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Abstract

Transitioning away from dirty and towards clean technologies is critical to reduce car-

bon emissions, but the race between clean and dirty technologies is taking place against

the backdrop of improvements in general-purpose technologies (GPT) such as information

and communication technologies (ICT) and artificial intelligence (AI). We show how, in

theory, a GPT can affect the direction of technological change and, in particular, the com-

petition between clean and dirty technologies. Second, we use patent data to show that

clean technologies absorb more spillovers from AI and ICT than dirty technologies and

that energy patenting firms with higher AI knowledge stocks are more likely to absorb AI

spillovers for their energy inventions. We conclude that ICT and AI have the potential to

accelerate clean energy innovation.
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1 INTRODUCTION

Directing technological change away from polluting technologies and towards cleaner options
is central to addressing global environmental problems such as climate change. Prior work
has shown that a combination of taxes and research subsidies can effectively level the playing
field between clean and dirty technologies (Acemoglu et al. 2012; Aghion et al. 2016). Those
policies incentivize the development and adoption of environmentally friendly technologies,
which allows clean sectors’ productivity to catch up to their dirty counterparts in the longer
term.

However, the race between clean and dirty technologies is taking place against a backdrop
of improvements in information and communication technologies (ICT) and artificial intelli-
gence (AI). Some highlight the positive impact those technological developments may have in
helping solve environmental problems.1 But are low-carbon technologies surfing the AI wave
better than dirty technologies? AI and ICT, in some respect, resemble the textbook case of
general-purpose technologies in that they have the potential to be applied in many, if not most,
areas of the economy, including in high-carbon energy industries (Brynjolfsson et al. 2021;
Crafts 2021; Trajtenberg 2018). Thus, a priori, there is no reason to believe that they can drive
the low-carbon transition, as they may just as well help incumbent technologies continue to
gain productivity.

This paper investigates how a new general-purpose technology (GPT) affects the direction
of technological change and, in particular, the competition between clean and dirty technolo-
gies. We do so, first, theoretically and then empirically by examining the extent to which
energy patents rely on AI and ICT inventions. In line with the literature on directed techno-
logical change and the environment, we consider low-carbon electricity and transport to be
competing in a race with the incumbent fossil fuel-based technologies, where the latter have an
advantage due to their greater maturity (i.e., in the absence of corrective policy, they will attract
more talent and R&D resources). But we recast this race as happening against the backdrop of
advances in AI.

Our theory shows that the arrival of a GPT opens new opportunities to shift to a clean
technology equilibrium because it disrupts the path dependence mechanisms that otherwise en-
trench dirty incumbent technologies. In addition, the shift to the clean equilibrium is made
easier if clean technologies have a higher capacity to absorb the GPT than dirty technologies.
The absorptive capacity of a technology is shaped both by characteristics intrinsic to the tech-
nology and previous exposure to the GPT: both can make it easier to apply the GPT in that
particular technological field.

We then study the absorptive capacities of clean and dirty technologies empirically. To do
so, we analyze citations between energy patents and AI (or ICT) patents and show that clean
energy technologies absorb digital technologies much more than dirty energy technologies do.

1. See, for example, Rolnick et al. (2019) or private sector initiatives such as Microsoft’s “AI for the Planet”.
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This is true both across and within individual firms’ patent portfolios. We interpret this as
an indication that the differences between clean and dirty technologies arise both from firm-
level capacities and characteristics intrinsic to the technologies (i.e. technological reasons why
there is more potential to apply AI and ICT in clean technologies than in dirty ones). At the
firm level, we then find that a firm’s stock of knowledge in AI increases the extent to which
it applies AI to its energy innovations, and the effect is much stronger for clean technologies.
Interestingly, having a lot of prior experience in energy technologies seems to be a barrier to the
use of AI, which suggests that new entrants to clean transport and electricity who have strong
AI capabilities are critical to accelerating the diffusion of AI into low-carbon technologies.

