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Abstract

To facilitate the sustainable energy transition, governments and innovators are
encouraging households to adopt smart technologies that allow for increased flexibility
in energy grids. The UK’s ambitious smart metering policy has indisputably failed to
achieve its objective of equipping all dwellings with smart meters. This research uses
a novel experiment to elicit the willingness-to-accept of 2,400 nationally representative
UK households for smart meter installation. Randomized information treatments allow
for assessment of the impact on adoption and willingness-to-accept of oft-cited market
failures, namely information asymmetries and ‘learning-by-using’ externalities. We
explore treatment effects and identify inframarginal policy expenditures for a range of
potential subsidy programs.
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1 Introduction

Economists researching the intersection between consumer behavior and energy systems
are increasingly recognizing the importance of one-off technology adoption behaviors in
achieving energy system-level and environmental policy goals. Indeed, while some policies
may target householders’ recurring energy-wasting habits—leaving the lights on in unoc-
cupied rooms, for example, or failing to turn the heat off when leaving the home—other
perhaps more persistent energy conservation policies might target infrequent one-off be-
haviors or decisions.1 For instance, economists have studied the impact of energy and fuel
efficiency on consumers’ purchasing decisions, finding mixed evidence: while some studies
show that consumers are largely inattentive to future fuel costs (or savings) of the energy-
consuming durables they adopt (Allcott and Taubinsky, 2015; Fowlie et al., 2015), others
cannot reject the hypothesis of consumer attentiveness (Houde and Myers, 2019).

New technologies may particularly suffer from low take-up rates due to consumers’
lack of experience and little understanding of the technology’s benefits. The literature
on the energy efficiency gap highlights such disincentives for early adoption and costs of
asymmetric information (Jaffe and Stavins, 1994a; Gillingham and Palmer, 2014), though
evidence to support these claims is scant. Crucially, whether and how a government should
intervene depends on the drivers of low adoption, and whether such adoption levels are
inefficient (Jaffe and Stavins, 1994b).

We contribute evidence regarding the import of the aforementioned market failures
by studying the case of a relatively new technology—the smart electricity meter—in the
context of an unprecedented UK-wide government-led public participation campaign. The
smart meter, an internet-connected two-way communication device, boasts purported pro-
ducer and consumer benefits stemming from its ability to measure site-specific energy
consumption in real-time. On the producer side, the benefits of widespread adoption are
clear: real-time information allows for efficient matching of energy supply with energy de-
mand, improves predictions regarding requisite energy capacity at various times of the day
and year, eliminates the need for manual meter readings, and provides the opportunity to
incentivize shifts in demand to minimize system-level costs (Joskow, 2012).

On the consumer side, the benefits are less clear. First, while smart meters equip
consumers with information necessary to match energy-consuming behaviors to actual
energy usage, evidence is mixed regarding the propensity of households to engage with
the meters’ information to successfully reduce costs (Faruqui et al., 2010; National Audit
Office, 2018). Second, while a smart meter allows for monthly bill payments commensurate
with actual usage, consumers may still prefer to pay a fixed monthly fee for simplicity,
budgeting, and consumption smoothing purposes.2 Third, as historically passive users of
energy often beholden to rigid daily routines, householders may struggle to shift demand
considerably, rendering any increase in energy plan options welfare-neutral, at least in
the short run (Burke and Abayasekara, 2018). Finally, system-level benefits could save
householders money via supplier savings pass-through, though there is no guarantee that

1To illustrate the significance of such one-off decisions, in its 2014 assessment of proposed EU-wide per-
formance standards, the UK Government estimated the potential energy savings from fully transitioning the
stock of UK home appliances—in this case, dishwashers, washing machines, and televisions—to those with the
minimum-viable EU standards, claiming a dramatic savings of 2930 GWh (about 3% of total residential energy
consumption) per year by 2030.

2It has been shown that consumers respond more to average rather than marginal pricing, as the cognitive
effort required to understand more complex pricing can be substantial (Ito, 2014).
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such savings will reach the consumer.
Yet, widespread smart meter adoption holds promise to considerably improve environ-

mental outcomes through increased energy production efficiency—which reduces overall
energy production and greenhouse gas emissions—and flexibility—which lowers the risk of
blackouts and facilitates the integration of higher proportions of renewable energy into a
given system’s energy portfolio. For instance, in its extensive cost-benefit analysis most
recently updated in 2019, the UK Government finds that the environmental and financial
savings far outweigh the costs of rapid transition to a smart energy system.34 In this case,
how can a social planner understand and quantify the extent of resistance to the tech-
nology in question, and subsequently encourage adoption among reluctant or ambivalent
consumers?

This research develops an incentive-compatible online experiment to elicit a repre-
sentative panel of UK households’ willingness-to-accept compensation (WTA) for smart
meter installation following exposure to various treatments aimed at overcoming two rele-
vant market failures: imperfect information and learning by using. We measure two main
outcome variables, namely (i) whether the household adopts the smart meter without com-
pensation, as well as (ii) the subsidy level necessary for non-adopting households to adopt
(conditional on treatment received). From these responses, we reveal the significance of
private and social information as well as learning-by-using externalities in the decision to
adopt the technology, and infer adoption rates at various subsidy levels in this context.5

Our results suggest that offering subsidies of £10, £25, £50, and £100 would induce
additional adoption of 4, 9, 24, and 53 percentage points from a baseline of 22% adoption.
Pairing these subsidies with a social information campaign can boost these numbers by
an additional 1-5 percentage points. Inframarginal costs dominate the cost of any subsidy
programme, ranging from 53-83 percent of total costs. We present suggestive evidence
that a £100 subsidy may be optimal from the perspective of minimizing the percentage
of policy expenditures that are inframarginal, though of course the optimal subsidy will
depend on the social welfare function being optimized.

Our research contributes to several relevant strands of literature, in particular those on
non-market valuation, the energy efficiency gap, optimal subsidy design, and households’
acceptance of publicly beneficial infrastructure upgrades. The combination of a random-
ized information treatment along with a Becker-DeGroot-Marshak valuation in eliciting

3https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment data/file/831716
/smart-meter-roll-out-cost-benefit-analysis-2019.pdf

4It should be noted that past UK cost-benefit analyses of smart meter roll-out do not take into account a
number of non-monetary costs, such as potential hassle costs from having to take time off work, or perceived
privacy and health risks.

5As noted in Langer and Lemoine (2018), an efficient subsidy schedule would allow for the social planner
to intertemporally price discriminate, providing low subsidies to first movers with relatively low willingness-
to-pay in early periods and increasing the subsidy over time until the efficient level of adoption is attained.
However, consumer anticipation of future subsidies may lead some consumers to wait for the higher subsidy to
be instated, expanding the pool of inframarginal consumers beyond those who receive a higher subsidy than is
necessary to induce adoption in a given period to include those who postpone adoption to receive a higher subsidy.
Evidence of the former ‘type’ of inframarginal consumer is strong; for instance, using a regression discontinuity
design, Boomhower and Davis (2014) find that 65% of subsidy recipients for refrigerator replacements in Mexico
would have accepted the lower subsidy level, indicating dramatic cost-ineffectiveness. Evidence of the latter is
demonstrated in Langer and Lemoine (2018), who show that consumer foresight increases the requisite subsidy
for early adopters who could wait for a higher subsidy, and that this effect has a positive interaction with
anticipated technical change.
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WTA in a developed country context is novel. Methodologically, our work has parallels
with Allcott and Taubinsky (2013), who combine a randomized information treatment with
a choice experiment to elicit demand for energy-efficient light bulbs in the US, and Berry
et al. (2020), who combine randomized anchoring and strategic decision-making prompts
in a BDM willingness-to-pay (WTP) valuation for clean water technology adoption in
Ghana. A key difference between our work and the former is the valuation method we
employ, and our elicitation of WTA rather than WTP. Our work differs from the latter in
its application to an impure public good6—as opposed to a private good—in a developed
world context.

In addition, we take steps to measure the non-monetary costs of existing barriers to
smart meter adoption. This approach builds on work by Fowlie et al. (2015) who demon-
strate evidence of non-monetary costs for energy-efficient home upgrades, though we go
a step further to explicitly quantify the costs and provide evidence on the relative im-
portance of various barriers. Our research shares similarities with List et al. (2018) who
conduct a natural field experiment examining smart meter adoption and energy savings
among British Gas customers.7 Furthermore, we generalize the work of Boomhower and
Davis (2014) by quantifying inframarginal costs across the entire potential subsidy distri-
bution, providing a more thorough consideration of the optimal level of subsidy required.
Finally, we add to a growing literature on the public acceptability of smart grid infrastruc-
ture,8 widely accepted to be a necessary ingredient in enabling many countries’ sustainable
energy transitions.

The remainder of this paper is structured as follows. The next section provides brief
contextual background regarding the technology in question and the UK’s Smart Meter
Implementation Programme. The third section provides details of the experimental and
valuation methodologies deployed. The fourth section details the data collection process
and provides summary statistics for the data collected. The fifth section outlines our em-
pirical strategy and results. Our final section concludes with implications for policymakers
and future research.

2 Background

A long-standing inefficiency in energy markets is the disconnect between retail prices paid
by consumers and the marginal costs of supplying electricity. Smart meters allow real-
time two-way communication, removing the technological barriers to setting prices that
reflect costs of production (Joskow, 2012; Harding and Sexton, 2017). Smart metering may
allow consumers to save energy and money (Faruqui et al., 2010), but of greater social
benefit is their potential to pave a path toward a more flexible energy system, allowing
optimization of generation and storage. Enhanced demand flexibility would enable more

6An impure public good is defined as a privately acquired good that generates both private and a public
characteristic (Cornes and Sandler, 1994)

7The papers are complementary but have some key differences. While List et al. trialed incentives of
£5 and £10, our use of a BDM mechanism allows us to estimate the impact of a wide range of potential
incentives. Additionally, we combine our price elicitation with a randomized information treatment allowing
us to determine the importance of oft-cited market failures in explaining adoption decisions. We conduct our
analysis on customers of the largest 11 utilities in the UK, while List et al. work with one large utility. Finally,
List et al. examined the impact of smart meters on subsequent energy consumption, which institutional barriers
preclude us from doing in our study.

8See for example Fell et al. (2015); Spence et al. (2015); Bigerna et al. (2016); Sovacool et al. (2017).
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efficient management of the energy system, allow for a greater proportion of intermittent
renewables in the UK’s energy mix, potentially reduce network operating costs, and enable
consumers and suppliers to more efficiently engage with electric vehicle charging and other
load shifting (Joskow, 2012). The potential for these private and social gains creates
opportunities for technological innovation—such as the smart meter—to realize them.

