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Abstract

This paper analyzes the role of energy prices in firms’ investment location decisions in the

manufacturing sector. Building on the application of discrete choice theory to the firm location

problem, we specify a conditional logit model linking bilateral foreign direct investment (FDI)

activity to relative energy prices. We then empirically test this link using a global dataset of M&A

deals in the manufacturing sector covering 41 countries between 1995 and 2014, using econometric

techniques adapted from the estimation of gravity models. The results suggest that upon deciding

to invest, firms are attracted to regions that have lower energy prices. However, counterfactual

simulations reveal that unilateral implementation of a $50/tCO2 carbon tax by various coalitions of

countries is expected to have limited negative impact on the attractiveness of economies to foreign

industrial investments. Hence, our results support the pollution haven effect, but find the magnitude

is limited and could be addressed with targeted measures in the most energy intensive sectors.
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1. Introduction

Policies to incentivize emissions reductions and foster low carbon technologies are proliferating

around the world. Over fifty carbon pricing policies are now adopted in over forty countries covering

a fifth of global emissions (World Bank and Ecofys, 2018). The emerging carbon price level set by

these initiatives, however, lie far below the target range of $40-$80/tCO2 recommended by the

Stern-Stiglitz Commission (Stern and Stiglitz, 2017). A major factor that curbs ambition in efforts

to tackle climate change, is the perceived threat of carbon leakage and competitive disadvantages

associated with stringent regulation. These reflect concerns that faced with higher carbon prices,

firms will respond by relocating or ‘leaking’ production abroad, then export their products back

without paying the carbon price. These fears are magnified by trends in globalization which has

enhanced economic integration such that firms, in an attempt to remain competitive, are pursuing

different forms of cross-border investments, including foreign direct investments, mergers, joint

ventures and offshoring.

This paper contributes to the long-standing literature on the link between environmental regula-

tion and foreign direct investment,1 making a number of advances both theoretically and empirically.

Previous papers look at aggregate FDI flows, typically exploit the variation in environmental regula-

tion within a country, and assess if jurisdictions with lax policy can attract more inbound FDI flows

(List et al., 2004; Millimet and Roy, 2015), or discourage outbound FDI flows (Cole and Elliott,

2005; Hanna, 2010). Some recent contributions use firm level data in a specific country, and mea-

sures of environmental policy stringency across potential host countries, to assess if the latter can

explain the destination choice for outbound FDI flows (Wagner and Timmins, 2009; Raspiller and

Riedinger, 2008; Manderson and Kneller, 2012; Ben Kheder and Zugravu, 2012). Several studies

test the pollution haven effect2 by estimating the effect of energy prices on firm or industry location

decisions (Kahn and Mansur, 2013; Panhans et al., 2016). While these empirical studies of the

pollution haven effect have been illuminating, the results yield mixed conclusions. Generally, the

1See Cole et al. (2017) for a recent review of the FDI and environment literature.
2The Pollution Haven Effect (PHE) posits that differences in regulatory stringency can, at the margin, have an

effect on trade flows and investment decisions (Taylor, 2004). This can be distinguished from the Pollution Haven
Hypothesis (PHH) which predicts that trade liberalization leads to a migration of polluting industry to countries with
less stringent regulation (McGuire, 1982)
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literature has failed to uncover robust evidence to solve the controversy over the link between en-

vironmental policy and industrial flight. However, several shortcomings in existing studies suggest

that the question has not been fully answered.

The lack of robust evidence may be attributable to a number of issues. First, the theory linking

environmental policy to industry location focuses on comparative cost advantage. In other words,

cross-border investment decisions under the pollution haven scenario is driven by regulatory costs

in both countries, hence it is the relative costs that matter. Identifying this requires a bilateral

setting with paired data. Second, studies on the inbound FDI cover a limited geographical scope.

The lack of variation in other determinants of production location is problematic for identification.

Third, many previous studies relied on aggregated FDI data that capture total FDI flows, which

does not allow controlling for multitude of confounding factors such as sector and country level

trends. Fourth, studies on outbound FDI require measures of environmental regulation stringency

in host countries or states but good measures are difficult to come by.

This paper aims to overcome these limitations and test whether a causal relationship exists

between carbon pricing policies and FDI. Our study marks a notable departure from the previous

literature in several ways. The empirical framework adopted draws on the recent literature on

the determinants of cross-border investments, which use bilateral flows and a base model consist-

ing of gravity-type covariates, borrowing from the empirical bilateral trade literature (Anderson,

2011; Head and Mayer, 2014; Anderson and Yotov, 2012).3 We adopt this framework, and to our

knowledge this is the first study to explicitly test the effect of relative energy prices on FDI.

For identification, this paper exploits exogenous variations in industrial energy prices. We argue

that this is a superior measure of environmental policy, compared to those employed in previous

studies. These included broad measures such as a participation in a treaty, or composite indicators

which are subject to measurement error, due to the multidimensional nature of environmental policy

3A rich theoretical and empirical literature has considered the general determinants of FDI and cross border M&A
activity. Studies highlight the importance of traditional gravity factors – geographical and cultural proximity, market
size (Blonigen and Piger, 2014). Other determinants explored include stock market valuations and exchange rates
(Erel et al., 2012), and tariff-jumping and trade costs (Brainard, 1997). The impact of relative input costs such as
cross-border variations in energy prices or environmental policy stringency has received less attention.
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(Brunel and Levinson, 2016)4. Industrial energy prices that include taxes is highly correlated with

measures of environmental policy stringency measures (Sato et al., 2015). It offers a way to measure

the difference in carbon prices faced by firms, since carbon pricing measures raise the price of fossil

fuels which in turn increases energy prices (Aldy and Pizer, 2015), overcoming the fact that carbon

prices are relatively new and prices have been extremely low in general such that there is limited

variation to exploit. Based on elasticities estimates of relative energy price impacts, we will conduct

counterfactual analysis to simulate the impacts of relative carbon prices.

We analyse whether bigger differences industrial energy prices increases bilateral mergers and

acquisitions (M&A) transactions. The FDI literature has found that determinants vary depending

on the mode of FDI – greenfield investments vs M&A (e.g. Nocke and Yeaple (2007)). We focus

on M&A and exclude greenfield investments. This is partly due to data availability even though,

in the countries we consider in our dataset, M&A account for half of cross border investments5

(UNCTAD, 2018). To motivate our empirical analysis, we also build on theoretical models of FDI

flows, namely Head and Ries’s (2008) dartboard model of M&A. This model is founded in the

application of discrete choice theory to the firm location problem. We use this framework to derive

a model linking location choice in bilateral acquisitions to relative energy prices.

To implement this empirical strategy, we take advantage of a global database on firm level M&A

from Thomson Reuters. This provides a exhaustive6 listing of M&A deal counts in the manufac-

turing sectors, covering transactions made both cross-border and domestic, made by both publicly

listed companies and non listed companies. This dataset provides detailed information on the trans-

actions made, specifying the type of investment (e.g. asset acquisition), along with detailed sectoral

and locational information on the acquiring and target firms. We use this dataset to construct a

panel of global, bilateral cross-border investments aggregated at the sector level (distinguishing 22

industrial subsectors). The relative energy price variable is constructed from the database provided

4Regulations target different pollutants arising from different media such as air, water and land, different pol-
luters such as industry and households, and can take many forms such as pollution reduction targets and technology
standards.

5In OECD member countries and the BRICS, M&A transactions accounted for 50% of cross-border investment
flows by value over the period 2003-2014 (UNCTAD, 2018).

6While the original Thomson-Reuters dataset is exhaustive, the availability of our other covariates – sectoral energy
prices in particular – restricts our application to a subset.
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by Sato et al. (2019). Our final dataset includes around 70,000 transactions – of which 22,000 are

cross-border – by firms in 41 countries between 1995 and 2014. In contrast to the previous literature,

this approach allows for the estimation of regulatory effects that are purged of bias associated with

country-pair and industry specific trends. This is particularly important because, during this pe-

riod, there were many factors (e.g., supply chain integration, trade agreements, technology changes)

that may have had differential impacts on sector-level FDI. The global coverage of the dataset is

also unique and ensures the results can be interpreted in a global context. However, the large panel

size renders usual maximum likelihood estimation intractable. To overcome this, we implement a

custom estimator based on an iterated reweighted least square (IRLS) implementation of the PPML

estimator, extending Guimaraes (2016)’s two high dimensional fixed effects PPML estimator to a

large number of fixed effects.

We report three main findings. First, we find evidence that relative industrial energy prices

have an impact on the cross-border investment activity of industrial firms. Specifically, firms tend

to engage in more cross-border investments when their domestic energy prices increase in relative

terms against foreign prices. Our preferred specification suggests that an increase of 10% in the

relative industrial energy price differential between two countries is expected to increase by 3.2%

the number of acquisitions of firms or assets located in the lower energy price country by firms based

in the more expensive country. Second, we find that this effect is significantly larger for emerging

economies: the impact of relative energy costs is four times larger for transactions targeting non-

OECD countries than for those targeting OECD countries. Third, we find that the effect of relative

energy prices on cross-border investment decisions is heterogeneous across sectors, and grows with

sectoral energy intensity.

We subject our results to a number of checks. We first ensure that our findings are robust to the

inclusion of sectoral measures of labor and capital costs. We then make use of recent econometric

advances in the estimation of structural gravity models in the trade literature (Anderson and Yotov,

2012; Fally, 2015) to confirm our findings using a second identification strategy described in section

6.2. We also confirm the robustness of our results to the dynamics of firms’ investment decisions

and the use of an alternate energy price index.
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We finally complement these findings with counterfactual simulations of the implementation of

a $50/tCO2 carbon tax by three different coalitions of countries, and estimate the resulting impact

on inbound investment activity. We find that unilateral implementation by developed economies

would have a limited negative impact on their attractiveness to foreign industrial investments.

This paper is structured as follows. Section 2 develops a simple theoretical framework to guide

our empirical analysis and section 3 presents the econometric strategy. In section 4 we describe

the sources and structure of the constructed data set, and give descriptive statistics. In section

5, we turn to estimating the impact of energy prices on M&A deals and present the results of

our estimations before performing an assortment of robustness checks in section 6. We finally

present extensions on sectoral heterogeneity and our counterfactual simulations in section 7 before

concluding.

2. Theoretical framework

In this section, we develop a simple model of cross-border M&A inspired by Head and Ries’s

(2008) dartboard model, in turn inspired by the application of McFadden’s (1974) discrete choice

theory to the firm location problem. We also draw from applications of this model by Hijzen

et al. (2008) and Coeurdacier et al. (2009), who study the impact of trade costs and the European

integration on FDI respectively.

In the following, we propose a model for the choice of investment location conditional on the

decision to invest. We consider the firm’s investment decision as a two step process: first, the firm

decides whether to invest in another firm, and second it chooses its target. We are only concerned

with the second step of this decision process, which determines the location of the investment.

Let g be a firm operating in sector k ∈ S and country i ∈ C, with S the set of all sectors and

C the set of all countries. Consider now a second firm h, h ̸= g, operating in sector l and country

j – (j, l) ∈ C × S. The special cases of domestic (i = j) and horizontal (k = l) investments are

encompassed in this framework. We are interested in deriving the probability that g acquires h

conditional on g having decided to invest in another firm.

Let πh be the profit that firm g can expect if it acquires h. We consider a reduced-form profit

function πh , log-linear in the characteristics of h. In the following, we shall only consider the
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variation in these characteristics observed at the country and sector level. Therefore, for a given

characteristic Xc, we assume that for any firm h operating in country j and sector l, Xc,h = Xc,jl.