In summary, this paper argues on theoretical grounds that it is critical for the low-carbon
transition that clean technologies be more successful in “riding the AI wave” (i.e. applying the
GPT) than dirty ones. Empirically, we find early evidence that this is the case, both because
these technologies are intrinsically more able to use AI and because this, in turn, encourages
firms with AI knowledge to invest in those technologies. However, compared to other tech-
nological fields, the rate at which AI is entering clean transport and electricity technologies
remains low compared to other areas, such as medical technologies or telecommunications.
This suggests that there are good reasons for innovation policy to deliberately target applica-
tions of AI (and digital technologies more broadly) to clean technologies.

This paper contributes to both the theoretical and empirical literatures on directed techno-
logical change and the environment (Acemoglu et al. 2012; Aghion et al. 2016; Dechezleprêtre
et al. 2017; Johnstone et al. 2010; Popp et al. 2020). This literature tends to analyze environ-
mentally beneficial innovations in isolation from other technological developments. Here, we
extend it by studying the interaction with a general-purpose technology. In doing so, we also
contribute to the economic literature on GPTs (Helpman et al. 1994, 1996; Lipsey et al. 2005;
Rosenberg et al. 2010). This literature is mainly concerned with understanding the contribution
of GPTs to growth and has not investigated how GPTs can modify the direction of technological
change (except for the literature on digital technologies and skill-biased technical change).

Economic history, however, has provided detailed accounts of how specific GPTs have cre-
ated new technological eras by reconfiguring technological systems, creating new complemen-
tarities between technologies, and between new technologies and infrastructure, production
methods, lifestyles and consumption habits (Dosi 1982; Fouquet 2008; Grübler et al. 1999;
Perez 2009; Rosenberg 1979). This qualitative strand of literature is complemented by recent
empirical work that aims to quantify technological interdependencies, for the most part using
patent data (Acemoglu et al. 2016; Napolitano et al. 2018; Pichler et al. 2020). These papers
find that the patterns of technological interdependencies predict future rates of innovation. This
underscores the importance of understanding the complementarity between clean innovation
and other fast-improving fields of innovation.

The remainder of this paper proceeds as follows. Section 2 provides background on general-
purpose technologies, in particular their role in economic transformations, and on ICT and AI
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technologies with a focus on their potential applications to the low-carbon transition. Section
3 analyzes a model of green directed technological change in which we add a GPT. Section
4 describes the construction of our global dataset of 2,545,063 electricity and transport patent
families and the extent to which they have absorbed AI and ICT knowledge. Section 5 presents
our key result about clean technologies’ greater ability to absorb the GPT as compared to dirty
technologies. Section 6 presents the results of the firm-level analysis, while section 7 discusses
the implications of our results for the low-carbon transition.

2 BACKGROUND

Artificial Intelligence as the next General Purpose Technology Artificial Intelligence (AI)
– defined by Miriam-Webster as “the capability of a machine to imitate intelligent human be-
haviour” – is widely thought to be the next game-changing technology about to unleash large
productivity gains and a wave of automation by optimists and pessimists alike (Trajtenberg
2018). AI includes several techniques and functional applications in computer science, such
as deep learning, symbolic systems and reasoning, speech processing, and computer vision, all
of which are key to advancing optimization, prediction and robotics, which can be deployed in
many sectors. According to Cockburn et al. (2018), deep learning has the potential to change
the research process itself, thus qualifying as the “invention of a method of invention”. There is,
therefore, significant evidence that AI qualifies as a general-purpose technology, and an emer-
gent literature aspires to model its potential effects on growth and knowledge creation. For
example, Aghion et al. (2018) model AI as a process of automation of goods and services, as
well as the production of ideas. Agrawal et al. (2018) integrate AI breakthroughs into a knowl-
edge production function as enabling faster discoveries in combinatorial knowledge creation.

Applications of AI in Energy Sectors Some ICT and AI technologies may have applications
essential for the transition to clean energy. For example, smart grids facilitate the integration
of distributed renewable energy with bulk power generation plants and bulk energy storage
systems (Bose 2017), and smart buildings can benefit from effective load demand forecasting
(Raza et al. 2015) and better monitoring through smart meters (Fouquet 2017). AI techniques
can also be used to plan, optimize, and manage renewable energy technologies, including solar
and wind systems and hydro power (Jha et al. 2017). For example, fuzzy logic controllers can
adjust turbine speeds to optimize aerodynamic efficiency and extract maximum power, while
neural networks can carry out automatic performance checks (Bose 2017). Lee (2020) has
analyzed patent citations and found that AI has contributed to improving battery performance
and optimizing cars’ energy management systems and charging systems.