Extensive cost-benefit analysis of smart metering led to the Smart Meter Implemen-
tation Programme (SMIP)—the single-most important domestic energy policy initiative
ongoing in the UK—in 2013. The policy provides the legal framework to install about
48 million smart electricity and gas meters in UK households by 2020. It has been de-
scribed as the most expensive and complex smart meter rollout in the world and the
largest UK Government-run IT project in history (Lewis and Kerr, 2014). Successful im-
plementation of the SMIP hinges on consumers’ voluntary agreement to have the meters
installed in their homes. However, a number of parties—including the UK’s National Au-
dit Office, the media, and interest groups—have expressed several concerns relating to the
technical performance of the meters, data security and privacy, consumer vulnerability,
and consumer resistance and ambivalence, among others (Sovacool et al., 2017). In addi-
tion, concerns over the SMIP’s lack of clarity of purpose and minimal transparency in its
communication of consumer benefits have overshadowed ambitious implementation efforts
(House of Commons Science and Technology Committee, 2016).

Consumer resistance due to a range of factors has quite evidently inhibited rollout, as
there were only 16.3 million meters installed and 13.4 million meters operating by the end
of Q2 2019. The potential driving forces behind households’ decisions to adopt remain
unclear. In making this decision, a household must weigh up a range of costs and ben-
efits, each with private, social, and intertemporal dimensions: costs are generally borne
upfront (e.g., time off of work to accommodate installation, learning about the technol-
ogy’s functionality), while a greater proportion of the benefits will accrue in the future
(e.g., in increasing one’s own energy-saving awareness and altering habits, facilitating the
emergence of alternative and potentially cheaper rate plan options or money-saving tech-
nological innovations, or reducing system costs that may pass through to consumers). In
brief, the present value of the net benefits to a given household is idiosyncratic and may
be positive or negative.

Not only may some households be unaware of the potential private and social benefits
of smart meter installation, they may be reluctant to adopt for a number of reasons such
as privacy (McKenna et al., 2012), financial costs (Balta-Ozkan et al., 2013), hidden costs
(Gillingham and Palmer, 2014), or general disengagement with or distrust in their energy
utility (Central Market Authority, 2016). In addition, energy utilities may have difficulty
in accessing certain customers, or there may be physical and structural constraints asso-
ciated with dwellings that make installation of smart meters impossible. In other cases,
misaligned incentives and communication channels between landlords and tenants may
constrain adoption in the private rented sector. Finally, the non-monetary costs of energy
efficiency upgrades have been shown to deter households from installing free measures,
even once households have become aware of the potential private benefits and made an
application for a home upgrade (Fowlie et al., 2015).9

9More generally, a broad literature exists that examines the so-called “energy efficiency gap”, a well-evidenced
phenomenon suggesting that consumers do not invest in energy-saving technologies (such as insulation or re-
placement boilers) that may be privately beneficial. This gap is often attributed to imperfect information or
inattention on the part of consumer (Allcott and Greenstone, 2012). Gillingham and Palmer (2014) provide
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3 Methodology

We aim to quantify the importance of several identified market failures that serve as
rational barriers to adoption of (potentially) welfare-enhancing energy technology in the
home (Gillingham and Palmer, 2014). Of the five proposed barriers, three may hold
relevance in the case of smart meter adoption, namely imperfect information, learning by
using, and regulatory policies that fail to match energy prices to their true marginal (social)
cost.10 Given constraints on varying the latter, we designed three interventions that target
potential information asymmetries regarding expected personal and social benefits of smart
meter adoption as well as information regarding accumulated positive ‘learning-by-using’
externalities. We do so using a survey experiment that captures adoption behavior and
willingness-to-accept compensation for non-adopters, as described below.

3.1 Experimental Design

We designed a survey experiment using the Qualtrics survey software platform in which
eligible household energy decision-makers may sign up to adopt a smart meter following
treatment exposure. Those who decline to adopt the smart meter subsequently perform
a willingness-to-accept compensation (WTA) elicitation exercise to determine the subsidy
value at which they would adopt. The exercise is incentive-compatible in that respondents
receive a payout equal to our randomly selected subsidy offer if our offer exceeds their
stated WTA, though only once they supply the information required to sign them up for a
smart meter; they may provide the latter in the survey itself or at any point in time over the
following two weeks. Individuals who provide sufficient electricity account information are
compensated with a versatile digital gift card for the offered subsidy amount; in exchange
for the compensation provided, we shared their details with the UK’s energy regulator
(Ofgem), who liaised with the smart metering teams of participants’ energy suppliers to
sign them up for smart meter installation. Figure 1 provides an overview of the survey
layout, and the remainder of this subsection provides details and design considerations
with respect to the most important elements of the survey experiment.

an extensive overview of reasons why the gap may be smaller than perceived, and of both market failures and
behavioral anomalies that may be contributing to the gap that exists.

10Note that a fourth market failure—(misconceived) principal-agent issues—may also play a role here if
tenants do not realize that they do not need their landlords’ permission to adopt a smart meter in their rental
property. We do not think this issue is significant as only seven of the 791 respondents cited landlord/tenant
issues when asked to provide information on factors influencing their choice of WTA. The fifth market failure—
credit and liquidity constraints—does not apply in this context.
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Smart-meter 
for free

Yes
(n=368)

Participate in BDM

Randomisation -
information
treatment

Test Your
Understanding

Fail
(n=718)

Pass
(n=1344)

WTA Elicitation

Failure
(n=1114)

Success
(n=230)

TIOLI

Accept
(n=42)

Reject
(n=663)

Non
response

(n=13)

(i) No compensation

Participants do not receive a smart meter

(ii) BDM compensation

 
(iii) TIOLI compensation

Participants
receive a smart

meter and:

Participate in survey and collect baseline data
N = 2430

No
(n=2062)

Figure 1: Survey Flow Chart for Eliciting Smart Meter Valuation

3.1.1 Treatments and Smart Meter Offer

Early in the survey, all eligible participants receive basic information regarding smart
meters (see Figure 2) prior to treatment exposure for two reasons: (i) to verify that they
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do not already have and have not yet been offered a smart meter (as part of the eligibility
criteria), and (ii) to ensure they share a base level of understanding regarding the good in
question.

Figure 2: Smart meter description

Once we confirm eligibility, the participant views one of four randomly selected11 in-
formation conditions for a minimum of fifteen seconds: (i) extraneous information on
the structure of the energy system (Control); (ii) information on the private benefits of
smart meter adoption (Treatment 1); (iii) information on the social benefits of smart me-
ter adoption (Treatment 2); and (iv) information on bygone learning from the first six
years of the UK’s smart meter rollout, to which the technology and the energy system
have adapted substantially (Treatment 3). We complement the latter treatment with a
dynamic norm to demonstrate that the technology is well past the ‘early adoption’ stage.
The four conditions are presented in Figure 3.

11Due to lack of pre-experimental data on participants, we do not stratify the randomization but instead
use the Qualtrics Randomizer tool to randomly assign individuals who take the survey to receive one of the
above four conditions. When we reached 2000 responses we then adjusted the (treatment) quotas to achieve
balance across observable characteristics in our treatment assignments as well as national representativeness in
our sample to the best of our ability (see Table A1).
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Control Treatment 1: Private Benefits

Treatment 2: Social Benefits Treatment 3: Learning-by-Using

Figure 3: Experimental Treatments

Immediately following treatment exposure, we ask participants whether they would
like to adopt a smart meter.12 Those who say yes subsequently provide us with sociode-
mographic and attitudinal information, and may then supply the account information
necessary for us to sign them up to receive a smart meter through Ofgem. Those who
decline to have a smart meter installed at this stage continue on to a WTA elicitation
exercise to gauge whether they may be inclined to receive a smart meter under a plausible
subsidy scheme.

3.1.2 WTA Elicitation

Valuation methods. Environmental economists have designed a range of tools to
recover the total valuation of non-market goods (or goods with non-market attributes;
Carson et al., 2001). Due to issues surrounding hypothetical bias (Cummings et al., 1995,

12Unlike Allcott and Taubinsky (2015), we do not elicit WTA prior to (in addition to following) treatment
for two reasons: (i) our first outcome variable of interest is whether the individual adopts a smart meter free of
charge and those who do so have a non-positive WTA, and (ii) we conjectured that eliciting the outcome variable
on either side of treatment exposure may lead to (enhanced) experimenter effects. Therefore, our analysis will
be restricted to a between-subject treatment comparison.

9



1997) and consequentiality (Cummings and Taylor, 1998; Landry and List, 2007), we
immediately narrow our focus toward two incentive-compatible value-elicitation methods.
One simple method—‘take-it-or-leave-it’ (TIOLI)—asks respondents whether they will buy
or sell a good or service at a given price, where the researchers generally vary the price to
back out an implicit demand curve. TIOLI boasts an obvious benefit of comprehensibility.
Its resemblance to familiar and routine market exchanges that consumers make in their
daily lives all but ensures that researchers will elicit a true and unbiased response from
their subjects. Yet, unless followed up with several (theoretically infinite) subsequent
questions, the method suffers from imprecision: we do not obtain an exact data point for
a given respondent to reflect his/her true WTA using the TIOLI method.

To overcome the issue of relatively limited information provided by each respondent
(which demands a very large sample size to infer a demand curve), the Becker-DeGroot-
Marschak (BDM) method directly elicits an exact WTA—i.e. a single selling price—using
a second-price auction against an unknown bidder, thereby circumventing the requisite
iterative process of the TIOLI method. In accordance with the theory set out in Becker
et al. (1964), surveyors can elicit a true and exact WTA (or selling price) from respondents
by offering to pay them an unknown (and, in our case, double blind) amount b—the
researcher’s buying price—in the event that the latter exceeds the former. Since sellers
(i.e. survey respondents) do not know the value of b in advance, they essentially cognitively
engage in an iterative TIOLI process, asking themselves whether they would be willing
to accept b in exchange for the service for every possible value that b could take, thereby
ultimately identifying and stating their true selling prices.

As highlighted in Berry et al. (2020), TIOLI can be quite impractical if there is a wide
range of prices over which the researcher is eager to understand WTA. In our case, con-
sumers’ WTA compensation for installing a smart meter is highly uncertain and the private
costs associated with installation vary immensely across individuals, so the variance of true
WTAs is potentially substantial. Moreover, it is possible that there is an interaction effect
between one’s true WTA and potential treatment effects. In other words, if a researcher is
interested in the impact of various treatments on one’s WTA and only one or two prices are
offered as part of a TIOLI survey, then the researcher can only identify the treatment effect
at that/those price level(s). Therefore, without the assumption of a constant treatment
effect, TIOLI could preclude identification of a treatment effect when one indeed exists for
some individuals or at some price points for which insufficient data were collected. Finally,
if compensation received could be a predictor of subsequent behaviors—e.g., in our case,
actual smart meter installation—then BDM offers the variation in compensation necessary
to tease out such an effect.