Examples of Xc,jl include covariates such as sectoral energy prices. We have, with εh a stochastic

component:

πh ≡
∑

c

βc log Xc,h + εh =
∑

c

βc log Xc,jl + εh (1)

Under the assumption that the perturbation term εh is distributed as a Type I extreme value

(McFadden, 1974), we have from discrete choice theory the following familiar multinomial logit

expression for the probability Pg,h that g acquires h:

Pg,h = exp(πh)∑
h′

exp(πh′)
(2)

We now write njl the number of firms that operate in country j and sector l. Aggregating at

the target sectoral and country levels, we get the probability that g acquires a firm in country j

and sector l:

Pg,jl = njl exp(πjl)∑
j′∈C,l′∈S

nj′l′ exp(πj′l′)
(3)

Summing over all firms in acquiring country i and sector k, we can express the number of deals

mijkl observed between country-sector pairs (i, k) and (j, l):

mijkl = niknjl exp(πjl)∑
j′∈C,l′∈S

nj′l′ exp(πj′l′)
(4)

Since i ∈ C and k ∈ S, we finally get:

mijkl = niknjl exp(πjl − πik)
Ωijkl

(5)

with Ωijkl ≡
∑

j′∈C,l′∈S
nj′l′ exp(πj′l′ − πik).

This expression is functionally similar to the gravity equation commonly used in the trade
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literature (Head and Mayer, 2014). The number of deals7 between two country sector pairs is

proportional to the economic size of the two sectors considered – measured here by the number

of firms operating in each sector. Further, Ωijkl can be construed as an indicator of the financial

attractiveness of a sector in a given country – and therefore the difficulty to acquire one of its

targets: the more profitable targets in a given country-sector pair are, the larger Ωijkl becomes, and

the smaller the probability for potential acquirers to out compete the rest of the world and achieve

a deal. Ωijkl is therefore a remoteness index comparable to that found in trade theory (Anderson,

2011). It plays in effect the role of a multi-lateral resistance (MLR) term in equation (5).8

Importantly, injecting equation (1) into (5), we get:

mijkl =
niknjl

∏
c

(
Xc,jl

Xc,ik

)βc

Ωijkl
(6)

In the case of sectoral energy prices, (6) implies that the number of deals is directly related to

the ratio of energy prices between the target and host countries, thus to the sectoral energy price

of the target country relative to that of the host country. A decrease (resp. increase) in this ratio

is thus expected to cause an increase (resp. decrease) in the number of deals observed between the

country pair considered. This result is intuitive: when energy prices in country j become cheaper

relative to those of country i, firms in country i are expected to be incentivized to invest in country

j.

3. Empirical strategy

Consider the following Poisson specification for the determination of bilateral transactions (6):

mijklt = exp
[
log nikt + log njlt +

∑
c

βc (log Xc,jlt − logXc,ikt) − log Ωijklt

]
+ εijklt (7)

The main challenge to estimate equation (7) is to adequately control for the multi-lateral re-

7Note that this model use the number of transactions to proxy for M&A activity, yet an improved measure is
the deal values. Unfortunately, data availability constraints prevent using M&A deal values as the outcome variable.
Nonetheless we rise to the challenge in Appendix C.

8The empirical trade literature has shown that it is necessary to account not only for bilateral trade resistance
(the barriers to trade between a pair of countries) but also multilateral trade resistance (the barriers to trade that a
country faces with all its trading partners).
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sistance term Ωijkl. As highlighted in the previous section, equation (6) yields a gravity model

including an MLR term, similar in its functional form to the structural gravity models commonly

used in the analysis of international trade flows (Anderson and van Wincoop, 2003). This allows us

to benefit from the recent advances achieved in the econometric estimation of this class of models.

In particular, Anderson and Yotov (2012) and Fally (2015) have shown that multilateral resis-

tance terms can be accounted for by an appropriately designed set of fixed effects. In our context,

where the number of deals is observed at the country-sector level repeatedly over time, it is possible

to specify a fixed effects structure consistent with structural gravity following Piermartini and Yotov

(2016):

mijklt = exp
[
log nikt + log njlt +

∑
c

βc (log Xc,jlt − logXc,ikt) + αij + ηikt + νjlt

]
+ εijklt (8)

In equation (8), αij capture time-invariant country-pair effects, while ηikt and νjlt are country-

sector-year fixed effects. However, under this specification, our coefficients of interest, the βc, are

not identifiable. Indeed the locational characteristics of the acquiring and target country-sector

pairs are collinear with ηikt and νjlt respectively9.

To overcome this difficulty, we relax the fixed effect structure to account for most of the con-

founding factors that may influence firms’ choice of investment location while maintaining the

identifiability of the βc. This is detailed below in section 3.1.

However, to ensure that our findings are not spurious, we complement this specification with

a robustness check implementing a second identification strategy. In Section 6.2, we follow the

approach suggested by Anderson and Yotov (2012) and Fally (2015), and regress our dependent

variables on the fixed effects structure consistent with structural gravity laid out in equation (8).

We then regress the country-sector-year fixed effects (ηikt and νjlt) recovered from this regression

on the locational characteristics Xc. This specification is described in section 6.2.

9This stems from the fact that our main regressors of interest, the logarithms of the ratios of locational charac-
teristics in the acquiring and target country-sectors, are not truly dyadic variables. Instead, these ratios result from
a linear combination – a difference – of two monadic variables: the log of the characteristics Xc, observed for the
acquiring and target firms.
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3.1. Main specification

In our main specification, we include country-pair, country-year and sectoral fixed effects.

Country-pair fixed effects account for the time invariant characteristics commonly considered in

gravity models, including but not limited to: distance, commonality of language or system of law,

colonial history. Since these factors do not form the focus of this study, identifying their individual

impact on investment activity is not relevant in our context.

Sectoral effects allow us to capture systematic differences in cross-border investment activity

between sectors. Such variation can be explained differences in market structure, technology or

specificities of the product manufactured. Country-time form the largest group of fixed effects

included. They account for the country-specific macroeconomic environment and any independent

variable which vary at the country-time granularity. This includes a number of factors identified

in the M&A literature to be correlated with the number of deals between two given countries,

irrespective of their market sizes (Di Giovanni, 2005), such as exchange rates or stocks valuation.

Importantly, country-time fixed effects control for production factor costs at the aggregate level

in the countries on both sides of the transaction: namely country-wide mean labor, capital and

energy costs. They also control for country-level policies that may influence investment decisions

in the manufacturing sector, such as cross-sectoral environmental policy. Further, country-time

fixed effects also encompass time fixed effects, which control for the highly cyclical nature of global

merger and acquisition flows (Erel et al., 2012).

This rich set of fixed effects allow us to control for confounding factors that may influence

firms’ choice of investment location other than our regressor of interest, relative energy costs, as is

common in the gravity literature (Head and Mayer, 2014; Arvis and Shepherd, 2013). Finally, we

also control for the existence of a free-trade agreement between a given country pair. We note that

in this specification, identification rests on within-country cross-sectoral energy price differences.

Estimating equation (9) requires an estimate of the number of potential acquiring and target

companies, nik and njl, in the countries and sectors considered. While some databases, notably

UNIDO’s INDSTAT, do provide this data for a number of countries, data availability remains poor
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10. To improve our geographical and temporal coverage, we follow Hijzen et al. (2008) and measure

the economic size of the acquiring and target sectors using their respective sectoral GDP in each

country.

In the reduced form profit function, we include our main regressor of interest, the ratio of energy

prices in the country-sector of the acquiring and target companies. The industry-wide cost of the

other main production factors, labor and capital, is accounted for by the country-time fixed effects.

Yet cross-sectoral differences in the cost of these two factors could also have an impact on firms’

investment decisions (Wheeler and Mody, 1992). We assess the robustness of our results to this

possibility in section 4.3.

Our final model specification is therefore:

mijkl,t = exp
[
β1 log GDPik,t + β2 log GDPjl,t + βe log eijkl,t+

β5 ftaij,t + α0,ij + α1,k + α2,l + α3,it + α4,jt

]
+ εijkl,t

(9)

where for each country-sector pair ik (acquirer) or jl (target), GDPik,t and GDPjl,t are the

sectoral GDP, ftaij,t is a dummy indicating the presence of a free-trade agreement concerning the

exchange of goods between countries i and j. Our main parameter of interest is βe, which captures

the impact of relative energy prices on investment activity between two country-sector pairs.

eijkl,t measures the ratio of energy prices between the acquiring and target country-sector pairs.

In our dataset, we also consider transactions in which a firm invests in a sector distinct from its

own main activity. However, when deciding the location of an investment in a given target sector

l, the investing firm is going to compare energy costs in this sector l across locations – including

its own domestic country. Between two given country-sector pairs, the relevant energy price ratio

should therefore be calculated between the energy cost in sector l in the target country and that

of the acquirer, regardless of the acquirer’s main sector of activity. For a transaction between

country-sector pairs ik and jl, we therefore consider the following log-ratio:

10Using INDSTAT2’s estimate of the number of companies by sector in lieu of sectoral GDP would decrease the
number of transactions included in our sample by around 25%.
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eijkl,t = log
(

Ejl,t

Eil,t

)
(10)

where E is our measure of sectoral energy costs in each country, as defined in section 4.

3.2. Estimator choice and computational feasibility

To keep the estimation computationally manageable, we aggregate the original sectoral break-

down, available in our dataset at the 4-digit SIC level, up to the 2-digit ISIC (revision 3.1) level,

distinguishing 22 sectors 11 (see list of included ISIC sectors summarized in Table B.2). Despite

this aggregation, our sample with 41 countries over a 20 year period yields more than 16 million

potential observations12. Data availability reduces this sample size to between 6 and 8 million

observations depending on the covariates included in the specifications estimated.

As is often the case in balanced bilateral trade datasets, most observations in the sample are

zeros. Failure to properly take these zero values into account would lead to biased estimates, which

rules out estimations by OLS on the log of our dependent variable. In their seminal contribution,

Silva and Tenreyro (2006) show that the best estimator in this context is Poisson Pseudo-Maximum

Likelihood (PPML) with heteroscedasticity-consistent standard errors, which can handle the poten-

tial overdispersion and consistently outperforms potential alternatives such as zero-inflated Poisson

or negative binomial. The panel nature of our dataset requires applying clustering to the standard

errors. We opt for the most conservative design by clustering at the country-sector pair level, which

is the unit of observation in our panel.

However, the size of the dataset makes a straight maximum likelihood estimation intractable.

Instead, we implement a custom estimator based on an iterated reweighted least square (IRLS)

implementation of the PPML estimator, extending Guimaraes (2016) two high dimensional fixed

effects PPML estimator to a large number of fixed effects. We further implement one-way and

multi-way clustering, building on Zylkin (2018). This estimator, which we describe in Appendix

D, makes the estimation of our model feasible in a reasonable amount of time on modern high

11Our dataset is restricted to the manufacturing sectors both on the acquirer and target sides. In particular,
acuqisitions by non-manufacturing firms are not included.

1241 origin countries × 41 target countries × 22 origin sectors × 22 destination sectors × 20 years = 16,272,080.
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performance hardware13.

4. Data

This paper combines a variety of data sources into a unique, global data set suitable for assessing

the link between energy price and M&A deals. Our ultimate sample includes a total of 69,979 deals

that occurred between 1995 to 2014 across 41 countries and in 22 manufacturing sectors (see Figure

1). Following the model presented in section 2, the sample includes both domestic and cross-border

deals, the latter accounting for 22,241 deals. This section describes the sources and structure of the

data.