Potential applications of AI in the energy sector are not limited to clean technologies. AI
can enhance productivity in many application sectors by automating some tasks and freeing up
labor to complete other, more complex ones. It is also valuable for planning the maintenance
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and deployment of physical capital or inventories. More broadly, and not specific to clean or
dirty energy, Lyu et al. (2021) analyze online job postings data from 2010-2019, and find that
among emerging digital technologies (among which they include Artificial Intelligence, Big
data, Internet of Things, Robotics, Blockchain technology, and Cloud Computing), AI is the
most widely applied in the energy sector (as measured by the extent to which new hires are
asked to provide expertise in AI). AI-related knowledge also carries the highest wage premium
compared to average wages and contributes most to energy firms’ performance. Crucially,
there are numerous potential applications for AI not just in clean but also in dirty energy. For
example, AI can increase the efficiency of fossil fuel exploration (such as through well logging
or geological mapping), field development and engineering, and other parts of the value chain
(cf. Koroteev et al. 2021). In combustion technologies, AI can be used to monitor and optimize
combustion processes. Thus, AI could accelerate innovation in clean technologies, but given its
wide range of applications, it could also help the productivity of dirty technologies and prolong
their attractiveness.

The economics of GPTs Our analysis is informed by several key contributions from the
economics literature on GPTs and innovation spillovers. First, as emphasized by Helpman
et al. (1994) and Helpman et al. (1996), the economic benefits from a new GPT may accrue
only after a lag because advances in the GPT do not diffuse spontaneously: adoption requires
complementary co-invention in application sectors typically happening via R&D investments.
Helpman et al. (1996) model the diffusion of a new GPT, allowing for both early and late
adopters, and the extent to which application sectors innovate to make use of the GPT depends
on four key factors: their capacity to absorb the GPT (that is to learn from it to create large
productivity gains in their sector); their market size; the historical stock of components devel-
oped for the old GPT; and the cost of developing new components. Our theoretical analysis
will build on those factors.

We also follow Cohen et al. (1990) in considering absorptive capacity to be endogenous,
meaning that it is the result of deliberate investments in an area of knowledge to be better
able to learn from other inventors and inventions (thus, knowledge spillovers are not “free” or
spontaneous).

Finally, while prior literature mainly focused on the effects of GPTs on growth, we ex-
amine how GPTs shape the race between two competing technologies and may catalyze the
creative destruction of a (dirty) incumbent technology by a newer (clean) challenger. Indeed,
in modeling the diffusion of a GPT, Helpman et al. (1996), for example, assume that all viable
application sectors will eventually adopt the GPT. In the race between clean and dirty, however,
enhancing welfare requires that the dirty sector declines and disappears.



6

3 THEORY

How should we expect a GPT to affect the direction of technological change? Specifically,
under what conditions can a GPT accelerate the pace of innovation more in dirty rather than
clean technologies? We build on the seminal model of directed technological change and the
environment put forth by Acemoglu et al. (2012) by adding a general-purpose technology and
letting clean and dirty sectors have potentially differing capacities to absorb this GPT.

We first consider the case where absorptive capacity is entirely exogenous, and then we
partially endogenize it by allowing firms or scientists to invest in it. In both cases, we solve
for the equilibrium level of innovation in the clean and dirty sectors. Endogenizing absorp-
tive capacity also yields comparative statics that we use as hypotheses to explain the observed
empirical variation in the extent to which different technologies and firms draw on the GPT.