The contextual features of the service we aim to value more closely reflect those that
favor BDM rather than TIOLI. Specifically, the range of individuals’ true WTA is likely
wide, and lack of a well-established market for provision of this service means that in-
dividuals will have little prior experience of prices to anchor their valuations. Moreover,
we are indeed interested in heterogeneous treatment effects, so BDM provides us with the
nuance necessary to tease out these effects with a fairly limited sample size. We therefore
perform a BDM exercise to elicit WTA for individuals who demonstrate comprehension
via a ‘test of understanding’, and present a TIOLI offer of £10 to those who do not pass
this test (see Appendix A.1.2 for screenshots of the comprehension test).13

13We selected the TIOLI offer of £10 to replicate the findings of the only field experiment to our knowledge
to incentivize adoption of smart meters in the UK (List et al., 2018). The authors find that, among British Gas
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Design considerations. Apart from BDM’s lower comprehensibility relative to
TIOLI, some methodological difficulties are worth noting. Foremost, and particularly
when the market for such a service is missing or unfamiliar, the appropriate buying price
range is both difficult to identify and could even influence survey responses if mentioned
explicitly. Simultaneously, without such a range to anchor respondents selling prices, the
surveyor risks extracting valuations that are perhaps unreasonable or, at the very least,
infeasible to pay out.14

In the absence of a market price on which to anchor our subjects—or on which sub-
jects’ prior experience may anchor their valuations in the absence of a researcher-induced
anchor—we designed a pilot survey to determine whether an anchoring effect exists in
our BDM context.15 Specifically, in delimiting the potential buying price, we tested three
designs—a £50 maximum, a £100 maximum, and an unstated maximum—while restrict-
ing the treatment randomization to only display the control condition. We found that
making the range explicit significantly suppresses valuations and concentrates them near
the maximum of the range.16

We therefore elected to leave the maximum of the range open-ended while using sub-
tle cheap talk and anchoring techniques to channel WTA toward values well within the
offer range of (£0, £100].17 With regard to the former technique, we explained in our
instructions that energy companies have provided incentives of £5, £10, and £50 as an
example.18 To anchor, we ensured that all examples in the ‘test of understanding’ for both

customers, a £5 or £10 incentive increased take-up by 6.1% from a baseline adoption rate of 18.1%. Of those
in our sample who rejected a free meter (and failed the test of understanding), we find that 6.0% of individuals
agree to adopt the smart meter when presented with the TIOLI offer of £10, which is highly consistent with the
findings of List et al. (2018).

14To understand the implications of various solutions to this issue for the valuation of a familiar commodity—
here, subjects are endowed with a voucher for gasoline—Bohm et al. (1997) conduct an experiment in which
they compare mean selling prices elicited using the BDM to those in a real market setting. In addition to
sensitivity of responses to varying levels of the upper bound of the buying price, they find that an upper bound
on the buying price equal to either the actual market price of the good or an unspecified value described as
‘the maximum price we believe any real buyer would be willing to pay’ leads to valuations no different from the
experimental market price; when this text is omitted, or when the upper bound is set above the market price,
the selling price significantly exceeds the market price. Similarly, Vassilopoulos et al. (2018) find an anchoring
effect of the buying price range when selling mugs, and Sugden et al. (2013) find an anchoring effect of both the
buying and selling price range for several goods whose market value is £5.

15The technology for which they must state a WTA—the smart meter—has been widely promoted by the UK
Government and therefore respondents may perceive compensation as a type of subsidy for providing a public
good. While various supplier incentives have been trialed with small customer samples in the UK, most energy
decision-makers will be unaware of these offers, and offers may have varied both within and across suppliers.
Moreover, most of these trials are commercially sensitive, so the incentives offered remain unknown; a published
trial performed in partnership with British Gas reveals that £5 and £10 incentives have been trialed at the low
end (List et al., 2018), though we are anecdotally aware of some suppliers having offered up to £50 incentives.

16This question was experimentally tested during the pilot phase. Results are available on request and will
form the basis of an additional research paper.

17Note that due to budget constraints we had to lower the offer range to £0-£50 halfway through the trial
period.

18Survey text: “Given your answer to the [free meter] question, we’d like to see what it might take to change
your mind about getting a smart meter. Think of it this way — if someone said they would pay you to have
a smart meter installed in your home, how much money would you ask for? This research project is about
answering this question. In the past, various energy companies in the UK have offered a range of incentives for
customers to adopt smart meters (for example, £5 or £10 in club card points, or £50 off your next bill, and so
on). It appears that some customers will sign up to get a smart meter only if given the right incentive. We’re
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bids and offers fell in the range of (£0, £100], and that these values were randomized to
ensure we did not anchor on specific values.

Additionally, as with all stated valuation research, misleading responses can signifi-
cantly influence mean valuations. As noted in Boyle (2017), there are three types of mis-
leading responses, all of which are difficult to detect and pose issues for stated valuation
research. First, protest responses—generally $0 responses for willingness-to-pay studies
and very high responses for willingness-to-accept studies—represent a reaction against the
contingent valuation mechanism itself. Left unaddressed, such responses tend to bias the
mean valuation downward for the former and upward for the latter. Comprehension repre-
sents a second issue; if respondents do not fully grasp the valuation mechanism, responses
may not be meaningful or accurate. While this issue introduces a type of measurement
error, it does not necessarily introduce bias in a particular direction.

Third, strategic responses aim to influence the underlying policy that is being valued
in a particular direction, and can introduce bias in either direction if strategic respondents
overwhelmingly tend to (dis-)favor the policy. Given that Boyle (2017) does not discuss
the willingness-to-accept framework explicitly, we add a second type of strategic behavior
that could arise in our context. Specifically, participants may try to ‘game the system’
by taking the survey multiple times and trying to guess at a value that would give them
money in return for installing a smart meter. We identified all survey response duplicates
by name, IP address, and the email address they provided (of which there were 109) and
have removed these responses from the data.

We aim to attenuate the above concerns and measure biases via two channels: in-
depth comprehension tests as well as both closed- and open-ended questions regarding the
respondents’ rationales for their selections. First, the test of understanding—which follows
extensive BDM instructions (see Appendix A.1.1)—involves a set of three questions with
randomly determined ‘bid prices’ (i.e. WTA values) and ‘offers’ for which the respondent
must determine the outcome (i.e., whether and how much money would be transferred to
the respondent in return for his/her signing up to receive a smart meter). The participant
was tasked to correctly identify the answers to all three questions on the screen (see
Appendix A.1.2), and if they missed one or more they could make a second and a third
attempt. If there were any errors on the third attempt, they were provided a TIOLI
offer and did not participate in the BDM exercise (see Figure 1). We also capture a
weak measure of comprehensibility directly following the instructions in which we ask the
respondent to indicate whether they felt they understood the instructions.

Second, we ask two specific questions regarding individuals’ rationale for having denied
a free meter and selected a particular WTA value (see Appendix A.4 and A.6). The first
question is a multiple-response multiple choice question in which respondents check any
box that aligns with their reasoning for denying the free smart meter. Responses include
(i) ‘privacy/security concerns’, (ii) ‘too much hassle’, (iii) ‘health concerns’, (iv) ‘I do not
think I will save energy/money’, (v) ‘I do not trust my energy supplier’; and (vi) ‘Other
(please specify)’. The open-ended question simply asks the respondent just following
their input of WTA (i.e. on the same screen) to ‘Please let us know why you’ve chosen
this amount.’ The question is optional, though 38% of individuals provided a response.
Finally, an open-ended question at the end of the survey allows respondents to provide any
additional comments or feedback on the survey, and some provided information related to
the above from which we can glean further information. An additional 32% of individuals

interested in learning what that ‘right incentive’ might be for you, if any.”
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provided information related to their choice of WTA.

3.1.3 Incentive compatibility

To avoid hypothetical bias and maximize the likelihood that elicited WTA values are
incentive compatible, we collaborated with the UK electricity and natural gas regulator,
Ofgem, so that we could actually enroll respondents to receive a smart meter if they
were promised one in the survey. We made clear in the survey that all decisions were
incentive compatible in this way.19 Individuals who express that they would like a smart
meter (with or without compensation from the BDM or TIOLI exercises) are subsequently
asked to provide their electricity account details so that we may pass them along to their
respective suppliers.20 Those who agree to get the smart meter via the BDM or TIOLI
mechanism and who go on to provide complete account information receive Tango Gift
Card e-vouchers that may be used at a large number of global and UK-specific (online)
retailers, restaurants, ride-share services, and the like.

Of those who signed up to receive a smart meter, 62/397 (15.6%) of affirmative free
meter respondents, 29/246 (11.8%) of BDM ‘winners’, and 2/46 (4.3%) of affirmative
TIOLI respondents provided sufficiently complete information for us to sign them up.21,22

All had the opportunity to provide their complete account details within the main survey.
Otherwise, they could indicate that they did not have their details to hand, in which case
they were sent a follow-up survey link to provide their information.

3.2 Empirical Strategy

We consider two primary outcome variables of interest. The first is a binary measure
that captures whether the participant adopts a smart meter for free after having viewed
the randomized information provided. We estimate a linear probability model using OLS
regression, which we specify as follows:

FreeMeteri = βTi + γXi + ε (1)

19Prior to explaining the BDM exercise, we state, “To make things realistic, well use our research funding
to give you a chance to state your price and actually be paid in exchange for signing up to get a smart meter
installed.” We then provide a detailed explanation of the BDM process and administer a test of understanding.
Just before the respondent states their WTA, we emphasize,“Please remember that we will use our research
funds to pay all participants whose bid price is less than our offer.”

20In order to receive the meter, individuals must supply their first and last names, postcode, email address,
electricity account number, and the Meter Point Administration Number (or MPAN), which features on most
electricity bills and can be found on one’s meter. Individuals could provide this information directly in the
survey or could opt to receive a follow-up email with the same short form, which we asked them to fill within
two weeks. Unfortunately we do not observe whether the individuals who did not provide information neglected
to do so due to the amount of information required or due to indifference toward receiving the meter, and we
do not observe whether they instead asked their supplier for a smart meter directly.

21The gap between our offer and the respondents’ WTA is no different across those who accepted and those
who did not (£26.64 vs. £25.89, t-test, p=0.86), nor is there a difference in acceptance based on the offer
itself (£57.5 vs £59.3, t-test, p=0.73). Treatment received and survey duration also do not have a statistically
significant impact on account information provision.

22While the sign-up rate is admittedly low, low-uptake in energy efficiency schemes is not uncommon. Fowlie
et al. (2015) find in their study on the non-monetary costs of the Weatherization Assistance Programme that
even after extensive efforts to encourage uptake, only 15% of treated households submitted an application, and
less than 6% received an upgrade. In their case the upgrade was worth on average $5000.
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where Ti is the treatment group assignment of individual i, Xi is a vector of observable
individual characteristics, and ε is a random error term. As outlined previously, the BDM
works by allowing individuals who do not wish to accept a free meter to select a value
that they would be willing to accept as compensation for having a smart meter installed
in their homes, and their WTA can take on any positive value.