4.1. The Mergers and Acquisitions dataset

M&A outcomes are obtained from the proprietary Thomson-Reuters Mergers and Acquisitions

database. This data is believed to be highly accurate, and the coverage of realized transactions is

close to complete14. It contains information on deals including transaction date, a set of variables

describing both acquiring and target companies such as country of origin and main 4-digit SIC

sector activity, as well as the nature of the deal. It does not include deals that were announced but

fell through.

We organize this dataset in several ways. The database categorizes deal types based on the

share of ownership. To create a measure of M&A transaction numbers, we restrict our sample to

deals where the acquirer fulfills any of the following criteria:

• full merger with the target company

• increase of its interest from below to above 50%

• acquisition of the remaining interest it does not already own 15

To complement this M&A category, we also consider a subset of deals labeled “Acquisition of

Assets”, whereby only a subset of a target company’s assets (pertaining to one of its division, branch

13All estimation results provided in this article were obtained on the London School of Economics’ Fabian high-
performance computing (HPC) cluster. Using our IRLS implementation of the PPML estimator described in Appendix
D, our main specification takes approximately one hour to estimate on a 24-core CPU equipped with 15 Go of RAM.

14In particular, it is used by the United Nation Conference on Trade and Development to compile its annual World
Investment Report (UNCTAD, 2018).

15These correspond respectively to the categories labeled “Merger”, “Acquisition of Majority Interest” and “Acqui-
sition of Remaining Interest” in the original Thomson-Reuters taxonomy.
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or even a single plant) is acquired. This category is of relevance to our inquiry, as it represents

a more specific case of cross-border investment location choices compared to measures of general

M&A. We present results estimated on this specific subset.

The year variable is taken from the deal announcement date, rather than completion date.

The announcement date corresponds to the first public statement by any of the involved parties

regarding the merger, acquisition or acquisition of assets considered. We deem this closer to the

relevant time period in which the acquirer obtains information on production factor costs. The

mean time to completion is under a month, and for the majority of the transactions observed, both

dates are identical.

Given the focus of our study, we restrict our sample to deals observed in the manufacturing

sector. As mentioned, for computational feasibility, deals are aggregated to the 2-digit (ISIC Rev

3.1) sector level16. One exception is the “Basic metals” sector (sector 27). This 2-digit sector

combines Iron and steel (2710) and Non-ferrous metals (2720) which are highly heterogeneous in

terms of energy mix, and therefore energy prices. Hence we retain this separation in our analysis17.

Table 1 provides an overview of our sectoral coverage and illustrates that about two-thirds of

M&A deals observed in the manufacturing sector occur between companies located within the same

country.

4.2. Energy prices

To assess the level of energy prices faced by firms, we exploit variations in the country and the

sector of the acquirer and the target. The energy price data by country-sector-year is therefore key

for our identification strategy. We obtain internationally comparable industrial energy price data

from Sato et al. (2019) in which a Fixed Energy Price Index (FEPI) is constructed for each country-

sector pair by weighting fuel prices for four carriers (oil, natural gas, coal and electricity) by the

16We do not consider ISIC sectors 36, Furniture; manufacturing n.e.c. due to the large heterogeneity of firms
included in that category, which makes it impractical to attribute a single corresponding energy price; and 37,
Recycling, due to an absence of transaction observed in our dataset.

17Energy consumption for iron and steel production is dominated by coal use, while non-ferrous metals, which
comprise mostly aluminum smelting in most countries, requires principally electricity. These two energy carriers
diverge in price significantly, and should not be conflated in our dataset. For the sake of completeness, we shall
add that these two sectors are complemented respectively by 2731, Casting of iron and steel, and 2732, Casting of
non-ferrous metals.
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Figure 1: Number of transactions in the manufacturing sector by acquiring and target country (1995-2014)
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Figure 2: Map of total transactions by acquiring firm location (1995-2014)

Figure 3: Map of total transactions by target firm location (1995-2014)
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Table 1: Number of transactions by manufacturing subsectors (1995-2014)

Manufacturing subsector Within-country Cross-border

Chemicals and chemical products 6,839 3,649
Food and beverages 5,657 2,224
Printing and publishing 4,673 998
Machinery and equipment n.e.c. 4,507 2,834
Medical, precision and optical instruments 2,652 1,265
Fabricated metal products 2,456 1,253
Rubber and plastics products 2,221 1,221
Coke,refined petroleum products,nuclear fuel 2,201 1,073
Basic metals 2,050 896
Non-metallic mineral products 1,980 1,082
Electrical machinery and apparatus 1,808 1,021
Radio,television and communication equipment 1,772 710
Motor vehicles, trailers, semi-trailers 1,620 1,000
Textiles 1,443 699
Paper and paper products 1,258 617
Furniture; manufacturing n.e.c. 1,063 424
Other transport equipment 942 358
Wearing apparel, fur 773 193
Wood products (excl. furniture) 750 236
Office, accounting and computing machinery 814 333
Leather, leather products and footwear 206 90
Tobacco products 53 65

consumption of each fuel type in that country-sector. The FEPI is available for 12 industrial sectors

in 32 OECD and 16 non-OECD countries between 1995 and 2014. The fixed-weight price index

is constructed for a given country i, sector k and year t, combination according to the following

equation:

FEPIikt =
∑

j

F j
ik∑

j F j
ik

· log(P j
it) =

∑
j

wj
ik · log(P j

it) (11)

where F j
ik are the input quantity of fuel type j in tons of oil equivalent (TOE) for sector k in

country i and P j
it denotes the real TOE price of fuel type j for total manufacturing in country i at

time t in constant 2010 USD. The prices P j
it are transformed into logs before applying the weights
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so that the log of the individual prices enter linearly in the equation18,19.

Figure 4: FEPI cross-sectoral variation (France, 1995-2014)
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The weights, wj
ik, applied to fuel prices are fixed over time. The use of fixed weights in this

index is particularly useful, as it alleviates the common endogeneity concern. That is, energy prices

can vary with the amount of energy consumed, hence the choice of fuel types is an endogenous firm

decision (Lovo et al., 2014). For example, technological change, fuel substitution or industry-specific

shocks on output demand could potentially affect the distribution of fuel consumption within sectors

and, ultimately, the sector-level energy prices (Linn, 2008). Using fixed weights in the FEPI allows

it to capture only energy price changes that come from variations in fuel prices, while ignoring

changes in the mix of fuel inputs. In our main results, we employ average weights corresponding to

the mean energy mix over the entire 1995-2014 period20.

Figure 4 plots the residuals of our energy price index by sector regressed on time fixed effects for

18Note that taking the exponential of the FEPI yields the weighted geometric mean of the different fuel prices, so
equation (11) is the log of the weighted geometric mean.

19The same methodology is employed in the construction of the country level index.
20Section 6.4 tests the robustness of the results to alternative definitions of fuel weights.
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France during our sample time period. It illustrates how the FEPI captures within-sector variation

in energy price over time, which drives our identification. We observe that energy prices have been

relatively volatile in energy intensive sectors such as Iron and Steel and Non-metallic minerals, while

prices have been more stable in sectors primarily based on electricity such as Machinery.

4.3. Other covariates

We complement energy prices with three additional sets of covariates. First, we approximate

the size of the potential pool of acquirer or target companies in a given country-sector pair using

sectoral industrial activity as measured by sectoral GDP. We obtain this data from the INDSTAT2

database provided by UNIDO, which reports the value added by ISIC Rev. 3.1 industrial sector

at the 2-digit level. As explained in section 4.1, we further disaggregate the value added of Basic

metals between Iron and steel and Non-ferrous metals using data from INDSTAT421, which provides

sectoral information on industrial subsectors at the 4-digit level of the ISIC 3.1 classification.

Table 2: Summary statistics

Transaction side Variable Mean Std. dev. 25th perc. Median 75th perc. Obs.

Bilateral Transactions 0.01 0.31 0.00 0.00 0.00 10,610,945
Energy price ratio 1.16 0.77 0.69 1.00 1.39 8,876,420

Acquirer

log GDP 21.84 2.55 20.45 21.77 23.07 10,610,945
Annual wage ($2010) 31,052 27,341 15,335 27,486 43,028 7,436,709
Labor cost-share 0.45 0.58 0.35 0.47 0.56 ”
Capital cost-share 0.19 0.96 0.09 0.14 0.20 ”

Target

log GDP 21.62 2.55 20.15 21.63 22.98 10,610,945
Annual wage ($2010) 27,138 33,559 8,786 22,556 39,077 7,459,882
Labor cost-share 0.45 0.54 0.34 0.46 0.56 ”
Capital cost-share 0.27 1.25 0.09 0.15 0.23 ”

Second, in order to control for sectoral variations in the cost of other production factors such

as labor and capital, we also collect in each sector the following variables: total wages and salaries,

employment and gross fixed capital formation. These variables are all collected in US dollars at

current market exchange rates. The robustness of our results to these covariates is discussed in

detail in section 4.3. Third, we also control for the existence of a free-trade agreement between each

country pair, obtained from the CEPII gravity dataset (CEPII, 2018).

21To maximize coverage, we use the average of the ratio between Iron and steel and Non-ferrous metals taken over
the period 1995-2014 for years in which this ratio is not observed.
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Table 2 presents summary statistics for the dependent and independent variables used in the

estimations.

5. Results

5.1. Main results

Table 3: Main results

All transactions Acquisition of assets

(1) (2) (3) (4)
Baseline Cross-border Baseline Cross-border

log eijkl,t -0.321∗∗∗ -0.295∗∗∗ -0.316∗∗∗ -0.289∗∗∗

(0.0949) (0.0947) (0.107) (0.108)

log GDPik,t 0.692∗∗∗ 0.686∗∗∗ 0.715∗∗∗ 0.696∗∗∗

(0.0519) (0.0230) (0.0594) (0.0249)

log GDPjl,t 0.668∗∗∗ 0.641∗∗∗ 0.690∗∗∗ 0.655∗∗∗

(0.0524) (0.0215) (0.0603) (0.0243)

FTA Yes Yes Yes Yes
Country-pair FE Yes Yes Yes Yes
Country-time FE Yes Yes Yes Yes
Sectoral FE Yes Yes Yes Yes

Pseudo-LL -227,099 -105,132 -162,877 -74,810
Deviance 196,604 139,291 151,232 103,132
Observations 8,250,030 7,922,200 7,513,020 7,186,030
Transactions 67,903 21,291 46,780 14,685
All results estimated with a Poisson Pseudo-Maximum Likelihood estimator. Stan-
dard errors in parentheses. All standard errors clustered by acquiring-target country-
sector pairs.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Our main results are shown in Table 3 and cover transactions over the period 1995 to 2014

and correspond to specification (9). We find evidence that relative industrial energy prices have an

impact on the choice of investment location for industrial firms. Column (1) shows the point estimate

for βe is -0.32, implying that a 10% increase in the relative industrial energy price differential between

two countries is expected to increase the number of acquisitions by 3.2%. Specifically, firms tend

to engage in more cross-border investments when their domestic energy prices increase in relative

terms against foreign prices.

Our theoretical model as specified in equation (6) encompasses all deals including domestic deals,
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yet we also estimate our main specification on the subset of our dataset restricted to cross-border

transactions only22. Results are reported in column (2) of Table 3. We confirm our main findings,

with a point estimate of -0.30, slightly below the estimate obtained on the entire sample.

