ft
∂Et

∂fEt
∂(ζtKD

t )
= ν

∂Yt

∂DE
t

(A.199)

From (A.189) it follows that:
pDrDt
ζtν

=
pEDt
ν
− pfuelt (A.200)
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And substituting here from the above implies:

∂Yt

∂DE
t

=
pDrDt
ζtν

+ pfuelt (A.201)

And substituting the expression for pfuelt from (A.194), we obtain:

∂Yt

∂DE
t

=
pDrDt
ζtν

+ τDt +GD(St)−
∞∑
s=1

∆t,s(D
E
t+s +Dg

t+s)
(
GD
)′

(St+s) (A.202)

Recall that in the social planner case solution, the returns on dirty fuel are equal to (see Proposition
C.5):

∂Yt

∂DE
t

=
µSt

u′ (Ct/Lt)
+ χt +GD(St) +

pDRDt
ζtν

(A.203)

where (see Proposition C.4)

µSt
u′ (Ct/Lt)

= −
∞∑
s=1

∆t,s(G
D)′(St+s)(D

E
t+s +Dg

t+s) (A.204)

Expression (A.202) is identical to (A.203) when taxes are equal to the social cost of carbon, and
when rDt = RDt .

Next, we find the value of subsidies under which the solutions of the social planner’s problem
and decentralized equilibrium coincide. First, if the investment into the renewable sector continues
then µiHt = µiHt+1 = 0, from (A.180) it follows that:

rHt+1 =
pHt
pHt+1

(1− δg + rgt+1)− (1− δH) (A.205)

or
pHt+1

pHt
rHt+1 = (1− δg + rgt+1)−

pHt+1

pHt
(1− δH) (A.206)

Using (A.185), (A.187) and (A.193), we can also write that:

rHt+1 =
1

pHt+1

∂Yt+1

∂Ht+1
+ τHt+1 (A.207)

Next, we denote the return on clean investment in the social planner’s case as r̃Ht+1. Recall that in
the social planner solution (Lemma C.6):

pHt+1

pHt
r̃Ht+1 = (1 + rgt+1 − δ

g)−
pHt+1

pHt
(1− δH) +

Ht+2 − (1− δH)Ht+1

pHt
G′(Ht+1) (A.208)

and
r̃Ht+1 =

1

pHt+1

∂Yt+1

∂Ht+1
(A.209)

Comparison of (A.207) with (A.209) yields the value of subsides:

τHt+1 = rHt+1 − r̃Ht+1 (A.210)
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But comparison of (A.206) with (A.208), further yields that:

pHt+1

pHt

(
rHt+1 − r̃Ht+1

)
= −Ht+2 − (1− δH)Ht+1

pHt
G′(Ht+1) (A.211)

and the level of subsidies:
τHt = −(Ht+1 − (1− δH)Ht)

G′(Ht)

pHt
(A.212)

Finally note that it is straightforward to show that the budget constraint (A.167) is identical to the
economy’s aggregate constraint as in the social planner’s problem after substituting expressions for
profits and returns on capital and labor. �
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