We perform a distributional analysis in line with the recommendation of Angrist and
Pischke (2008) that considers the treatment effects at various subsidy values defined at
relevant mass points in our data (see Figure 5). That is, in light of the selection bias
that arises in the ‘conditional-on-positive’ effect of a two-part model (as noted in Angrist
and Pischke, 2008), we define our dependent variable not as a continuous left-censored
dependent variable WTAi but rather as a binary participation variable at various possible
subsidy levels c:

[WTAi ≤ c] = βTi + γXi + ε (2)

where again Ti is the treatment group assignment of individual i, Xi is a vector of observ-
able covariates, and ε is a random error term. Supplementary to the above analysis, we
discuss the demand curve for smart meters and consider the welfare implications in terms
of inframarginal participation and excess government spending for each of the subsidy
values considered.

4 Data

4.1 Composition of sample

The study sample comprises adult (18+) UK residents whose characteristics reflect those
of the national population, screening to ensure that respondents neither have smart meters
installed in their homes nor have been offered smart meters by their energy provider. The
panel was recruited via Qualtrics Research Services.23 Sample quotas for gender, age,
education, and region were set to match those of the UK population at large.

The sample consists of 2,430 household decision-makers24. The sample differs from the
population only to the extent that they have agreed to take part in survey research as part
of a panel. They do not have smart meters installed in their homes, though this deviation
from the UK population is necessary in order to glean insights into the motivations of the
sub-population relevant to the research question.

Columns 1-5 of Table A1 provide a comparison of our sample to the national popula-
tion. The sample is broadly representative along most dimensions including gender, age,

23Respondents are sourced from a variety of methods including the following: ads and promotions across
various digital networks, search, word of mouth and membership referrals, social networks, online and mobile
games, affiliate marketing, banner ads, offerwalls, television and radio ads, and offline recruitment with mail
campaigns. Typically, respondents can choose to join a panel through a double opt-in process. Upon registration,
they enter some basic data about themselves, including demographic information, hobbies, interests, etc. Based
on this information they will be invited to take part in certain surveys. At the time of enrollment, it is made
clear that the panel is for research-only purposes and that this is not part of a sales process. Survey invitations
provide only basic links and information that is non-leading. Panelists are rewarded for taking part in surveys
according to a structured incentive scheme, with the incentive amount offered for a survey determined by the
length of survey and nature of the sample. Panelists have the option to unsubscribe at any time.

24We provide additional information on sample size calculations in Appendix A.2
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education, income, and region, with some caveats. Younger (18-24) and older (55 and
above) age categories are slightly under-represented in our sample, while degree holders
and individuals with A-levels and GCSEs are over-represented. One education category,
“Other vocational qualification / Foreign qualification”, is significantly under-represented
(although balanced across treatments). The disparity is possibly due to a lower number
of non-UK nationals participating in the survey, but also potentially attributable to some
confusion among participants in answering this question, which would also partly explain
the over-representation on other education categories.

Region is broadly representative across ten categories of Government Office region,
including Scotland and Wales. While not forming part of the quota, we also present a
comparison of income. Higher income households (above £45k per year) are slightly over-
represented, while some lower income categories (£16-19k per year) are under-represented.

Columns 6-8 of Table A1 report p-values for tests of the difference in the mean of
each variable for all control-treatment pairs. Given random assignment of treatment we
observe that all groups are largely balanced. We observe a slight imbalance for some of our
regional variables, notably London (14% of Control sample, 11% of Treatment 2 sample,
p<0.05). An F-test for joint orthogonality of all variables, also reported in Table A1,
results in an insignificant p-value. Taken together, the results suggest that the pattern
of observed differences is likely due to sampling variation in the random assignment of
treatment. However, as a robustness check we will also include baseline control variables
in our main specifications.

4.2 Dependent variables

4.2.1 Adoption without compensation

Table 1 presents the descriptive statistics for our first outcome variable, which is the
proportion of participants who agreed to adopt a smart meter for no payment following
exposure to either the control or treatment information. The mean level of adoption is
broadly similar across all groups with participants in Treatment 2 having the highest
adoption rate of 16%.

Table 1: Summary of un-
compensated adoption

Treatment N Mean

Control 608 0.150
Treatment 1 608 0.147
Treatment 2 609 0.160
Treatment 3 605 0.152

Note: Of the 2430 respondents to the
free meter question, 15.2% (n=369) in-
dicated that they wanted to adopt a
smart meter for free.

4.2.2 Subsidized adoption

Among those who did not wish to adopt a meter without compensation and passed our
BDM test of understanding, the range of WTA values elicited is highly skewed, as demon-
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strated by Figure 4, which here is constrained at a maximum WTA of£1000. The boxes
on the left present the median and inter-quartile range (IQR) of WTA for the study group
specified on the horizontal axis, with the full distribution of the data presented on the
right; the length of the bars is in proportion to the number of observations at each WTA
value on the vertical axis. The IQR is between £50-150 for all groups, though Treatment 2
has a marginally lower median than Treatment 3 and both are lower than Treatment 1 and
the Control group. The mean WTA is lowest for Treatment 1. A prominent feature of the
data is the bunching of WTA values at certain points in the distribution. When analyzing
the data we must account for this feature and for the variance in the relative ranking of
mean and median by treatment depending on where we constrain the maximum.25
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Figure 4: Distribution of WTA values by treatment

The approach we take is to focus on specific subsidy values that represent mass points
of the WTA distribution. The subsidy values examined here (i.e. the c values) have been
chosen based on the high frequency of their selection by respondents of the WTA exercise
and the seemingly relevant percentage of respondents who fall under each respective cat-
egory (approximately 27%, 32%, 47%, 75%, and 85%, for c=10, 25, 50, 75, 100, and 200,
respectively). In other words, about half of individuals reported a WTA of less than or
equal to £50, and therefore presumably would adopt a smart meter under the provision
of a £50 subsidy (a quarter for a £10 subsidy, a third for a £25 subsidy, etc.). Figure 5
presents the selected mass points graphically.

25See Table A2 in the Appendix for summary statistics for various WTA ranges.
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Figure 5: Subsidy values chosen for analysis

4.3 BDM Comprehension and WTA Data Quality

Of the 2,430 respondents, 2,063 indicated that they did not want a free smart meter when
asked. After providing extensive instructions, we asked whether respondents felt confident
they understood the BDM valuation exercise, and 93.15% of the 2,058 responses answered
in the affirmative (five individuals did not respond). Even so, 41.0% (n=846) of the
2,063 respondents who did not want a free smart meter passed the test of understanding
without failing, while 20.5% (n=423) and 3.7% (n=76) passed after failing on the first
and second attempts, respectively. The final 34.8% (n=718) did not pass any of the three
attempts and were then asked the TIOLI question, to which 42 individuals (5.96% of
TIOLI respondents) responded in the affirmative, and 13 did not provide a response.26

Finally, three individuals who passed the BDM comprehension test neglected to provide a
WTA.

Given that 35% of individuals who declined a free smart meter failed the comprehension
test, it is important to understand for whom we are measuring WTA. Using χ2-tests
to determine the impacts of several socio-demographic characteristics—namely gender,

26Individuals who reported being confident that they understood the exercise prior to the test of understanding
were significantly more likely to pass the test. A χ2-test of two binary indicators of self-reported understanding
and passing the test is significant (p=0.000, χ2=90.9), and a basic regression of the number of failed test-
of-understanding rounds on the self-reported understanding indicator shows that self-reported comprehension
lowers the number of failed rounds by 1.1 (p=0.000). Still, 32.0% of those who self-report understanding the
exercise ultimately fail, compared to 71.6% of those who self-report a lack of comprehension.
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Table 2: Self-reported and Revealed
Comprehension of BDM Exercise

Self Reported

Failed Rounds No Yes Total

0 18 822 840
1 16 406 422
2 6 70 76
3 101 612 713

Total 144 1,962 2,106

welfare status, region, supplier, employment status, tenure, income, and education—as well
as treatment on self-reported BDM understanding and comprehension test failure, we find
that employment (p=0.052), income (p=0.010), and education (p=0.001) all predict the
former while welfare (p=0.056), employment (p=0.059), income (p=0.000), and education
(p=0.000) predict the latter. We therefore likely over-represent more educated and higher-
income individuals in our BDM measure relative to the population as a whole. Given that
higher income generally translates to lower marginal utility of income, we expect this over-
representation to lead to, if anything, an underestimate of adoption rates for the subsidy
values considered.

5 Results

5.1 Adoption without compensation

We first investigate the likelihood that an individual adopts a smart meter without com-
pensation following exposure to the information treatment. The output of the linear
probability model following equation (1) (see Table 3, column 2) shows that none of the
treatments had a meaningful effect on smart meter adoption relative to the control group.
These results suggest that individuals who currently adopt smart meters are either al-
ready well informed about the benefits we convey in the treatments (and their salience is
unimportant in decision making), or that they are interested in adopting the technology
regardless of these benefits.

5.2 Subsidized adoption

We now turn to the impacts of the treatments on smart meter adoption rates under a
number of possible subsidy schemes. For this portion of the analysis, we exclude individuals
who did not pass the BDM comprehension test and also did not accept the TIOLI offer,
since we do not have sufficient information on these individuals to understand whether
they would have accepted the subsidies we consider here. We include all individuals who
indicated interest in obtaining a smart meter without compensation as well as individuals
who accepted the TIOLI offer, since all of these individuals indicated a WTA valuation of
less than or equal to £10, the minimum subsidy considered in this analysis.
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Table 3: Treatment Effects on Adoption of
Smart Meters Without Compensation

(1) (2)
Treatment 1: Private -0.003 -0.002

(0.019) (0.020)
Treatment 2: Social 0.010 0.008

(0.014) (0.014)
Treatment 3: Learning 0.002 0.001

(0.018) (0.016)
Constant 0.150*** 0.110***

(0.008) (0.028)
Observations 2,430 2,430
R-squared 0.000 0.019
Controls NO YES

Note: The dependent variable in the regression is a binary vari-
able capturing whether the respondent agreed to adopt a smart
meter without compensation. Controls include gender, age, in-
come, and region. Standard errors are included in parenthe-
ses below the estimates and are clustered at the supplier level.
∗∗∗p < 0.01 ∗∗p < 0.05 ∗p < 0.10

Table 4 exhibits the results from the linear probability model following equation (2).
The results indicate that neither information on private benefits nor on learning have con-
sistent positive or negative causal effects on uptake under various subsidy values. However,
information on the social benefits of smart grid infrastructure appear to influence decisions
in a consistently positive direction. While failure to comprehend the BDM mechanism at-
tenuated our sample size for this exercise by about a third (diminishing our power to
detect effects), it nevertheless appears that the social benefits intervention played a role in
boosting adoption rates, and with statistical significance for subsidy values of £10 (β=4.2
percentage points, p=0.013), £50 (β=4.9 percentage points, p=0.015), and £75 (β=6.6
percentage points, p=0.026). The coefficients remain positive (though not significant) for
the other subsidy values considered. Though we cannot reject the null hypothesis of equal
adoption across Control and Treatment 1, there is some indication that interacting pri-
vate benefits with a £25 or £50 subsidy may also sway some individuals (just under 2
percentage points).