The logarithm of GDP in both the acquirer and target countries have a positive effect on

investment activity. As expected from our gravity model, the number of transactions between a

pair of countries is proportional to the size of their economies. The coefficients on the acquirer and

target country’s GDP are of comparable magnitude, supporting the symmetry of their respective

contributions.

5.2. Heterogeneity across developed and emerging economies

The literature on the impact of relative production factor costs on FDI has focused on investment

flows originating in developed countries and targeting emerging economies (Arauzo-Carod et al.,

2010). The effect of relative energy prices we found above could stem mostly from that subset of

transactions. To test this hypothesis, we estimate how the impact of energy prices on investment

location decisions varies depending on whether the acquiring and target firms are based in an OECD

or non-OECD country. In practice, we interact our coefficient of interest βe with four indicator

variables corresponding to the four possible combinations of origin and target location, inside and

outside OECD member countries. Results are synthesized in Figure 5, and provided in full in Table

A.1.

We find that the impact of relative energy costs is twice as large (-0.69) as the sample mean when

a transaction occurs from an OECD-based firm to a non-OECD target. Interestingly, the effect on

transactions among OECD countries is weakly significant (p = 0.15), since the point estimate is

four times smaller (-0.17).

The estimates for the last two groups, which include transactions originating from non-OECD

countries, are much less robust since the corresponding number of observed transactions is very

22We report both the number of observations and the number of transactions observed. The former includes all
combinations of country-sector-year in which we observe our covariates but as mentioned, no transactions occurred
for most of these combinations. The latter reports the total number of transactions actually observed in the sample.
Hence, restricting the sample to cross-border transactions does not impact the sample size significantly, but it does
reduce the number of transactions observed by nearly 70%. This is coherent with the share of cross-border transactions
reported in section 4.1.
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Figure 5: Impact of relative energy prices as a function of OECD membership
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small (585 and 80 cross-border transactions respectively). Still, they also point towards a greater

sensitivity to energy costs in emerging economies.

Overall, our main results show that differences in energy price do affect investment decisions,

supporting the pollution haven effect. However, before settling on an interpretation of these es-

timates, we must subject them to further scrutiny and investigate challenges to the internal and

external validity of our results.

6. Robustness

6.1. Robustness to other production factor costs

Are our results driven by omitted variable bias? Previous analyses of the determinants of

firms’ cross-border investments decisions have found that labor and capital costs are two important

covariates (Erel et al., 2012). These are accounted for at the aggregate country-wide level in our main

specification by the inclusion of country-time fixed effects on both the acquirer and target sides.

However, it is possible that like energy costs, variations in labour and capital costs are sectorally

differentiated. We thus examine the robustness of our findings to the inclusion of sectoral measures

of labor and capital costs as possible confounding factors.
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We first consider labor. In keeping with our theoretical model, it may seem intuitive to compute

a ratio of sectoral unit labor costs between each country-sector pair, which can be defined as follows

(Ceglowski and Golub, 2012):

RULCijkl = wil

wjl

eP P P
ijl

eij
(12)

with wil = ailWil

pil
, ail = Lil

GDPil
, eP P P

ijl = pil

pjl

where Wil is the average annual wage in country i and sector l expressed in national currency,

pil the sectoral price index, Lil the sectoral labor employment, and ail the sectoral unit labor

requirement (the inverse of productivity). eij is the market exchange rate between countries i and

j. eP P P
ijl is the sectoral purchasing power parity exchange rate for sector l between countries i and

j.

Equation (12) implies that relative unit labor costs between two country-sector pairs depend on

relative sectoral labor productivity, relative sectoral real wages, and the ratio between the sectoral

PPP exchange rate and the aggregate market exchange rate. Yet bringing this equation to the data

raises a number of issues. First, its evaluation requires the availability of PPP exchange rates at

the sector level. Failing to capture differences in sectoral price levels across countries would bias

the RULC indicator. However, to our knowledge, these are not available at the level of coverage

required by our dataset23. Second, this indicator ignores the large heterogeneity of skills in the

workforce and cannot capture the differences in labor qualification across countries and sectors,

which could also be a source of bias when calculating a ratio of unit labor costs (Noorbakhsh et al.,

2001).

These difficulties highlight the well-known issues in estimating relative level of labor costs across

countries, particularly at the sectoral level (Arauzo-Carod et al., 2010). Instead, we resort to

alternative approaches commonly used in the comparative advantage and firm location literature to

account for sectoral differences in labor costs. Following Guimaraes et al. (2004) and Brülhart et al.

23The closest equivalent we found is the Groningen Growth and Development Center’s Productivity Level Database,
which provides a benchmark estimate of sectoral PPP for the year 2005 in a number of ISIC sectors at the 2-digit
level, for a subset of the countries included in our dataset.
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(2012), we first include the ratio of sectoral real annual wages to account for the gross difference in

labor costs:

wijkl = Wil/pm
i

Wjl/pm
j

(13)

We compute total annual wages at the sector level using total sectoral labor compensation in USD

at market exchange rate and sectoral employment provided by UNIDO’s INDSTAT2 database (see

section 4.3). Wages in equation (13) labor compensation are then deflated using manufacturing GDP

deflators (pm
i and pm

j ) computed from the World Bank’s World Development Indicator database24.

We then account for differences in labor productivity between sectors by complementing the

wage ratio with additional controls. Namely, we include the sectoral cost-shares of labor in value

added, on both sides of the transaction (Head and Ries, 1996; Chen and Moore, 2010). These cost

shares are computed by taking the ratio of total sectoral labor compensation and sectoral value

added.

We adopt a similar strategy to control for sectoral differences in capital costs, by including the

cost share of capital in value added. Capital cost shares are calculated by taking the ratio of sectoral

gross fixed capital formation and sectoral value added, also available in INDSTAT2.

Results of these robustness checks are presented in Table 4. In columns (1) and (2), we include

labor cost shares and wage ratio separately, before including both in column (3). We include both

labor and capital cost shares in column (4), and include the whole set of controls in column (5).

Overall, our estimate of βe is robust to the inclusion of sectoral variations in the cost of other

production factors. We also find that on average, the transactions we observe tend to favor labor

intensive sectors, but avoid capital intensive ones. This is reminiscent of the footloose hypothesis,

whereby the most capital intensive industries are also the least likely to be mobile (Ederington

et al., 2005). The smaller point estimate – between -0.24 and -0.27 – than in our baseline results is

explained by the restrictions placed by labor and capital cost data availability on our sample. More

specifically, INDSTAT2’s coverage is better in OECD countries, which increase the relative share of

24Except for China, where real manufacturing GDP is not available for the period we consider. We instead use the
aggregate GDP deflator.
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Table 4: Inclusion of other production factor costs

All transactions

(1) (2) (3) (4) (5)
Labor Wage Labor c.s. Labor c.s. Allcost-share ratio & wages & capital c.s.

log eijkl,t -0.272∗∗ -0.242∗∗ -0.263∗∗ -0.269∗∗ -0.261∗∗

(0.109) (0.110) (0.108) (0.109) (0.109)

log wijkl,t -0.283∗∗∗ -0.256∗∗∗ -0.246∗∗∗

(0.0800) (0.0810) (0.0806)

log GDPik,t 0.722∗∗∗ 0.722∗∗∗ 0.722∗∗∗ 0.723∗∗∗ 0.723∗∗∗

(0.0632) (0.0634) (0.0632) (0.0633) (0.0633)

log GDPjl,t 0.633∗∗∗ 0.668∗∗∗ 0.634∗∗∗ 0.634∗∗∗ 0.635∗∗∗

(0.0653) (0.0666) (0.0652) (0.0653) (0.0652)

Labor cost-share (acq.) -0.0333 -0.0145 -0.0706 -0.0495
(0.113) (0.114) (0.124) (0.124)

Labor cost-share (tar.) 0.512∗∗∗ 0.494∗∗∗ 0.571∗∗∗ 0.550∗∗∗

(0.124) (0.124) (0.129) (0.128)

Capital cost-share (acq.) 0.0360 0.0339
(0.0728) (0.0731)

Capital cost-share (tar.) -0.100∗ -0.0969∗

(0.0541) (0.0537)

FTA Yes Yes Yes Yes Yes
Country-pair FE Yes Yes Yes Yes Yes
Country-time FE Yes Yes Yes Yes Yes
Sectoral FE Yes Yes Yes Yes Yes

Pseudo-LL -147,186 -147,531 -147,167 -147,115 -147,097
Deviance 118,424 118,597 118,403 118,356 118,335
Observations 4,271,897 4,274,970 4,271,897 4,260,055 4,260,055
Transactions 46,737 46,737 46,737 46,737 46,737
All results estimated with a Poisson Pseudo-Maximum Likelihood estimator. Standard errors in paren-
theses. All standard errors clustered by acquiring-target country-sector pairs.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

within-OECD transactions in our sample. Given that transactions between firms based in developed

economies are less sensitive to relative energy prices, as evidenced in section 5.2, this biases our

estimate of βe downwards. We confirm this explanation by estimating our baseline regression on a

sample identical to that used in column (5), and find a point estimate of βe = −0.25 (see Table in

the Appendix).
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6.2. Robustness to controlling for multi-lateral resistance terms

As noted, an important challenge in these estimations is to adequately control for the multi-

lateral resistance term. To test the robustness of our results to this, we implement a second identi-

fication approach compatible with the fixed effect structure theoretically consistent with structural

gravity, as described in section 3. This identification strategy further offers the possibility to explore

the heterogeneity of relative energy price sensitivity across sectors, notably as a function of their

energy intensity as is demonstrated in section 7.1.

Identification strategy

Our model, as formulated in equation (6), is not identifiable by controlling for the multilateral

resistance terms through a fixed effect structure consistent with structural gravity. However, an

alternative estimation strategy can still allow us to indirectly recover the effect of relative energy

prices on investment location. In a first step, we project our dependent variable – investment

activity as measured by the number of deals observed – on the fixed effect structure described in

equation (8). Thus, we first estimate (14) using PPML:

mijklt = exp [αij + ηikt + νjlt] + εijklt (14)

We then recover the estimated ηikt and νjlt, and use them as dependent variables in second-step

linear regressions that include the locational characteristics Xc of the acquirer and the target. We

estimate both equations jointly as Seemingly Unrelated Regressions (SUR):

ηikt = γacq
1 log GDPik,t + γacq

e log Eil,t + ϵacq
ikt

νjlt = γtar
1 log GDPjl,t + γtar

e log Ejl,t + ϵtar
jlt

(15)

While this procedure does not estimate the impact of relative production factors costs directly,

it offers a number of interesting possibilities. First, γ̂tar
e − γ̂acq

e still provides an estimate of the

effect of the difference in energy costs between target and acquirer. The use of SUR allows us to

derive confidence intervals for our point estimates using the delta method25 (Hoef, 2012). Based

25The size of our dataset makes it impractical to implement the bootstrap.
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on our theoretical model, we therefore expect γ̂tar
e < γ̂acq

e if acquirers are attracted to invest in

country-sectors where production costs are lower.

Second, our main specification’s reliance on cross-sectoral energy costs variance to drive iden-

tification rules out estimating βe by sector, even though exploring sectoral heterogeneity would be

of interest in our inquiry. This second procedure suffers no such limitation. Since the fixed effects

structure in equation (14) is orthogonal by construction, it is possible to estimate (15) separately

for distinct groups of sectors. This allows us to examine the heterogeneity of the energy price effect,

which we perform in section 7.1.