Baseline model

Let there be an aggregate final good competitively produced from the combination of dirty and
clean inputs Yd and Yc (e.g., energy source or material):

Y = (Y
ε−1

ε

ct +Y
ε−1

ε

dt )
ε

1−ε (1)

We assume that clean and dirty inputs are highly substitutable (ε > 1)2. Sector j ∈ {c,d}
produces input Yj competitively using a combination of labor and sector-specific machines:

Yjt = L1−α

jt

∫ 1

0
A1−α

jit xα
jitdi (2)

For example, if the input is electricity and j = c, the machines may be wind turbines and
solar panels, and for j = d, gas-fired power plants. The machines form a continuum; machine i

has productivity A jit and is consumed by the intermediate producer of input Yj in quantity x jit .
Meanwhile, scientists choose whether to work on clean or dirty technology. Having made

this choice, each scientist is randomly allocated to a single machine in the sector of choice.
In the standard model, scientists successfully innovate on machine i with probability η j. If
successful, the machine’s productivity gets an incremental increase, denoted γ . Formally:

A jit = (1+ γ)A jit (3)

The scientist then obtains a one-period patent and becomes the monopolistic producer of
that machine for that period (producing each machine at a cost of τ units of the final good).

2. This is a key assumption in Acemoglu et al. (2012), which is arguably plausible in the sectors we analyze.
Electricity from renewable energy sources can be used in much the same way as electricity from a coal power
plant, just as an electric vehicle is a good substitute for an internal combustion engine powered one. For a more
detailed discussion of this assumption and its justification, please refer to Acemoglu et al. (2012), page 135,
footnote 6.
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Adding Spillovers from a GPT

We modify the dynamic equation governing the change in productivity of machines (Equation
3) by introducing a stock of knowledge in a GPT (GPTt) and an exogenous absorptive capacity
β j for scientists working on technologies of sector j. Here, we consider that spillovers from the
GPT increase the value of an innovation by boosting the the machines’ productivity.3 Formally,
we write:

A jit = (1+ γ +β jGPTt)A jit (4)

This modeling choice is supported by Table 4 in Section 5, which shows that the value of an
energy patent (as measured by the citations it receives) is greater for those patents that draw on
the GPT. Equation 4 also implies that the spillovers from the GPT depend only on absorptive
capacity β j, and is therefore the same for any machine within the sector j.

Next, we focus on characterising the profitability of research in each sector to understand
how the GPT affects the direction of technological change.4 The average productivity of sector
j is:

A jt =
∫ 1

0
A jitdi (5)

It evolves over time according to the following equation:

A jt = (1+(γ +β jGPTt)η js j)A j,t−1, (6)

where s j is the share of scientists who choose to work in sector j (where market clearing
of R&D labor requires sc + sd = 1). The equilibrium profits of a producer of machine with
productivity A jit is:

π jit = (1−α)α p
1

1−α

jt L jtA jit (7)

Ex-ante, the expected profit from choosing to work in sector j is:

Π jt = η j(1+ γ +β jGPTt)(1−α)α p
1

1−α

jt L jtA jt−1 (8)

Solving for equilibrium values of p jt and L jt , and substituting, we obtain the following ratio
of R&D profits for working in the clean versus dirty sector:

Πct

Πdt
≡ f (sc,sd) =

ηc

ηd

1+ γ +βcGPTt

1+ γ +βdGPTt

(
1+(γ +βcGPTt)ηcsc

1+(γ +βdGPTt)ηdsd

)−φ−1(Act−1

Adt−1

)−φ

(9)

Equation 9 allows us to study how the GPT affects the direction of technological change.

3. Alternatively, we could model the idea that spillovers from the GPT increase the rate of innovation (as in the
notion that AI may accelerate discovery of solutions), such that η j ∝ β jGPTt . But this does not change the results
of our analysis.

4. Appendix A provides the step by step derivation of the equilibrium equations.
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If f (1,0)> 1, then (sc = 1, sd = 0) is an equilibrium, and technological change is directed to-
wards the clean sector. If f (0,1)< 1, then (sc = 0, sd = 1) is an equilibrium, and technological
change is directed towards the dirty sector. If f (1,0)> 1 and f (0,1)< 1 simultaneously, then
we obtain multiple equilibria, meaning that either the dirty or the clean equilibrium is possible,
and some coordination device is required to select one equilibrium.

Let’s denote Āc,t−1(Ad,t−1) the value of Ac,t−1 where f (1,0)= 1. This is the minimum value
that Ac,t−1 must take, given Ad,t−1, so that a clean equilibrium becomes possible. Conversely,
denote Ād,t−1(Ac,t−1) the value of Ad,t−1 where f (0,1) = 1. This is the minimum value that
Ad,t−1 must take, given Ac,t−1, so that a dirty equilibrium becomes possible. These two func-
tions, depicted in Figure 1, delineate the area in the (Ac,t−1,Ad,t−1) space where we obtain a
clean equilibrium, a dirty equilibrium, or multiple equilibria. Result 1 below summarizes the
impact of the GPT on the direction of technological change.5

Result 1.