19



Table 4: Treatment Effects on Adoption of Smart Meters for Relevant Subsidy Values: TIOLI
Included

(1) (2) (3) (4) (5) (6) (7)
c = 10 c = 25 c = 50 c = 75 c = 100 c = 150 c = 200

Treatment 1: Private 0.006 0.018 0.018 -0.005 -0.019 0.003 -0.008
Standard error (0.031) (0.023) (0.026) (0.023) (0.024) (0.024) (0.021)
Wild bootstrap p-value 0.872 0.460 0.527 0.859 0.431 0.960 0.689

Treatment 2: Social 0.042** 0.021 0.049** 0.066** 0.011 0.025 0.026
Standard error (0.017) (0.021) (0.018) (0.019) (0.025) (0.018) (0.014)
Wild bootstrap p-value 0.013 0.340 0.015 0.026 0.658 0.337 0.163

Treatment 3: Learning -0.001 -0.011 0.033 0.027 -0.014 -0.007 0.008
Standard error (0.020) (0.024) (0.025) (0.023) (0.024) (0.020) (0.020)
Wild bootstrap p-value 0.952 0.686 0.288 0.302 0.597 0.753 0.709

Constant 0.302*** 0.445*** 0.588*** 0.686*** 0.881*** 0.852*** 0.908***
(0.059) (0.067) (0.068) (0.049) (0.038) (0.036) (0.022)

Observations 1,751 1,751 1,751 1,751 1,751 1,751 1,751
R-squared 0.031 0.038 0.042 0.041 0.044 0.042 0.047
Controls YES YES YES YES YES YES YES

Note: The dependent variable in the regression is a binary variable capturing whether the respondent agreed to adopt a smart meter for a
price in the range of [0, c]. Controls include gender, age, income, and region. Standard errors are included in parentheses below the estimates
and are clustered at the supplier level. Wild cluster bootstrap p-values are reported underneath to address concerns relating to the small
number of clusters. ∗∗∗p < 0.01 ∗∗p < 0.05 ∗p < 0.10

Section A.4 of the Appendix presents an overview of all robustness checks undertaken:
(i) we run alternative estimations both including and excluding the TIOLI sample; (ii) we
assess the WTA data quality for anchoring, miscomprehension, and strategic behavior; (iii)
we compare our primary results to those from a binary logistic regression model; (iv) we
present a justification for our standard error clustering adjustment and conduct sensitivity
analyses by undertaking a wild bootstrap estimation to account for the low number of
clusters. In addition, we report wild bootstrap p-values in our primary estimation results,
presented in Table 4. These robustness checks support the findings presented above.

We also elicit information on subjective barriers to adoption, which we use to provide
evidence on the society-wide barriers inhibiting participants from adopting smart meters.
Participants cited a range of barriers, The most frequently cited were hassle costs, privacy
or security concerns and belief that the device will not lead to savings. Section A.6 of the
Appendix provides a detailed discussion.

5.3 Estimating demand for smart meters

Eliciting precise willingness-to-accept using the BDM method permits construction of a
demand curve for the good in question; in our case, given we are estimating willingness-
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to-accept rather than willingness-to-pay, the prices in our demand curve are negative.27

Figure 6 presents cumulative demand curves for smart meters based on the elicited WTA
(or negative price) of our sample participants. We include all households who would have
adopted a smart meter for free as having a price of £0 and all of those who accepted our
TIOLI offer as having a price of -£10. We present a demand curve for those participants
whose WTA was £1000 or less and a second demand curve restricted at £200 or less. For
our sample a subsidy of £200 would result in 1490 additional households adopting or about
85% of the total for whom we have WTA information. The curve is reasonably linear up
to a price of approximately £200. At this point an inflection point in the demand curve
suggests that subsidies of larger amounts may not result in substantially more demand.
Appendix A.7 presents demand curves by treatment group. For WTA values greater than
£200 the demand curve for Treatment 3 appears to the right of the others. The shift to
the right of the demand curve for Treatment 2 becomes visible at lower WTA values, in
line with our econometric results.
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Figure 6: Estimated demand curve for smart meters. The left panel presents a demand curve
restricted at £1000 or less, the right is restricted at £200 or less.

27The present value of the net benefits derived from smart meter adoption to a given household is idiosyncratic
and maybe positive or negative. We provide a discussion of the relevant costs and benefits in Section 2. As
outlined in Section 4.1 we focus our analysis on those households who do not have, nor have been offered a
smart meter. People who place a positive value on smart meter adoption are likely to have already adopted, but
will also be included amongst those participants willing to adopt without compensation. We do not explicitly
attempt to measure their willingness-to-pay.
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5.4 Cost effectiveness and welfare implications

In line with Boomhower and Davis (2014; ‘BD’ hereafter), we conduct a cost efficiency
and welfare analysis for the subsidy values under consideration. We consider inframarginal
costs to be the additional amount the government would have to pay relative to the
next lowest subsidy value considered. For example, under a £25 subsidy in our discrete
analysis, individuals who accept a free meter cost an additional £25 to the government,
and individuals who do not accept a free meter but do accept for a £10 subsidy cost an
additional £15.

Whereas BD observe marginal adoption behavior at two discontinuities—i.e. two sub-
sidy values tied to assigned eligibility thresholds for the purchase of energy-efficient refrig-
erators and air conditioners in Mexico—we observe willingness-to-accept for smart meters
at each point along the demand curve.28 To first provide comparable analysis to that of
BD, we focus on the selected mass points within the plausible subsidy range of (£0, £200],
as considered in our main regression analyses.

Using similar back-of-the-envelope calculations to those undertaken in BD, we demon-
strate in Table 5 (column 11) that inframarginal participation costs dominate the total
costs of any subsidy program, ranging from 53-83% of total costs for the subsidy values
considered.29 Of course, the larger is the subsidy value, the higher the government transfer
to any participating household, so the absolute inframarginal participation cost increases
substantially as the subsidy value increases. For instance in the case of £10, £50, and
£100 subsidy offers, the inframarginal costs come out to £3690, £23,590, and £67,515,
respectively, when we account for the participation of individuals at these subsidy levels
relative to the preceding subsidy level in the table (see column 1).30

Normalizing these costs indicates that these subsidy offers would lead to ‘excess spend-
ing’ of approximately £2, £14, and £39 per capita (see column 7). When we consider the
efficiency costs of making these transfers, and using the presumed efficiency cost in Goul-
der and Williams III (1997) of η = 1.3 as in BD, the costs increase further (see columns
8-10). Finally, considering additionality for these three subsidy offers over a baseline of no
subsidy (i.e. £0), the percentage of non-additional adopters—i.e., those who would have
adopted without a subsidy as a percentage of total adopters, which declines with subsidy
value by design if we assume elasticity of demand>1—is 83%, 47%, and 29% (see column
4). Hence, a policymaker choosing from these eight possible subsidy values would trade off
various considerations—including targeted adoption rates, (percent) inframarginal costs,
costs per capita, and additionality—to optimize her social welfare function.

28We do not observe marginal adoption behavior for the TIOLI sample, since we only observe their binary
adoption decision provided £0 and £10 subsidy values; we therefore focus this segment of our analysis on the
sample for whom we have elicited a WTA valuation, including those who accepted a free meter (i.e. WTA=£0) in
the ‘discrete’ analysis (i.e. Table 5); this subsample includes 1711 participants. Given there are no inframarginal
costs of adoption at a subsidy level of £0, free meter adopters are naturally excluded from the ‘continuous
analysis’ below (i.e. Figure 7).

29Boomhower and Davis (2014) find that 69-84% percent of total costs are inframarginal in their context.
30Note that the subsidy values selected for this analysis will affect these numbers, since the ‘inframarginal

cost’ is only considered to be the difference between the subsidy offer at which one adopts and the subsidy
offered.
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Table 5: Inframarginal Participation and Welfare Costs

A: Adoption B: Subsidy transfers C: Total costs D: Percent infra-
marginal

Subsidy
value

Total
adoption
(%)

Total
adoption
(n)

Non-
additional
(%)

IM sub-
sidy
transfer

Total sub-
sidy trans-
fer

IM trans-
fer per
capita

IM cost Total
cost

Total
cost per
capita

IM as per-
cent of to-
tal cost

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

£0 22% 369 - - - - - - - -
£10 26% 445 83% £3,690 £4,450 £2 £4,797 £5,785 £3 83%
£25 31% 529 70% £10,365 £13,225 £6 £13,475 £17,193 £8 78%
£50 46% 792 47% £23,590 £39,600 £14 £30,667 £51,480 £18 60%
£75 56% 965 38% £43,390 £72,375 £25 £56,407 £94,088 £33 60%
£100 75% 1277 29% £67,515 £127,700 £39 £87,770 £166,010 £51 53%
£150 80% 1373 27% £131,365 £205,950 £77 £170,775 £267,735 £100 64%
£200 85% 1451 25% £200,015 £290,200 £117 £260,020 £377,260 £152 69%

Note: In the table, “IM” is short for “inframarginal”. Panel A provides information on sample smart meter adoption at various subsidy levels,
excluding TIOLI takers (n=1711). In line with BD, non-additional adoption refers to the percentage of adopters receiving a given subsidy who
would have adopted the smart meter without a subsidy. The costs in panel B refer to the inframarginal and total transfers from the government to
individuals if a given subsidy were to be implemented in our sample, with normalization provided with per capita transfers. Panel C replicates panel
B but incorporates efficiency costs of η = 1.3. Panel D shows inframarginal spending as a percentage of total spending.

23



To improve upon the above insights into optimal subsidy provision—where the subsidy
values considered affect the outputs in the table—Figure 7 utilizes the continuous nature
of our WTA elicitation to present the results from Table 5 for a continuous range of
potential subsidies. For our sample, a local minimum in the proportion of total costs
that are inframarginal is observed at a subsidy value of £100. This feature of the data
suggests that while inframarginal costs dominate any potential subsidy scheme, should a
social planner decide to subsidize smart meter adoption, the optimal level is £100 from
the perspective of minimizing the percentage of spending that is inframarginal. However,
given the jump in the proportion of adopters at a subsidy value of £100, we also see an
increase in the total welfare cost per capita—calculated as the inframarginal welfare cost
multiplied by the number of adopters at each subsidy increment, normalized by the total
number of adopters—at £100. This increase in the total welfare cost coincides with a
higher adoption rate, which also enters into the policymakers’ social welfare function.
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Figure 7: Inframarginal and total costs as a function of subsidy value (y-axis). The green
dots and fitted line denote the proportion of total costs that are inframarginal (left axis) as a
function of subsidy value. The orange and blue lines denote the per capita level of total and
inframarginal costs (right axis) as a function of subsidy value.