Estimation results

We now implement the procedure laid out in equations (15) and present the results. Table 5

reports the regression of sectoral GDP and sectoral energy price indices on country-sector-year fixed

effects. These fixed effects are estimated in a first stage PPML estimation, both on the acquirer

and target side, as laid out in subsection 6.2. We then stack them and regress them in a single SUR

estimation as discussed above on the locational characteristics of the acquirer and target firms.

Table 5: Regression on acquirer and target country-sector-year fixed effects

(1) (2)
Baseline Cross-border

log FEPIik,t 0.110∗∗∗ 0.118∗∗∗

(0.008) (0.009)
log FEPIjl,t -0.138∗∗∗ -0.155∗∗∗

(0.008) (0.008)
log GDPik,t 0.689∗∗∗ 0.677∗∗∗

(0.002) (0.002)
log GDPjl,t 0.776∗∗∗ 0.769∗∗∗

(0.002) (0.002)

βe -0.249∗∗∗ -0.273∗∗∗

(0.009) (0.010)

R2 0.08 0.08
Observations 17,980,815 17,325,155
Transactions 69,912 69,912
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Our results are consistent with our theoretical predictions and with our previous results. We
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find that the projection of investment activity on country-sector-year fixed effects is negatively

correlated with the energy price at the target destination. This strengthens our main finding, by

supporting that firms do take into account production factor costs when deciding on the location

of their investments, and that they are attracted to low energy costs destinations.

The point estimate for the impact of relative energy prices, which we note βe ≡ γ̂tar
e − γ̂acq

e ,

is remarkably similar to the one we obtain in our main identification strategy in column (1) of

Table 3. It is however substantially smaller when controlling for labor costs, while remaining highly

significant. This may again be biased by measurement error in our estimate of sectoral unit labor

costs. This discrepancy is reduced when restricting the sample to cross-border deals only.

6.3. Time lags

A further area of concern for potential endogeneity is our use of current-period energy prices

in both acquirer and target countries. Indeed, cross-border investments may result in an increase

of activity in countries on the receiving end of foreign investments while potentially reducing it on

the acquiring side. This in turn would impact energy demand, and therefore energy prices, on both

sides of any given deal – yielding a source of endogeneity between cross-border activity and energy

prices. We control for this by using the one-year lag of energy prices in specification (9):

mijkl,t = exp
[
β1 log GDPik,t + β2 log GDPjl,t + βe log eijkl,t−1+

β5 ftaij,t + α0,ij + α1,k + α2,l + α3,it + α4,jt

]
+ εijkl,t

(16)

Besides, we have considered so far that firms react to changes in energy prices very rapidly,

within a one-year window. Yet, analysis of economic actors’ response to exogenous price or policy

signals in the trade literature has revealed that they may in fact adjust their reaction over a multiple

year period (Head and Mayer, 2014). Industrial firms’ decision process in choosing the location of

their investments may follow the same temporality. To test against this possibility, we follow Hijzen

et al. (2008) and aggregate our dataset over two, three and four-year intervals by taking the mean

of the dependent variable and of each regressor over the interval considered:

26While the number of observations is reduced by the aggregation procedure, the sample covered is identical in
columns (2)-(4).
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Table 6: Robustness to time lag26

(1) (2) (3) (4)
1-year lag 2-year averages 3-year averages 4-year averages

log eijkl,t−1 -0.307∗∗∗

(0.0942)
log eijkl,t -0.338∗∗∗ -0.307∗∗∗ -0.324∗∗∗

(0.0944) (0.0945) (0.0967)
log GDPik,t 0.688∗∗∗ 0.699∗∗∗ 0.678∗∗∗ 0.689∗∗∗

(0.0517) (0.0514) (0.0496) (0.0501)
log GDPjl,t 0.666∗∗∗ 0.675∗∗∗ 0.658∗∗∗ 0.672∗∗∗

(0.0523) (0.0518) (0.0503) (0.0507)

FTA Yes Yes Yes Yes
Country-pair FE Yes Yes Yes Yes
Country-time FE Yes Yes Yes Yes
Sectoral FE Yes Yes Yes Yes

Pseudo-LL -223,279 -111,840 -70,077 -52,826
Deviance 191,885 144,473 113,661 96,011
Observations 7,773,922 4,118,580 2,605,890 1,976,266
Transactions 66,611 67,903 67,903 67,903
All results estimated with a Poisson Pseudo-Maximum Likelihood estimator. Standard errors in
parentheses. All standard errors clustered by acquiring-target country-sector pairs.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

xτ
t =

t+τ−1∑
t′=t

xt′

τ
, with τ ∈ {2, 3, 4}, x ∈ {mijkl, GDPik, GDPjl, eijkl} (17)

The results of these robustness checks are presented in Table 6. We find that our estimate of

βe is remarkably similar across specifications, varying between -0.35 and -0.31. This is statistically

indistinguishable from our main estimate of -0.32. Firms’ response to relative energy prices thus

appear consistent in both the short and long-run, which strengthens the validity of our static model.

6.4. Alternative energy price index

Our findings in section 5 hinge on the energy price index used to measure sectoral energy costs

in each country represented in our dataset. As discussed in section 4.2 we use fixed weights in our

weighted energy price index to mitigate the risk of endogeneity.

In this section, we test another alternative energy price index introduced in Sato et al. (2019):

the variable-weight energy price level (VEPL). This latter measure of sectoral energy prices departs

from the FEPI by weighting the price of each energy carrier using the actual energy mix observed
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in each year – hence yielding a variable-weight indicator. Further, energy prices are observed at

current market exchange rates while the FEPI used in our main dataset is constructed from energy

prices measured in constant 2010 USD.

Table 7: Main results using the VEPL energy price index

All transactions Acquisition of assets

(1) (2) (3) (4)
Baseline Cross-border Baseline Cross-border

log eV EP L
ijkl,t -0.214∗∗ -0.178∗ -0.218∗ -0.177

(0.107) (0.106) (0.122) (0.119)

log GDPik,t 0.685∗∗∗ 0.685∗∗∗ 0.709∗∗∗ 0.692∗∗∗

(0.0559) (0.0258) (0.0639) (0.0279)

log GDPjl,t 0.663∗∗∗ 0.641∗∗∗ 0.687∗∗∗ 0.655∗∗∗

(0.0563) (0.0238) (0.0647) (0.0268)

FTA Yes Yes Yes Yes
Country-pair FE Yes Yes Yes Yes
Country-time FE Yes Yes Yes Yes
Sectoral FE Yes Yes Yes Yes

Pseudo-LL -207,117 -91,772 -149,583 -65,693
Deviance 172,371 120,027 134,048 89,658
Observations 6,291,857 6,014,498 5,799,762 5,523,243
Transactions 63,681 19,039 44,131 13,204
All results estimated with a Poisson Pseudo-Maximum Likelihood estimator. Stan-
dard errors in parentheses. All standard errors clustered by acquiring-target country-
sector pairs.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

As described in section 4.2, the VEPL suffers by construction from the endogeneity and it

captures both changes to prices and fuel mix. As we know that sectors switch fuels in response to

prices, this suggests that using VEPL instead of FEPI would underestimate the effect of relative

energy prices. Indeed as shown in Table 7, the estimated βe appears a third smaller, at -0.19 in

the main specification. The point estimates of βe are also less well identified which may be due to

the reduced data availability of the VEPL indicator, which requires an observation of the sectoral

energy mixes for every single year. This is evidenced by the size of the total sample, smaller by a

quarter when using VEPL rather than our main FEPI index. Even then, the magnitude and sign

of the βe estimated using VEPL remain consistent with our main results.
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6.5. Further robustness tests

While the geographical coverage of our dataset accounts for most of the world’s economy, some

countries are more represented than others – both as a consequence of their economic size and

the degree of their integration in the global economy. The top five countries on the receiving end

of transactions include the United States (30% of all transactions observed), the United Kingdom

(9%), Germany (8%), France (6%) and Japan (5%). The ranking and the proportions are similar

on the acquiring side.

To ensure that our results are not driven by any single one of these nations, we remove each

country separately from the dataset (both on the acquiring and target sides) and re-estimate our

baseline model. Results are presented in Table A.3. They support our main findings, with a very

consistent estimate of βe comprised between -0.30 and -0.35.

7. Extensions

7.1. Heterogeneity across sectors

Theory predicts that the effect of energy price on foreign investment decisions is more pronounced

in energy intensive sectors where energy costs represent a higher share of overall production costs,

and this is broadly supported by related empirical papers (e.g. Panhans et al. (2016), Aldy and Pizer

(2015) and Sato and Dechezleprêtre (2015)). Here we evaluate whether energy-intensive sectors are

more sensitive to relative energy prices when making investment location decisions, using our second

estimation strategy, equation (14).

Specifically we delineate groups of sectors defined by their energy intensity and estimate equation

(15) for each group. This aggregation of sectors helps to preserve a sufficient number of observed

transactions in each group. Given our emphasis on energy prices, we estimate energy intensity

through the share of energy costs in the total real output of each sector as measured by value

added. Energy use data is obtained from the IEA, which is then combined with our energy price

index and UNIDO’s sectoral value added to yield our energy intensity indicator. The mean energy

intensity of each sector over our entire sample is presented in Figure 6.

We distinguish three groups: low energy intensity, corresponding to an energy cost share of less

than 1.5%; medium intensity, between 1.5% and 4%; and high intensity, above 4%. The cutoffs have
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Figure 6: Mean cost-share of energy by sector (All countries, 1995-2014)
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been chosen to balance the three groups, regarding both the number of sectors and the number of

transactions observed in each group. After estimating equation (15) in each intensity group, we

compute an estimate of βe = γ̂tar − γ̂acq. The results are presented in Figure 7. In complement,

full results are provided in Table A.4.

Figure 7: Impact of relative energy prices as a function of sectoral energy intensity
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We find significant heterogeneity in the impact of relative energy prices on investment activity,

with estimates for βe ranging from -0.95 to 0.19. It shows sectoral sensitivity to relative energy

prices grows with energy intensity, in line with intuition and previous findings in the literature (e.g.

Panhans et al. (2016)). Interestingly, we find a positive effect on non-energy intensive sectors albeit

small in magnitude. Following similar empirical findings (e.g. Ben Kheder and Zugravu (2012))

a number of theoretical papers 27 offer possible rationale. For example, cross border investments

in non-energy intensive sectors may be more aligned with local-market oriented FDI rather than

export-oriented FDI, the former being less sensitive to environmental regulation (Tang, 2015). Ad-

ditionally, if acquiring firms have more energy efficient technologies, they have a cost advantage to

domestic firms in host country (Dijkstra et al., 2011).

7.2. Policy simulation

Our findings broadly support the pollution haven effect. However, are the effects economically

important? To provide a better understanding of the magnitude of potential effects, we perform a

number of counterfactual simulations using the model of M&A transactions introduced in section 2

and the parameters estimates obtained in section 5. More specifically, we simulate the implemen-

tation of a carbon tax of $50/tCO2 in three different policy scenarios:

• The European Union implements the carbon tax unilaterally

• EU and OECD member countries, except the United States, implement the carbon tax

• All countries in our sample implement the carbon tax

This choice of scenarios illustrates various degrees of increasing international collaboration, from

complete isolation of the EU in the first variant to a globally coordinated carbon tax implementation

in the third scenario. We consider the United States separately in the second scenario to reflect the

recent decision of the US government to pull out of the Paris Agreement28. Note that in all variants,

we consider the gross impact in the absence of any compensatory policies such as free allocation

in emissions trading or border carbon adjustment (Morris, 2018). These measures would limit the

impacts we describe here.