Hence, conditional on choosing a positive subsidy value, if maximizing adoption rates
and minimizing the percentage of spending that is inframarginal are sufficiently prioritized
over total spending, the policymaker should offer a £100 subsidy for smart meter adoption.
Of course, the optimal subsidy will depend on the social welfare function, so we cannot
comment on the “correct” subsidy, and such is not our objective here. Rather, we aim
to more broadly demonstrate the merits of our methodology for making such tradeoffs
transparent to better inform a social planner’s decision-making.
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6 Conclusion

Encouraging private adoption of technologies and behaviors that have direct private costs
and uncertain benefits is an objective that will continue to feature prominently in so-
ciety’s response to climate change and other environmental externalities. Our research
demonstrates a method to identify and measure barriers to adoption and devise an ap-
propriate policy response. In doing so, we build on past research by Jaffe and Stavins
(1994a); Gillingham and Palmer (2014); Fowlie et al. (2015) among others in identifying
non-monetary costs and other barriers to adoption. We then generalize important work by
Boomhower and Davis (2014) to estimate the inframarginal costs of any potential subsidy
scheme.

Based on the UK Government’s own cost-benefit analysis, society could benefit from
subsidizing each smart meter installation up to £212.31 Our results suggest that a subsidy
of £10 would increase demand for a smart meter about 5 percentage points from a baseline
of 15%.32 Excluding the sample of respondents who did not pass the test of understanding
for the BDM exercise (since we do not have WTA information for those who rejected the
TIOLI offer), we infer that offering £10, £25, and £50 would induce additional adoption
of 4, 9, 24 percentage points from an updated baseline of 22% adoption, and that pair-
ing these subsidies with a social information campaign can boost these numbers by an
additional 2-5 percentage points. Inframarginal costs dominate the cost of any subsidy
programme, ranging from 53-83 percent of total costs. From the perspective of minimiz-
ing the percentage of policy expenditures that are inframarginal, our data suggest a £100
subsidy could be optimal, though the information campaigns tested here do not positively
interact with this subsidy level with statistical significance.

We recommend that policymakers identify the appropriate evidence-based policy mea-
sure by carefully considering objectives relating to dynamic and inframarginal policy costs
and incentives, as well as ideal thresholds of system-wide adoption. With respect to in-
creasing energy technology uptake, we recommend that policy makers rigorously engage
with households in order to gain a deep understanding of the (extent of) drivers and
barriers to adoption, and consider the use of financial incentives where appropriate. For
instance, qualitative information from our sample of non-adopters suggests that hassle
costs, concerns about privacy and security, and skepticism about the benefits of smart me-
ters constitute major barriers to smart meter adoption despite widespread ad campaigns
touting their benefits (see A.6).

Compounding these barriers are the positive network externalities of adoption and
the dynamic nature of technological progress. That is, the longer a household postpones
adoption, the more likely it is that the technology has progressed along desired dimensions
(e.g., security, privacy, supplier inter-operability). The social planner may therefore have
duelling incentives: (i) to provide subsidies for early adoption to both capture low-WTA
users at no or low cost (i.e. price discriminate) and address potential learning-by-using and
network externalities, and (ii) to delay subsidy provision or increases to avoid subsidizing
inframarginal consumers, where the very possibility of the latter in itself may induce

31This assertion assumes not only that the UK Government’s CBA is optimal but also that there are no
distortions induced by subsidization; a back-of-the-envelope calculation using Goulder and Williams III (1997)’s
efficiency loss parameter, the government would be willing to subsidize up to £163.

32The subsidy increases uptake by 4.9 percentage points from a baseline of 15.2% adoption in the full sample
(a 32% increase in adoption), and it increases adoption by 6 percentage points in the sample of respondents who
answered the TIOLI question.
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households to postpone adoption even further (Langer and Lemoine, 2018).33

In the case of the UK’s Smart Meter Implementation Programme, a broader infor-
mation campaign educating consumers about the society-wide benefits of household-level
action could increase uptake of smart meters if appropriately paired with a reasonable
subsidy scheme.

33Our qualitative survey feedback provides evidence of the latter phenomenon in that a significant number
of individuals alluded to future technological progress to justify current non-adoption, even despite not having
been offered this multiple-choice option explicitly.
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A Appendices

A.1 Survey Materials

A.1.1 Becker-DeGroot-Marschak Exercise Instructions
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A.1.2 BDM Comprehension

A.1.3 BDM Response
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A.2 Sample size calculations

Given the original plan to perform a Tobit regression analysis34, we ran sample size cal-
culations for the binary outcome variable of whether individuals adopt a meter for free
as well as the continuous outcome of WTA. With regard to the former, the 15% baseline
(control group) adoption assumption was derived from our pilot experiment, where just
under 300 individuals took the first part of the control survey as it exists in the study. Ex-
pected payout is based on what would have been paid out (i.e. the payout for individuals
whose bid price was less than our offer) to individuals had we paid 100% of individuals
in the pilot (in which we paid a randomly determined 10% of participants). Additionally,
the expected percentage of individuals to undertake the BDM and TIOLI exercises was
also taken directly from the pilot study.

With an anticipated 2500 individuals taking the survey35 and four groups (one control,
three treatment) in total, we were powered to detect around a 6 percentage point difference
in (free) smart meter uptake from a baseline of 15% uptake. For the continuous outcome,
we were powered to detect a 4.8-6.7% change in willingness-to-accept. This calculation is
based on a constrained maximum WTA of £100. More detail is available in the project
pre-registry on the Open Science Framework.

34In our pre-registry we anticipated using a Tobit regression analysis to provide insight into the continuous
WTA variable. We instead perform the analysis as outlined here due to the intuitive interpretation of the results,
the lack of clarity surrounding the appropriate upper limit upon which to censor the data (if at all), and the
objections raised in Angrist and Pischke (2008) and Boyle (2017) against using Tobit in this circumstance (i.e.
the need to make distributional assumptions on the latent WTA variable, and the potential ‘missing information’
for individuals at the tails of the distribution who may be the most vulnerable to ensuing policy prescriptions).
Using a binary dependent variable additionally reduces noise from any given participant, particularly those who
may have misunderstood the exercise or submitted protest responses.

35Though we terminated the survey upon receipt of 2500 seemingly valid responses, we identified a number
of repeat survey takers who have since been removed from the data. Of the 109 suspected duplicates, 70 were
not initially identified by our survey providers. We removed these participants leaving 2,430 valid responses in
total.
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A.3 Descriptive statistics

Table A1: Descriptive statistics and balance table

Proportion Test of Equality (P-value)

Demographic variables Population C: Control T1: Private
benefit

T2: Social
benefit

T3: Learning-
by-using

C = T1 C = T2 C = T3

(1) (2) (3) (4) (5) (6) (7) (8)

Gender
Female 0.51 0.51 0.51 0.52 0.52 0.909 0.795 0.817

Age
18-24 0.12 0.14 0.16 0.15 0.14 0.173 0.613 0.982
25-34 0.19 0.24 0.21 0.22 0.23 0.244 0.423 0.760
35-44 0.18 0.23 0.23 0.22 0.20 0.891 0.742 0.169
45-54 0.20 0.18 0.16 0.20 0.20 0.320 0.454 0.294
55-64 0.17 0.11 0.13 0.11 0.12 0.293 0.791 0.840
65 or older 0.14 0.10 0.10 0.11 0.12 0.925 0.772 0.507

Education
No formal qualifications 0.06 0.06 0.05 0.05 0.06 0.518 0.527 0.795
GCSE, O Level, CSE 0.28 0.34 0.36 0.37 0.35 0.433 0.261 0.518
A and AS Level or equiv. 0.12 0.17 0.16 0.16 0.17 0.643 0.551 0.838
Other Voc. Qual/Foreign qual. 0.27 0.09 0.11 0.08 0.09 0.253 0.359 0.854
Degree or higher 0.27 0.35 0.33 0.35 0.34 0.395 0.871 0.614

Income
Below 10,000 per year 0.15 0.15 0.13 0.13 0.14 0.506 0.410 0.760
10,000 - 16,000 per year 0.19 0.17 0.18 0.17 0.17 0.764 0.950 0.781
16,000 - 19,999 per year 0.14 0.08 0.08 0.10 0.10 0.674 0.186 0.154
20,000 - 24,999 per year 0.14 0.13 0.13 0.12 0.13 0.866 0.740 0.882
25,000 - 34,999 per year 0.16 0.16 0.16 0.16 0.16 0.937 0.947 0.957
35,000 - 44,999 per year 0.10 0.10 0.11 0.10 0.09 0.570 0.767 0.708
45,000 - 59,999 per year 0.06 0.12 0.12 0.12 0.12 0.930 0.938 0.844
60,000 - 79,999 per year 0.03 0.05 0.05 0.06 0.05 0.794 0.701 0.908
Over 80,000 per year 0.03 0.04 0.03 0.04 0.04 0.358 0.660 0.777

Region
East Midlands 0.07 0.08 0.08 0.08 0.07 0.751 0.757 0.395
East of England 0.10 0.08 0.08 0.06 0.08 0.674 0.215 0.588
London 0.14 0.11 0.11 0.14 0.13 0.783 0.046 0.153
North East 0.05 0.05 0.05 0.04 0.03 0.894 0.684 0.196
North West 0.11 0.13 0.10 0.10 0.11 0.105 0.107 0.390
South East 0.14 0.14 0.17 0.16 0.15 0.150 0.325 0.402
South West 0.09 0.10 0.08 0.09 0.11 0.367 0.701 0.340
West Midlands 0.09 0.09 0.11 0.10 0.08 0.503 0.915 0.427
Yorkshire and the Humber 0.08 0.09 0.09 0.08 0.08 0.761 0.762 0.850
Scotland 0.08 0.10 0.08 0.11 0.09 0.424 0.503 0.498
Wales 0.05 0.05 0.05 0.04 0.05 0.788 0.786 0.882

F test for joint orthogonality
Number of obs 2,429
F(31, 2397) 0.6
Prob ≥ F 0.9595

Note: Columns 1-5 present information on the breakdown of key sociodemographic variables within the general population (column 1) and each treatment group (columns 2-5). Columns 6-8 presents p-values
for a test of equality between the control and each treatment group. The number of observations in the above F test is 2429 as education information was not provided by one participant
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Table A2: Summary statistics at Willingness-to-Accept cut-off points

WTA Range Statistic Control Treatment 1 Treatment 2 Treatment 3

WTA ≤ 10000 Mean (GBP) 294 390 334 338
Median (GBP) 90 99 80 94

WTA ≤ 1000 Mean (GBP) 159 139 145 148
Median (GBP) 85 90 75 80

WTA ≤ 500 Mean (GBP) 108 108 110 111
Median (GBP) 80 83 75 76

WTA ≤ 200 Mean (GBP) 78 76 78 80
Median (GBP) 75 75 75 75

WTA ≤ 150 Mean (GBP) 69 69 70 68
Median (GBP) 71 65 60 60

WTA ≤ 100 Mean (GBP) 63 60 61 60
Median (GBP) 60 55 55 55

WTA ≤ 75 Mean (GBP) 43 39 46 43
Median (GBP) 50 40 50 50

WTA ≤ 50 Mean (GBP) 32 31 35 34
Median (GBP) 35 30 40 40

WTA ≤ 25 Mean (GBP) 15 14 13 15
Median (GBP) 17 15 10 12

WTA ≤ 10 Mean (GBP) 6 6 6 8
Median (GBP) 7 10 8 10

34



A.4 Robustness

A.4.1 Comparison of BDM and TIOLI survey participants

Given that those participants who undertook the TIOLI exercise failed the BDM com-
prehension test and are observably different across certain characteristics, we also include
three additional sets of analysis for completeness. Table A3 presents results of the main
estimation following removal of those participants who accepted the TIOLI offer of £10.
The social benefits intervention still has an effect with marginal statistical significance for
subsidy values of £50 (β=3.6 percentage points, p=0.068) and £75 (β=5.4 percentage
points, p=0.072). However, both the magnitude and significance of the coefficients at-
tenuate, suggesting that inclusion of the TIOLI participants strengthens the results from
Table 4, particularly when considering the £10 subsidy.

Table A4 presents the results from an analysis following removal of the TIOLI partic-
ipants and participants who are willing to adopt without any compensation. This group
consists only of those who undertook the BDM valuation exercise. The social benefits
intervention has a statistically significant effect only for a subsidy value of £75 (β=6.6
percentage points, p=0.084), though the effect size is almost identical for the £50 subsidy
value in the regression in which we exclude TIOLI but include those who accepted a free
meter, suggesting that we may simply be underpowered to detect some effects once we
remove significant portions of our sample from the analysis. Table A5 presents the results
from analysis of just the TIOLI participants with all others removed. Again the social
benefit treatment has an impact resulting in a 4 percentage point increase in uptake.

Taken altogether, the social benefit intervention has an impact at multiple subsidy
values and, at the £10 subsidy value in particular, our results would appear to be partially
driven by the inclusion of those who accepted the TIOLI offer in our analysis.

A.4.2 WTA data quality

Section 3.1.2 describe a range of potential concerns one might have with valuations elicited
through a BDM experiment. We undertake a number of steps to ensure data quality.
Firstly, we collected detailed self-reported reasons from each participant for their choice of
WTA value. We categorized open-ended responses from 793 participants36 into 53 detailed
reasons. Each reason was then further categorized into 14 composite reasons. Table A6
provides further information. A key concern for our analysis is the existence of participants
who may engage in strategic behavior, appear to not fully understand the exercise, and
who may have been anchored by our instructions in their WTA valuation37. Table A7
provides results from our primary estimations with any suspected anchoring, strategic
behavior, or miscomprehension removed. The results are qualitatively similar to those of
our main estimations.

36Unfortunately we did not force a response on this question and as a result collected information from 793
respondents out of a total of 1304 who undertook the BDM exercise

37As described in Section 3.1.2 we also conducted a pilot experiment to mitigate anchoring in the design of
the exercise.
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A.4.3 Sensitivity analysis

When selecting our sample we chose to include only customers of the 11 largest UK sup-
pliers.38 This group represents 88% of total market share, and the retail electricity market
in the UK has over 50 suppliers in total, making it practically impossible to coordinate
smart meter installation offers for customers of all suppliers.

Our standard errors must be clustered to reflect this sampling design and we cluster
at the level of the supplier (Abadie et al., 2017). Given that we have only 11 suppliers, we
chose a method of clustering robust to this feature of our data. Canay et al. (2018) provide
evidence that the wild bootstrap method developed by Cameron et al. (2008) is robust
in settings with as few as five clusters. Roodman et al. (2019) provide an implementable
routine to perform this analysis in Stata and suggest the use of “Webb” weights when the
number of clusters approximates 10.

Figures A1, A2 and A3 present confidence intervals and p-values following a wild
bootstrap estimation with 2000 replications for the results presented in Table 4. The results
provide further evidence that information on the social benefits of smart grid infrastructure
(Treatment 2) appear to influence decisions in a positive direction for various subsidy levels.
Again, some evidence exists that communication of private benefits (Treatment 1) may
also influence individuals who would be persuaded under a £25 or £50 subsidy.

Finally, Table A8 presents results from a logistic regression model which are substan-
tively similar to our primary OLS specification.

38At the time of sampling these were British Gas, EDF, EON, npower, Scottish Power, SSE, Co-op, Shell
Energy (formerly First Utility), Ovo, Utilita and Utility Warehouse.
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Table A3: Treatment Effects on Adoption of Smart Meters for Relevant Subsidy Values: TIOLI
Excluded

(1) (2) (3) (4) (5) (6) (7)
c = 10 c = 25 c = 50 c = 75 c = 100 c = 150 c = 200

Treatment 1: Private 0.006 0.018 0.017 -0.008 -0.024 -0.003 -0.014
Standard error (0.031) (0.022) (0.025) (0.022) (0.024) (0.024) (0.023)
Wild bootstrap p-value 0.857 0.439 0.500 0.751 0.335 0.919 0.543

Treatment 2: Social 0.026 0.005 0.036* 0.054* 0.000 0.014 0.015
Standard error (0.020) (0.023) (0.019) (0.019) (0.027) (0.021) (0.018)
Wild bootstrap p-value 0.206 0.835 0.068 0.072 0.996 0.553 0.462

Treatment 3: Learning -0.007 -0.017 0.028 0.022 -0.019 -0.012 0.003
Standard error (0.019) (0.023) (0.024) (0.023) (0.025) (0.021) (0.021)
Wild bootstrap p-value 0.724 0.483 0.306 0.378 0.493 0.583 0.896

Constant 0.269*** 0.421*** 0.573*** 0.677*** 0.887*** 0.858*** 0.918***
(0.047) (0.059) (0.065) (0.048) (0.039) (0.040) (0.028)

Observations 1,726 1,726 1,726 1,726 1,726 1,726 1,726
R-squared 0.032 0.038 0.042 0.040 0.044 0.042 0.046
Controls YES YES YES YES YES YES YES

Note: The dependent variable in the regression is a binary variable capturing whether the respondent agreed to adopt a smart meter for a
price in the range of [0, c]. Controls include gender, age, income, and region. Standard errors are included in parentheses below the estimates
and are clustered at the supplier level. Wild cluster bootstrap p-values are reported underneath to address concerns relating to the small
number of clusters ∗∗∗p < 0.01 ∗∗p < 0.05 ∗p < 0.10
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Table A4: Treatment Effects on Adoption of Smart Meters for Relevant Subsidy Values: BDM group
only

(1) (2) (3) (4) (5) (6) (7)
c = 10 c = 25 c = 50 c = 75 c = 100 c = 150 c = 200

Treatment 1: Private 0.022 0.036 0.037 0.006 -0.015 0.011 -0.004
Standard error (0.017) (0.017) (0.034) (0.026) (0.033) (0.036) (0.029)
Wild bootstrap p-value 0.2025 0.1465 0.3955 0.807 0.623 0.771 0.894

Treatment 2: Social 0.014 -0.011 0.035 0.066** 0.005 0.027 0.027
Standard error (0.015) (0.017) (0.025) (0.029) (0.040) (0.029) (0.023)
Wild bootstrap p-value 0.3965 0.5555 0.1705 0.0835 0.9095 0.458 0.395

Treatment 3: Learning 0.014 0.002 0.052 0.041 -0.012 -0.004 0.014
Standard error (0.010) (0.016) (0.037) (0.029) (0.027) (0.024) (0.025)
Wild bootstrap p-value 0.2395 0.923 0.256 0.1665 0.674 0.87 0.577

Constant 0.100*** 0.286*** 0.473*** 0.603*** 0.845*** 0.806*** 0.880***
(0.028) (0.044) (0.048) (0.038) (0.037) (0.043) (0.033)

Observations 1,304 1,304 1,304 1,304 1,304 1,304 1,304
R-squared 0.033 0.058 0.049 0.048 0.053 0.050 0.057
Controls YES YES YES YES YES YES YES

Note: The dependent variable in the regression is a binary variable capturing whether the respondent agreed to adopt a smart meter for a
price in the range of [0, c]. Controls include gender, age, income, and region. Standard errors are included in parentheses below the estimates
and are clustered at the supplier level. Wild cluster bootstrap p-values are reported underneath to address concerns relating to the small
number of clusters ∗∗∗p < 0.01 ∗∗p < 0.05 ∗p < 0.10
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Table A5: Treatment Effects on
Adoption of Smart Meters for

Relevant Subsidy Values: TIOLI

(1)
TIOLI

Treatment 1: Private -0.011
Standard error (0.009)
Wild bootstrap p-value 0.2545

Treatment 2: Social 0.040**
Standard error (0.016)
Wild bootstrap p-value 0.0435

Treatment 3: Learning 0.021
Standard error (0.021)
Wild bootstrap p-value 0.377

Constant 1.068***
(0.062)

Observations 705
R-squared 0.038
Controls YES

Note: The dependent variable in the regression
is a binary variable capturing whether the respon-
dent agreed to adopt a smart meter for a price in
the range of £10. Controls include gender, age,
income, and region. Standard errors are included
in parentheses below the estimates and are clus-
tered at the supplier level. Wild cluster boot-
strap p-values are reported underneath to address
concerns relating to the small number of clusters
∗∗∗p < 0.01 ∗∗p < 0.05 ∗p < 0.10
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Table A6: Reason given for WTA value

Reason Category Count Percentage

Suspected anchoring 7 1%
Concerns about smart meters 58 7%
Constrained by external factors 24 3%
To cover costs 81 10%
Do not want a smart meter 130 16%
Fair price 187 24%
Inconvenience/hassle costs 103 13%
Suspected miscomprehension 31 4%
No reason given/arbitrary 107 13%
Unknown reason 6 1%
Strategic 33 4%
Concerns about suppliers/energy costs 13 2%
Want a smart meter 13 2%

793 100%
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Table A7: Treatment Effects on Adoption of Smart Meters for Relevant Subsidy Values: Suspected
miscomprehension, strategic behavior and anchoring removed

(1) (2) (3) (4) (5) (6) (7)
c = 10 c = 25 c = 50 c = 75 c = 100 c = 150 c = 200

Treatment 1: Private 0.007 0.019 0.024 -0.002 -0.018 0.003 -0.008
(0.029) (0.018) (0.027) (0.021) (0.024) (0.026) (0.023)

Treatment 2: Social 0.038** 0.020 0.054*** 0.071*** 0.015 0.029 0.028*
(0.014) (0.019) (0.017) (0.019) (0.027) (0.020) (0.015)

Treatment 3: Learning 0.001 -0.005 0.038 0.031 -0.009 -0.003 0.012
(0.020) (0.022) (0.028) (0.023) (0.021) (0.019) (0.019)