27See Cole et al. (2017) for a recent summary.
28‘Donald Trump confirms US will quit Paris climate agreement’, The Guardian, June 1st, 2017
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To simulate the impact of a carbon tax, we first consider a cross-section as the basis for our

conterfactual experiment. We choose the year 2010, which offers the widest coverage among recent

years in our dataset. We then use the carbon content of each fossil energy carrier – coal, oil and

natural gas – to calculate the equivalent increase in price that results from the carbon tax. This step

modifies relative energy prices in all pairs of country-sectors in which a country that implemented

the tax appears.

We then estimate the impact on investment activity by applying our model of investment lo-

cation, equation (6), to the new relative energy prices calculated above and the parameters we

estimated in section 5. In order to provide a more faithful assessment of cross-border impacts, we

use the geographically heterogeneous estimates of βe obtained in section 5.2.

By denoting with a star the counterfactual number of transactions, relative energy prices and

multi-lateral resistance terms impacted by carbon taxation, the relative impact on investment ac-

tivity can be estimated as follows:

m∗
ijkl

mijkl
=
(

e∗
ijkl

eijkl

)βe,ij Ωijkl

Ω∗
ijkl

(18)

where βe,ij takes one of the four values estimated in section 5.2 based on countries i and j’s

OECD membership status.

Note that in equation (18), we take into account the fact that changing relative energy prices

in a subset of countries modifies the multi-lateral resistance terms Ωijkl for the entire dataset. The

implementation of a carbon tax in country j thus affects investments received from another country

i through the direct modification of relative energy costs between the two countries, but also through

the change in the attractiveness of j against all other countries, as measured by Ωijkl.

This is in contrast with a simpler approach, which would only consider the direct impacts

resulting from the change in bilateral relative energy costs – term
(

e∗
ijkl

eijkl

)βe,ij

in equation (18). By

analogy with the structural gravity literature, this simpler method would yield partial equilibrium

effects, while the approach adopted in equation (18) is equivalent to what Yotov et al. (2013) label

conditional equilibrium effects.

Yet, it should be emphasized that neither approaches yield general equilibrium effects. In
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particular, we cannot consider in our framework the impact of the carbon tax on sectoral and

aggregate economic activity, nor on firm entry and exit. Taking into account the consequences

of reduced foreign investments on domestic activity would reduce the relative attractiveness of

countries that implement a carbon tax even more, further increasing the negative impact of the tax

on investment inflows. The following results thus only set lower bounds on the true magnitude of

the effects. The detailed analysis of these general equilibrium aspects is left to future inquiries.

Table 8: Impacts of the implementation of a $50/tCO2 carbon tax on the number of domestic firms acquired

EU-only EU and OECD Allwithout the US

United States 1.0% 2.2% -3.0%
European Union -3.7% -2.6% 0.9%
Japan 1.0% -2.4% 1.1%
BRICS 1.0% 2.2% -29.3%
Other OECD 1.0% -3.9% -0.5%
Other non-OECD 1.0% -0.5% -8.2%

We perform the simulation by first computing the increase in fossil energy prices resulting from

the carbon tax in countries that implement it. We then compute an updated set of Ω∗
ijkl using

our carbon tax augmented energy prices29. As is the case in the estimation of the model, the

computation of Ω∗
ijkl makes use of sectoral GDP in lieu of the number of firms. We finally apply

equation (18) to obtain the impact of the carbon tax on the number of cross-border transactions.

We consider the impact of the three scenarios outlined above on the number of acquisitions

– which corresponds to FDI inflows – relative to the baseline. Hence, a reported -5% in a given

country implies that 5% fewer industrial firms would be acquired in that country as a result of the

carbon tax.

Results are presented by regional aggregates in Table 8, and at the country level in Figures 8

through 10. Aggregate effects at the country or regional levels are obtained as the mean of sectoral

29The calculation of Ωijkl requires information on both the acquiring and target sides. The reference cross-section
includes more than 700,000 observations. Computing the multi-lateral resistance terms thus involves calculations on a
700,000 × 700,000 matrix, which is impractical on commodity hardware. The algorithm was therefore implemented on
high-performance Nvidia Tesla V100 GPU using the Google Compute Engine. This custom implementation brought
down the runtime to compute a single set of Ωijkl from 19 hours to a more manageable 30 min, thereby making the
present simulations feasible.
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Figure 8: Implementation of a $50/tCO2 carbon tax by the EU only
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Figure 9: Implementation of a $50/tCO2 carbon tax by EU and OECD countries except the U.S.
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Figure 10: Implementation of a $50/tCO2 carbon tax by all countries
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Note: Impact on the number of firms acquired in relative terms against a 2010 baseline. For example, an impact of
-5% in a given country implies that 5% fewer industrial firms would be acquired in that country as a result of the
carbon tax.
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impacts weighted by sectoral GDP. In complement, detailed estimates at the country level are

provided in Table A.3.

As expected, we find that the first scenario decreases the attractiveness of EU’s industrial firms,

leading to a 3.7% reduction in the expected number of firms acquired. Symmetrically, other regions

experience a 1% increase in the number of their expected inbound transactions. The effect is

homogeneous in all regions outside of the EU as a result of the conditional equilibrium approach

adopted. The positive effect on each country’s relative attractiveness is averaged into an aggregate

impact by the adjustments in the multi-lateral resistance terms. The effect is heterogeneous across

the EU, due to variation in energy mix: the impact ranges from -0.8% in Sweden to -16.1% in

Bulgaria. In this latter case, the effect is magnified by the larger sensitivity to energy prices we

apply to non-OECD member countries.

In the second scenario, coordination of the EU with all other developed countries – except the

US – reduces the negative impacts sustained in Europe to -2.4%. However, we find in the third

scenario that implementing a uniform $50/tCO2 globally would very negatively impact China, India,

Russia, and South Africa, with impacts comprised between -20% and -42%. This is expected from

the carbon intensity of their economy – in particular, the share of fossil fuels in their electricity

mix was comprised between 70% and 95% in 2010 – and the higher contribution of energy-intensive

activities to their industrial sector. The effect is again compounded by the greater sensitivity of

non-OECD countries to relative energy prices.

By contrast with the first scenario, a global carbon tax would actually make European countries

more attractive to foreign investors, with countries such as Norway or Sweden experiencing increases

in the number of acquisitions of 4.2% and 3.9% respectively.

8. Conclusion

Concerns about the potential competitive disadvantages associated with high carbon prices

contribute to the failure to implement necessary levels of carbon pricing (Stern and Stiglitz, 2017).

These fears are magnified by trends in globalization, which has enhanced economic integration and

increased cross-border investment activity.

In this paper, we address this issue using an identification strategy driven by exogenous variations
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in industrial energy prices at the sector level. Building on the application of discrete choice theory to

the firm location problem, we specify a conditional logit model linking bilateral investment activity

to relative energy prices. We estimate this model by combining a rich firm level dataset of 70,000

M&A transactions covering 41 countries between 1995 and 2014 with a dataset on industry level

energy prices. This represents the first analysis in a global context to focus on the role of relative

energy prices as possible determinants of cross border investments.

As predicted by our theoretical model, we find evidence that relative industrial energy prices have

an impact on industrial foreign investment location, which broadly supports the pollution haven

effect. Specifically, firms tend to engage in more cross-border investments when their domestic

energy prices increase in relative terms against foreign prices. Our preferred specification suggests

that an increase of 10% in the relative industrial energy price differential between two countries

is expected to increase by 3.2% the number of acquisitions of firms or assets located in the lower

energy price country by firms based in the more expensive country.

We also find evidence of heterogeneity in the effect of relative energy prices across countries

and sectors. We find that the impact of relative energy costs on investment location is four times

larger for transactions targeting non-OECD countries than for those targeting OECD countries. In

addition, we find that the effect is heterogeneous across sectors, and grows with sectoral energy

intensity.

To assess the magnitude of the impact of relative energy price differentials on inbound indus-

trial investment flows, we conduct counterfactual simulations of the implementation of a $50/tCO2

carbon price by three different coalitions of countries. We find that unilateral implementation by de-

veloped economies would have a limited negative impact on their attractiveness to foreign industrial

investments.

These results support the argument for better targeting leakage prevention measures to comple-

ment carbon pricing for energy-intensive industrial activities. Our results indicate that the expected

adverse impacts on leakage and competitiveness are likely to be limited in sectoral scope and mag-

nitude. Currently, excess allocation of free allowances is prevalent in carbon emissions trading

systems across the world (e.g. California, European Union, New Zealand, South Korea and the
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Chinese pilot schemes). In Europe, compensation is also granted to electricity-intensive sectors for

the indirect emissions costs in electricity prices. These measures should instead focus on the most

energy-intensive sectors.

Our analysis can be extended in several directions. The dataset could be augmented with more

comprehensive data on the value of the transactions observed, to improve the quantification of the

effect. Alternatively, an analysis focused on the subset of the transactions involving listed com-

panies, for which relevant covariates at the firm level are publicly available, could be conducted.

Additionally, the model developed in this paper provides a basis for the calibration of border carbon

adjustments that would cancel out the negative impacts of unilateral carbon pricing on the attrac-

tiveness to foreign industrial investments. It could be further extended to a full structural gravity

model, which would allow the estimation of general equilibrium effect of relative energy prices on

industrial investment location. This and other extensions are left for future research.
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Appendix A Complementary results

Table A.1: Impact of relative energy prices as a function of OECD membership

All transactions

(1) (2) (3) (4)
OECD to OECD to Non-OECD to Non-OECD to

OECD non-OECD OECD non-OECD

log eijkl,t -0.172 -0.689∗∗∗ -0.496∗∗ -0.843∗∗

(0.120) (0.160) (0.228) (0.345)

log GDPik,t 0.692∗∗∗

(0.0519)

log GDPjl,t 0.670∗∗∗

(0.0526)

FTA Yes
Country-pair FE Yes
Country-time FE Yes
Sectoral FE Yes

Pseudo-LL -227,076
Deviance 196,570
Observations 5,992,902 1,545,829 1,021,245 316,444
Transactions 60,626 2,331 585 4,361
Cross-border transactions 18,295 2,331 585 80
All results estimated with a Poisson Pseudo-Maximum Likelihood estimator. Standard errors in
parentheses. All standard errors clustered by acquiring-target country-sector pairs.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.2: Baseline regression estimated on the subsample where labor and capital costs are observed

All transactions

Baseline

log eijkl,t -0.251∗∗

(0.110)

log GDPik,t 0.722∗∗∗

(0.0634)

log GDPjl,t 0.666∗∗∗

(0.0667)

FTA Yes
Country-pair FE Yes
Country-time FE Yes
Sectoral FE Yes

Pseudo-LL -147,555
Deviance 118,622
Observations 4,274,970
Transactions 46,737
All results estimated with a Poisson
Pseudo-Maximum Likelihood estimator.
Standard errors in parentheses. All stan-
dard errors clustered by acquiring-target
country-sector pairs.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.3: Robustness to the removal of the most represented countries in the dataset

All transactions

(1) (2) (3) (4) (5)
Without Without Without Without Without
the US the UK Germany France Japan

log eijkl,t -0.352∗∗∗ -0.346∗∗∗ -0.305∗∗∗ -0.299∗∗∗ -0.328∗∗∗

(0.0791) (0.104) (0.101) (0.100) (0.103)

log GDPik,t 0.723∗∗∗ 0.680∗∗∗ 0.690∗∗∗ 0.691∗∗∗ 0.705∗∗∗

(0.0381) (0.0564) (0.0570) (0.0550) (0.0541)

log GDPjl,t 0.689∗∗∗ 0.654∗∗∗ 0.667∗∗∗ 0.669∗∗∗ 0.677∗∗∗

(0.0390) (0.0567) (0.0577) (0.0556) (0.0545)

FTA Yes Yes Yes Yes Yes
Country-pair FE Yes Yes Yes Yes Yes
Country-time FE Yes Yes Yes Yes Yes
Sectoral FE Yes Yes Yes Yes Yes

Pseudo-LL -158,339 -199,200 -196,681 -204,864 -213,622
Deviance 157,649 170,795 166,623 173,192 185,778
Observations 7,697,720 7,633,199 7,606,422 7,665,916 7,795,597
Transactions 41,943 59,929 59,778 62,342 63,547
All results estimated with a Poisson Pseudo-Maximum Likelihood estimator. Standard
errors in parentheses. All standard errors clustered by acquiring-target country-sector
pairs.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.4: Impact of relative energy prices as a function of sectoral energy intensity

Sectoral energy intensity

(1) (2) (3)
Low Medium High

log FEPIik,t -0.429∗∗∗ 0.740∗∗∗ 0.237∗∗∗

(0.012) (0.016) (0.017)
log FEPIjl,t -0.234∗∗∗ 0.390∗∗∗ -0.715∗∗∗

(0.010) (0.016) (0.016)
log GDPik,t 0.654∗∗∗ 0.732∗∗∗ 0.685∗∗∗

(0.003) (0.004) (0.005)
log GDPjl,t 0.665∗∗∗ 0.799∗∗∗ 0.937∗∗∗

(0.003) (0.005) (0.004)

βe 0.195∗∗∗ -0.350∗∗∗ -0.952∗∗∗

(0.013) (0.018) (0.019)

N 8,054,834 5,897,748 4,028,233
R2 0.10 0.08 0.09
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.5: Counterfactual simulation results by country

EU-only EU and OECD Allwithout the US

Australia 1.0% -6.2% -2.9%
Austria -3.5% -2.3% 1.2%
Belgium -3.0% -1.8% 1.7%
Brazil 1.0% 2.2% -1.6%
Bulgaria -16.2% -15.2% -12.1%
Canada 1.0% -3.4% 0.0%
China 1.0% 2.2% -36.6%
Cyprus -6.5% -5.4% -2.0%
Czechia -5.9% -4.8% -1.4%
Denmark -2.4% -1.3% 2.3%
Estonia -7.5% -6.4% -3.1%
Finland -3.1% -1.9% 1.6%
France -2.5% -1.4% 2.1%
Germany -4.0% -2.9% 0.6%
Greece -5.3% -4.2% -0.8%
Hungary -2.5% -1.4% 2.2%
India 1.0% 2.2% -15.9%
Indonesia 1.0% 2.2% -8.0%
Ireland -3.1% -2.0% 1.5%
Italy -2.1% -1.0% 2.6%
Japan 1.0% -2.4% 1.1%
Kazakhstan 1.0% 2.2% -43.1%
Lithuania -7.9% -6.8% -3.4%
Luxembourg -3.1% -2.0% 1.5%
Mexico 1.0% -2.7% 0.8%
Netherlands -3.8% -2.7% 0.8%
New Zealand 1.0% -4.3% -0.9%
Norway 1.0% 0.6% 4.2%
Poland -8.8% -7.7% -4.4%
Portugal -2.9% -1.7% 1.8%
Romania -16.0% -15.0% -11.9%
Russia 1.0% 2.2% -20.8%
Slovakia -3.7% -2.6% 0.9%
Slovenia -2.8% -1.6% 1.9%
South Africa 1.0% 2.2% -41.8%
South Korea 1.0% -5.4% -2.0%
Spain -3.6% -2.5% 1.0%
Sweden -0.8% 0.3% 3.9%
Switzerland 1.0% 0.2% 3.8%
Taiwan 1.0% 2.2% -17.8%
Turkey 1.0% -3.4% 0.1%
United Kingdom -4.6% -3.4% 0.0%
United States 1.0% 2.2% -3.0%
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Appendix B Sectoral classifications

Table B.1: IEA sectors definitions

IEA ISIC rev. 4

Iron and steel 241, 2431

Chemical and petrochemical 20, 21

Non-ferrous metals 242, 2432

Non-metallic minerals 23

Transport equipment 29, 30

Machinery 25, 26, 27, 28

Mining and quarrying 07, 08, 099

Food, beverages and tobacco 10, 11, 12

Paper, pulp and printing 17, 18

Wood and wood products 16

Construction 41, 42, 43

Textile and leather 13, 14, 15

Industry 22, 31, 32
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Table B.2: Correspondence between ISIC 3.1 and IEA sectors

ISIC 3.1 Code ISIC 3.1 Name IEA Sector

15 Food and beverages Food and tobacco
16 Tobacco products Food and tobacco
17 Textiles Textile and leather
18 Wearing apparel, fur Textile and leather
19 Leather, leather products and footwear Textile and leather
20 Wood products (excl. furniture) Wood and wood products
21 Paper and paper products Paper, pulp and print
22 Printing and publishing Paper, pulp and print
23 Coke,refined petroleum products,nuclear fuel Chemical and petrochemical
24 Chemicals and chemical products Chemical and petrochemical
25 Rubber and plastics products Manufacturing
26 Non-metallic mineral products Non-metallic minerals

2710 Iron and steel Iron and steel
2720 Non-ferrous metals Non-ferrous metals
28 Fabricated metal products Machinery
29 Machinery and equipment n.e.c. Machinery
30 Office, accounting and computing machinery Machinery
31 Electrical machinery and apparatus Machinery
32 Radio,television and communication equipment Machinery
33 Medical, precision and optical instruments Machinery
34 Motor vehicles, trailers, semi-trailers Transport equipment
35 Other transport equipment Transport equipment
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Appendix C Transactions value

In section 2, we model the number of transactions expected between two country-sector pairs

as a function of relative energy prices. Yet a natural extension to our analysis would be to move

beyond the number of transactions and gather data on the value of the mergers and acquisitions.

Regressing this as the dependent variable would enable testing if energy prices also affect cross-

border investment volumes in terms of transaction value.

Unfortunately, the deal value is reported for less than 40% of the transactions observed in

our dataset. Besides, the level of coverage is highly heterogeneous as a function of the ownership

structure of the acquiring and target firms (see Table C.1). Firms acquiring privately held companies

are under no obligation to reveal the value of their acquisitions. As a consequence, we observe

transaction value between two private companies, or between a public acquirer and a privately

held target in only 22% and 49% of cases respectively – while these two categories account for a

combined 88% of our entire dataset. Our database only provides transaction value consistently

for deals occurring between publicly listed companies, yet they account for less than 10% of the

transactions we observe.

Previous applications of the Thomson-Reuters M&A dataset to other research questions have

also recognized this issue by favoring a count model approach in most cases (Hijzen et al., 2008;

Feito-Ruiz and Menéndez-Requejo, 2011; Dowling and Aribi, 2013).

Table C.1: Transaction values coverage

Firm ownership Share of Share of transaction values

Acquirer Target all transactions observed within category

Private Private 47% 22%
Public Private 41% 49%
Private Public 3% 64%
Public Public 9% 84%

Despite these severe limitations, we apply our model to the transaction value data available in

our dataset as an exploratory analysis. Results are reported in Table C.2. We find the expected

sign for βe. The magnitude of the estimate is larger on all transactions (-0.44 vs -0.32), but smaller

on acquisition of assets (-0.18 vs -0.32). However, in all cases the point estimates of βe fail to reach
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statistical significance. More extensive data on transaction values will be needed to confirm these

preliminary findings.

Table C.2: Main results using the values of transactions

All transactions Acquisition of assets

(1) (2) (3) (4)
Baseline Cross-border Baseline Cross-border

log eijkl,t -0.438 -0.321 -0.181 -0.128
(0.405) (0.382) (0.410) (0.396)

log GDPik,t 0.261∗ 0.329∗∗ 0.585∗∗∗ 0.641∗∗∗

(0.136) (0.167) (0.121) (0.109)

log GDPjl,t 0.521∗∗∗ 0.664∗∗∗ 0.694∗∗∗ 0.755∗∗∗

(0.153) (0.152) (0.120) (0.114)

FTA Yes Yes Yes Yes
Country-pair FE Yes Yes Yes Yes
Country-time FE Yes Yes Yes Yes
Sectoral FE Yes Yes Yes Yes

Pseudo-LL -18,288,076 -8,665,322 -5,731,126 -3,107,450
Deviance 47,268 38,852 37,090 27,787
Observations 5,246,776 5,048,648 4,755,583 4,557,754
Transactions 37,287 7,349 37,287 7,349
All results estimated with a Poisson Pseudo-Maximum Likelihood estimator. Standard
errors in parentheses. All standard errors clustered by acquiring-target country-sector
pairs.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

53



Appendix D PPML estimation through IRLS

D.1 IRLS estimation

In the following, we outline the structure of the PPML estimator utilized to perform the estima-

tions presented in this article. The estimator is an implementation of the classic Silva and Tenreyro

(2006) PPML estimator using an Iterated Reweighted Least Squares strategy, building on the work

of Guimaraes (2016) and Zylkin (2018).

The PPML estimator is designed to estimate models of the following form:

µi = exp(βxi)εi (D.1)

where µi is the dependent variable, xi the covariates of interest, β the parameters we seek to

estimate and ε an error term. This functional form can also be interpreted as a Generalized Linear

Model with link log.

This class of model is usually estimated through maximum likelihood, which entails a high

dimensional non-linear optimization problem. In particular, in our present application, the xi will

include the full set of fixed effects, bringing the number of covariates above 3,500. Combined with

the large size of our dataset – which includes more than 6 million observations – this led in practice

to unmanageable estimation run times.

However the GLM class of models can also be estimated through a procedure called Iterated

Reweighted Least Squares (Rodríguez, 2018). This latter approach substitutes the non-linear maxi-

mization problem solved by the maximum likelihood estimator with a converging sequence of simple

OLS linear regressions.

In the following, we adopt the notations of Rodríguez (2018) to implement IRLS in practice.

Given a trial estimate of the parameters β̂, we calculate the estimated linear predictor η̂i = β̂xi

and use that to obtain the fitted values µ̂i = exp
(
β̂xi

)
. Using these quantities, we calculate the

working dependent variable:

zi = η̂i + yi − µ̂i

µ̂i
(D.2)

Next we calculate the iterative weights, which in the case of a Poisson distribution simplify to:
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wi = µ̂i (D.3)

The estimate of parameter β is then improved by regressing the working dependent variable zi

on regressors xi using weights wi
30:

β̂ =
(
X ′W X

)−1
X ′W z (D.4)

The substitution of non-linear maximization for a sequence of OLS regressions is of great prac-

tical importance to our purposes, as it allows to partial out our fixed effects from both the working

dependent variable zi and our regressors xi. The Frisch–Waugh–Lovell theorem then ensures that

the variance-covariance (VCV) matrix of the β we obtain will be proportional to the VCV matrix

obtained if the fixed effects are explicitly included (Woodward et al., 2006).