Constant 0.301*** 0.434*** 0.582*** 0.686*** 0.877*** 0.848*** 0.903***
(0.064) (0.060) (0.061) (0.045) (0.038) (0.035) (0.023)

Observations 1,707 1,707 1,707 1,707 1,707 1,707 1,707
R-squared 0.029 0.036 0.040 0.040 0.045 0.043 0.049
Controls YES YES YES YES YES YES YES

Note: The dependent variable in the regression is a binary variable capturing whether the respondent agreed to adopt a smart meter for
a price in the range of [0, c]. Any participants suspected of strategic behavior, miscomprehension or anchoring in their WTA valuation are
removed. Controls include gender, age, income, and region. Standard errors are included in parentheses below the estimates and are clustered
at the supplier level. ∗∗∗p < 0.01 ∗∗p < 0.05 ∗p < 0.10
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Table A8: Treatment Effects on Adoption of Smart Meters for Relevant Subsidy Values: Logistic
Regression Results

(1) (2) (3) (4) (5) (6) (7)
VARIABLES WTA 10 WTA 25 WTA 50 WTA 75 WTA 100 WTA 150 WTA 200

Treatment 1: Private 0.047 0.085 0.084 -0.013 -0.102 0.017 -0.069
(0.155) (0.092) (0.107) (0.088) (0.135) (0.167) (0.175)

Treatment 2: Social 0.208*** 0.097 0.215*** 0.298*** 0.075 0.186 0.221*
(0.069) (0.088) (0.067) (0.080) (0.152) (0.130) (0.125)

Treatment 3: Learning 0.012 -0.027 0.141 0.115 -0.059 -0.026 0.079
(0.106) (0.107) (0.114) (0.095) (0.120) (0.121) (0.150)

Constant -0.843*** -0.207 0.367 0.800*** 1.945*** 1.813*** 2.431***
(0.307) (0.291) (0.264) (0.198) (0.241) (0.248) (0.229)

Observations 1,708 1,708 1,708 1,712 1,712 1,708 1,708
Controls YES YES YES YES YES YES YES

Note: The dependent variable in the regression is a binary variable capturing whether the respondent agreed to adopt a smart meter for a price
in the range of [0, c]. . Controls include gender, age, income, and region. Standard errors are included in parentheses below the estimates and are
clustered at the supplier level. ∗∗∗p < 0.01 ∗∗p < 0.05 ∗p < 0.10
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A.4.4 Sensitivity: Wild bootstrap confidence intervals
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Figure A1: Treatment 1: 95% Confidence Interval of treatment effect following Wild Bootstrap
estimation of standard errors with 2000 replications
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Figure A2: Treatment 2: 95% Confidence Interval of treatment effect following Wild Bootstrap
estimation of standard errors with 2000 replications
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Figure A3: Treatment 3: 95% Confidence Interval of treatment effect following Wild Bootstrap
estimation of standard errors with 2000 replications
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A.5 Heterogeneity results

We base our heterogeneity analysis on the exploratory hypotheses proposed in our project
pre-registration. Below we outline each of our hypotheses and state whether they are
supported by our results.39

Our first hypothesis (H1) conjectured that low-income households will be more likely
to (a) adopt a free meter or (b) state a lower WTA than higher-income households due
to higher marginal utility of income in Treatment 1 (Private Benefit). We find that this
hypothesis is unsupported by our results along both dimensions.

Our second hypothesis (H2) was that individuals with more interest in and knowledge
of environmental issues and undertakings will respond more favorably to Treatment 2 (So-
cial Benefit). That is, we posited that higher rankings on any of the following scales would
positively interact with social information: (a) education; (b) environmental interest (as
proxied by attitude toward renewable energy); (c) engagement in energy-saving behaviors,
and/or; (d) trust in institutions (as proxied by trust in government and energy suppli-
ers). We find that H2a is unsupported: degree holders are no more likely to respond to
Treatment 2 than those without a degree. Our analysis of H2b is inconclusive, though the
sign of the coefficient is generally going in the direction of support and is significant for a
subsidy of £50. H2c is unsupported, and if anything we find that people who undertake
more energy-saving behaviors are less likely to respond to Treatment 2 at higher subsidy
levels. H2d is also largely unsupported, in that more trust in suppliers or government does
not lead to a higher response to Treatment 2. The exception to this result is a statistically
significant and positive impact of higher trust in government interacted with a subsidy
value of £200.

Our third and final hypothesis (H3) anticipated that individuals who are (a) more
risk averse or (b) have higher revealed interest in technology (as proxied by ownership
and optimism toward technology) would be more affected by Treatment 3 (Learning),
since this treatment aims to alleviate concerns about privacy and security while touting a
new and upgraded technology. We find that H3a is supported by our results: Treatment
3 increases the likelihood that risk-averse individuals adopt smart meters for all subsidy
levels from £10 upwards. We do not observe a statistically significant effect for risk-seeking
participants. Treatment 2 also increases the likelihood that risk-averse individuals adopt
a free meter, and the effect is also present for all subsidy levels from £10 upwards. On the
other hand, H3b is unsupported; while the sign of the coefficient is generally consistent
with the hypothesis, the effect is neither consistent nor significant across models.

39Table A9 provides supporting results for the estimations regarding risk preferences. All other results are
available on request.
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Table A9: Heterogeneity Analysis of Treatment Effects on Adoption of Smart Meters for Relevant Subsidy Values

(1) (2) (3) (4) (5) (6) (7) (8)
Participation effect WTA 10 WTA 25 WTA 50 WTA 75 WTA 100 WTA 150 WTA 200

Treatment 1: Private -0.017 -0.030 -0.028 -0.047 -0.085*** -0.056** -0.031 -0.040
(0.023) (0.037) (0.025) (0.029) (0.025) (0.024) (0.023) (0.022)

Risk Averse -0.099*** -0.166*** -0.178*** -0.209*** -0.241*** -0.147*** -0.153** -0.155***
(0.027) (0.037) (0.030) (0.042) (0.037) (0.044) (0.063) (0.047)

T1*Risk Averse 0.044 0.134** 0.159*** 0.234*** 0.285*** 0.124 0.108 0.102**
(0.050) (0.050) (0.050) (0.068) (0.068) (0.071) (0.062) (0.039)

Treatment 2: Social -0.020 -0.009 -0.023 0.008 0.015 -0.016 -0.008 -0.023
(0.024) (0.029) (0.030) (0.013) (0.014) (0.035) (0.021) (0.014)

T2*Risk Averse 0.093* 0.169** 0.150** 0.151*** 0.191*** 0.104** 0.123*** 0.173***
(0.047) (0.073) (0.065) (0.035) (0.054) (0.036) (0.037) (0.032)

Treatment 3: Learning -0.026 -0.037 -0.044 -0.003 -0.033 -0.052* -0.036 -0.035
(0.020) (0.031) (0.031) (0.036) (0.029) (0.026) (0.021) (0.022)

T3*Risk Averse 0.082 0.136** 0.133** 0.124* 0.206*** 0.142*** 0.108* 0.155***
(0.048) (0.059) (0.058) (0.063) (0.049) (0.036) (0.052) (0.048)

Constant 0.145*** 0.355*** 0.500*** 0.659*** 0.768*** 0.925*** 0.900*** 0.954***
(0.024) (0.052) (0.057) (0.056) (0.038) (0.041) (0.044) (0.031)

Observations 2,430 1,714 1,714 1,714 1,714 1,714 1,714 1,714
R-squared 0.024 0.036 0.044 0.051 0.053 0.052 0.052 0.059
Controls YES YES YES YES YES YES YES YES

Note: The dependent variable in columns (1-8) is a binary variable capturing whether the respondent agreed to adopt a smart meter for a price in the range of [0, c]. Controls
include gender, age, income, and region. Standard errors are included in parentheses below the estimates and are clustered at the supplier level. ∗∗∗p < 0.01 ∗∗p < 0.05 ∗p < 0.10
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A.6 Analysis of Barriers

Our survey elicits information on subjective barriers to adoption, which we use to provide
evidence on the society-wide barriers inhibiting participants from adopting smart meters.
Table A10 presents information on the count and percentage of participants who selected
each of the five primary reasons cited for non-adoption: hassle costs, privacy or security
concerns, belief that the device will not lead to savings, lack of trust in energy suppliers
and health. Respondents were not limited to citing a single concern, and they could
additionally input unlisted reasons by selecting ‘other’ and providing a text response,
Table A11). From this table, we glean that about three-quarters of non-adopters do not
believe in the purported savings the meters could facilitate, about two-thirds cite hassle
costs as important to their decision not to adopt, a slim majority worry that the meters
may threaten their privacy or security, and a tenth hold concerns about the health impacts
of smart meter adoption.

Table A10: Self-reported reasons for not wanting a smart meter

Reason Category Count Percentage Mean WTA

Hassle 809 25% £136
Privacy/security 659 21% £192
Wont save money/energy 861 27% £163
Don’t trust supplier 319 10% £194
Health 115 4% £267
Other 424 13% £145
Note: Total percentage is greater than 100 as participants were able to select more than

one reason. WTA distribution is winsorised at £1000.

Table A11: Detailed categorisation of ‘Other’ reason for refusing a smart meter

Reason Category Count Percentage

Concerns about smart meters 122 29%
Constrained by external factors 151 36%
Do not want a smart meter 46 11%
Inconvenience/hassle costs 15 4%
No reason given/arbitrary 14 3%
Concerns about suppliers/energy costs 3 1%
Want a smart meter in the future 43 10%
Want to wait 25 6%

419 100%

In order to more explicitly assess the impact of self-reported barriers on WTA we next
estimate a series of linear probability models with continuous WTA as the dependent
variable and each barrier included as independent variables, along with a set of control
variables.40 We estimate the model for a range of maximum WTA values. Figure A4

40We do not observe any substantive difference in results when we control for treatment indicator.
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presents the results graphically. Interpreting the top-left quadrant, for those participants
whose WTA is £1000 or less, those who cite health concerns report a WTA of approxi-
mately £100 greater than those who do not. This estimate is considerably higher than the
approximately £50 increase in WTA associated with the next highest barriers, which are
privacy concerns and lack of trust in suppliers. The observed ranking of barriers is similar
when we consider individuals stating a WTA of £500 or less, but this pattern does not
hold for lower ranges. We are cautious about over-interpreting these results due to the im-
precision of the estimates. Our reading would indicate that a small number of participants
citing health concerns (and to a lesser degree, privacy and lack of trust in suppliers) have
very high WTA values. For participants with a lower WTA no clear ordering emerges.
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Figure A4: Relationship between WTA and self-reported barriers. Note: Results presented
are from a linear probability estimation with continuous WTA as the dependent variable. The
regressions include control variables and clustered standard errors at the supplier level. Bars
around the point estimates indicate the 95 percent confidence interval.
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A.7 Demand curves by treatment
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Figure A5: Estimated demand curves for smart meters by treatment
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