To partial out our fixed effects structure, we use Correia (2016)’s reghdfe Stata program which

partials out high-dimensional fixed effects from linear models using recent advances in graph theory.

This approach makes applying PPML to our specific high-dimensional fixed effects structure

and large dataset feasible.

30See Rodríguez (2018) for a full derivation
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D.2 Code listing
*! version 1.0
// Estimates Poisson regression with n fixed effects
// Author: Aurélien Saussay
// Based on poi2hdfe by Paulo Guimarraes
// and ppml_panel_sg by Thomas Zylkin
// Using reghdfe by Sergio Correia
// Date: Nov 4, 2018

program poinhdfe, eclass
version 12

if replay() {
if ("‘e(cmd)’" != "poinhdfe") error 301
Display

}
else {

Estimate ‘0’
}

end

//------------
// Estimation
//------------
program define Estimate, eclass

syntax varlist [if] [in], Absvars(varlist) [CLUSTer(varlist) tol(real 1.0e-8)
SAVEFE ACCEL(string) VERBOSE]

// Collect regressors
tokenize ‘varlist’
local y ‘1’
macro shift
local xvars ‘*’

timer clear
timer on 1

// Clustering
local cluster_count : word count ‘cluster’

// Verbosity of the output
if "‘verbose’" == "verbose" {

local is_quiet = ""
}
else {

local is_quiet = "quiet: "
}

// Sample to be used
// loc varlist ‘depvar’ ‘indepvars’ ‘cluster’
tempvar touse
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marksample touse, strok // based on varlist + cluster + if + in + weight

// Id of the observations that will be put back in
tempvar mata_id
gen ‘mata_id’ = _n
putmata ‘mata_id’ if ‘touse’, replace

// Temporary variables
tempvar off dev olddev mu eta W z temp res yhat ll
tempname b vcov fit

// Initialisation
gen double ‘off’ = 0
gen double ‘dev’ = 0
gen double ‘olddev’ = 0
qui sum ‘y’
local meany = r(mean)
gen double ‘mu’ = (‘y’ + ‘meany’)/2
gen double ‘eta’ = ln(‘mu’)
gen double ‘W’ = 1
gen double ‘z’ = 0
gen double ‘temp’ = 0

local dif = 1
local old_dif = 0
local counter = 0

// Main estimation loop
local irls_vars "‘z’ ‘xvars’"
// Create HDFE object
mata: HDFE = fixed_effects("‘absvars’", "‘touse’", "pweight", "‘W’", 0, 0)

// Use acceleration?
if ("‘accel’" == "lsmr") {

mata: HDFE.estimate_cond()
mata: HDFE.acceleration = "lsmr"

}
else if ("‘accel’" != "") {

mata: HDFE.acceleration = "‘accel’"
}

‘is_quiet’ while (abs(‘dif’) > ‘tol’) & (abs(‘dif’ - ‘old_dif’) > ‘tol’) {
quiet replace ‘W’ = ‘mu’
quiet replace ‘z’ = ‘eta’ + (‘y’ - ‘mu’) / ‘mu’

capture drop ‘res’
capture drop _RES_*

// Remove fixed effects from the regressors
// Update weights
putmata ‘W’ if ‘touse’, replace
mata: HDFE.update_sorted_weights(‘W’)
// Partial out
mata: hdfe_variables = HDFE.partial_out("‘irls_vars’", 1) // 1=Save TSS of
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first var if HDFE.tss is missing
// New generated vars - with the fixed effects partialled out
loc partial_varlist ""
foreach v in ‘irls_vars’ {

loc partial_varlist "‘partial_varlist’ _RES__‘v’"
}
getmata (‘partial_varlist’) = hdfe_variables, id(‘mata_id’) replace

gen(_RES_) keepsingletons

// Regress the dependent variable on the regressors demeaned of the fixed
effects

_regress _RES_* ‘if’ [pw = ‘W’], nocons
_predict double ‘res’ ‘if’, res

replace ‘eta’ = ‘z’ - ‘res’
replace ‘mu’ = exp(‘eta’)
replace ‘olddev’ = ‘dev’
replace ‘dev’ = 2 * ‘mu’
replace ‘dev’ = 2 * (ln(‘y’ / ‘mu’) - (‘y’ - ‘mu’)) if ‘y’ > 0
replace ‘temp’ = sum(reldif(‘dev’, ‘olddev’))

local old_dif = ‘dif’
local dif = ‘temp’[_N] / _N
local counter = ‘counter’ + 1
noisily di "‘counter’ iteration (difference in deviance is ‘dif’)"

}

// Recover estimated b and vcov matrices
local N = e(N)
matrix ‘b’ = e(b)
matrix ‘vcov’ = e(V)

// Deviance - measurement of fit
replace ‘dev’ = sum(‘dev’)
local deviance = ‘dev’[_N]

di
di "Convergence achieved after ‘counter’ iterations"
di
di "Computing standard errors"
di

// After convergence, first compute standard errors

// Clustered standard errors
quiet {

// Single cluster
if (‘cluster_count’ == 1) {

_regress _RES_* ‘if’ [pw = ‘W’], nocons cluster(‘cluster’)
matrix ‘vcov’ = e(V)

}

// Two clusters
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else if (‘cluster_count’ == 2) {
tempname c1 c2 c12 v_1 v_2 v_12
tokenize ‘cluster’

egen ‘c1’ = group(‘1’) ‘if’
egen ‘c2’ = group(‘2’) ‘if’
egen ‘c12’ = group(‘1’ ‘2’) ‘if’

foreach cvar in 1 2 12 {
_regress _RES_* ‘if’ [pw = ‘W’], nocons cluster(‘c‘cvar’’)
matrix ‘v_‘cvar’’ = e(V)

}

matrix ‘vcov’ = ‘v_1’ + ‘v_2’ - ‘v_12’
}

// Three clusters
else if (‘cluster_count’ == 3) {

tempname c1 c2 c3 c12 c13 c23 c123 v_1 v_2 v_3 v_12 v_13 v_23 v_123
tokenize ‘cluster’

egen ‘c1’ = group(‘1’) ‘if’
egen ‘c2’ = group(‘2’) ‘if’
egen ‘c3’ = group(‘3’) ‘if’
egen ‘c12’ = group(‘1’ ‘2’) ‘if’
egen ‘c13’ = group(‘1’ ‘3’) ‘if’
egen ‘c23’ = group(‘2’ ‘3’) ‘if’
egen ‘c123’ = group(‘1’ ‘2’ ‘3’) ‘if’

foreach cvar in 1 2 3 12 13 23 123 {
_regress _RES_* ‘if’ [pw = ‘W’], nocons cluster(‘c‘cvar’’)
matrix ‘v_‘cvar’’ = e(V)

}

matrix ‘vcov’ = ‘v_1’ + ‘v_2’ + ‘v_3’ - ‘v_12’ - ‘v_13’ - ‘v_23’ + ‘
v_123’

}

// Four clusters
else if (‘cluster_count’ == 4) {

tempname c1 c2 c3 c4 c12 c13 c14 c23 c24 c34 c123 c124 c134 c234
c1234

tempname v_1 v_2 v_3 v_4 v_12 v_13 v_14 v_23 v_24 v_34 v_123 v_124
v_134 v_234 v_1234

tokenize ‘cluster’
di "Tokenizing results"
di "‘1’ ‘2’ ‘3’ ‘4’"

egen ‘c1’ = group(‘1’) ‘if’
egen ‘c2’ = group(‘2’) ‘if’
egen ‘c3’ = group(‘3’) ‘if’
egen ‘c4’ = group(‘4’) ‘if’
egen ‘c12’ = group(‘1’ ‘2’) ‘if’
egen ‘c13’ = group(‘1’ ‘3’) ‘if’
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egen ‘c14’ = group(‘1’ ‘4’) ‘if’
egen ‘c23’ = group(‘2’ ‘3’) ‘if’
egen ‘c24’ = group(‘2’ ‘4’) ‘if’
egen ‘c34’ = group(‘3’ ‘4’) ‘if’
egen ‘c123’ = group(‘1’ ‘2’ ‘3’) ‘if’
egen ‘c124’ = group(‘1’ ‘2’ ‘4’) ‘if’
egen ‘c134’ = group(‘1’ ‘3’ ‘4’) ‘if’
egen ‘c234’ = group(‘2’ ‘3’ ‘4’) ‘if’
egen ‘c1234’ = group(‘1’ ‘2’ ‘3’ ‘4’) ‘if’

foreach cvar in 1 2 3 4 12 13 14 23 24 34 123 124 134 234 1234 {
_regress _RES_* ‘if’ [pw = ‘W’], nocons cluster(‘c‘cvar’’)
matrix ‘v_‘cvar’’ = e(V)

}

matrix ‘vcov’ = ‘v_1’ + ‘v_2’ + ‘v_3’ + ‘v_4’ - ‘v_12’ - ‘v_13’ - ‘
v_14’ - ‘v_23’ - ‘v_24’ - ‘v_34’ + ‘v_123’ + ‘v_124’ + ‘v_134’ +
‘v_234’ - ‘v_1234’

matrix list ‘vcov’
}

}

// Ensure the variance-covariance matrix is semidefinite positive
// Replace negative eigenvalues by zeroes
// (Cameron, Gelbach and Miller, JBES 2011; Zylkin 2017)
tempname U lambda lambdaMat
matrix symeigen ‘U’ ‘lambda’ = ‘vcov’

local needAdjustment = 0

foreach j of numlist 1/‘=colsof(‘lambda’)’ {
if ‘lambda’[1, ‘j’] < 0 {

matrix ‘lambda’[1, ‘j’] = 0
local needAdjustment = 1

}
}

local needAdjustment = 0
if (‘needAdjustment’) {

matrix ‘lambdaMat’ = diag(‘lambda’)
matrix ‘vcov’ = ‘U’ * ‘lambdaMat’ * (‘U’)’

}

// Names for b and vcov matrices
matrix rownames ‘b’ = ‘y’
matrix colnames ‘b’ = ‘xvars’
matrix rownames ‘vcov’ = ‘xvars’
matrix colnames ‘vcov’ = ‘xvars’

// Compute R^2
quiet {

// Fitted y
gen ‘yhat’ = exp(‘eta’)
cor ‘yhat’ ‘y’ ‘if’
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local r2 = r(rho)^2
}

// Compute log pseudo-likelihood
// Adapted from PPML
quiet {

gen double ‘ll’ = e(N) * (-exp(‘eta’) + ‘y’ * ‘eta’ - lngamma(‘y’ + 1)) ‘if
’

sum ‘ll’ ‘if’, meanonly
local ll = r(mean)

}

// Return everything in e()
ereturn post ‘b’ ‘vcov’, depname(‘y’) obs(‘N’)
ereturn scalar dev = ‘deviance’
ereturn local cmdline "poinhdfe ‘0’"
ereturn local cmd "poinhdfe"
ereturn local crittype "log pseudolikelihood"

ereturn scalar r2 = ‘r2’
ereturn scalar ll = ‘ll’

// Save fixed effects in __hdfe‘i’__
if ("‘savefe’" != "") {

reghdfe ‘z’ ‘xvars’ ‘if’ [pw = ‘W’], absorb(‘absvars’, savefe)
keepsingletons

}

Display

timer off 1
timer list 1

end

//-----------------------
// Display results table
//-----------------------
program define Display

// Display results
_coef_table_header, title( ******* Poisson Regression with n High-Dimensional

Fixed Effects ********** )
_coef_table, level(95)

end
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