(a) An increase in GPTt causes both Āc,t−1(Ad,t−1) and Ād,t−1(Ac,t−1) to decrease, which

means that we obtain multiple equilibria for a wider set of historical states (Ac,t−1,Ad,t−1).

(b) An increase in β j causes Ā j,t−1(A− j,t−1) to decrease and Ā− j,t−1(A j,t−1) to increase, thus

expanding the range of histories in which all scientists engage in innovation of type j.

Figure 1 illustrates Result 1. As a baseline, consider βc = βd = 0 which corresponds to
the case where neither sector can absorb the GPT, making it irrelevant and equivalent to the
original model by Acemoglu et al. (2012). In Figure 1a, we see that, in this case, technological
change is geared towards the sector that is already the most productive. There is a narrow area,
when Ac,t−1 is close to Ad,t−1, where multiple equilibria are possible: actors have to coordinate
on the clean or the dirty equilibrium. But, for most of the state space, the equilibria are path
dependent and reflect what was done in the past. For example, an initial advantage in the dirty
sector would lead to a unique equilibrium in which scientists work on dirty innovations.

When the two sectors can both absorb the GPT, as stated in Result 1a), the window of
multiple equilibria expands. In other words, thanks to the GPT, the innovation system has more
opportunities to break free from the determinism of the past, even when both the incumbent
and the challenger technology have the same absorptive capacity. Actors can use the GPT to
move either technology sufficiently ahead of the other to make it competitive. The direction of
technological change then depends on which technology actors coordinate on.

On Figure 1b, we consider a case when clean and dirty have different absorption capacities
to illustrate Result 1b). We see that a higher βc increases the area where we get multiple
equilibria, and, most importantly, shrinks the area where the dirty technology dominates.

Result 1 and Figure 1 highlight what is at stake in studying the GPT’s influence on clean
and dirty technologies: the GPT can upend the path dependence of technology. In the absence

5. The proof is shown in Appendix A.2.
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Note: Direction of technological change in equilibrium, that is the allocation of scientists in the clean or dirty
sectors, given each sector’s past stock of knowledge (A j,t−1) and absorptive capacity (β j).

FIGURE 1
Direction of Technological Change with a GPT

of a GPT, the more mature technology attracts more effort because, being more productive, it
has a larger market. Thanks to the GPT, however, the less mature technology can catch up.
A GPT can therefore fundamentally change the nature of the race between the newer clean
technologies and the more mature dirty technologies. It reduces the weight of the past, by
providing an opportunity to coordinate on the new clean equilibrium, especially if the clean
technology has a higher absorptive capacity than the dirty.

Endogenizing the Spillovers from a GPT

We now endogenize absorptive capacity, allowing scientists to invest in their capacity to absorb
the GPT. This allows us to derive comparative statics for the level of effort in absorbing the
GPT. To do this, let’s decompose β j into an exogenous and an endogenous component, such
that:

β j = b jB j, (10)

where b j is exogenous (coming from the characteristics of the technology) and B j is an
endogenous investment in absorption which comes at a cost of ψB2

j . Scientists first choose
which sector to work on (i.e. clean or dirty), and then decide how much to invest in their
capacity to absorb the GPT.

The expected profit from working on technology j is now:

Π jt = η j(1+ γ +b jB jGPTt)α(1−α)p1/(1−α)
jt L jtA j,t−1 −ψB2

j (11)

Hence, a scientist working in sector j would optimally invest in their absorptive capacity as
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follows:
B∗

j = (η jb jGPTt)
(1−α)α

2ψ
p1/(1−α)

jt L jtA j,t−1 (12)

Using Equation 12 in combination with the other equations that characterize the equilib-
rium, we obtain Result 2 below.6

Result 2. In equilibrium, investments in absorbing the GPT in a given sector increase with the

existing accessible stock of the GPT and with the intrinsic absorptive capacity of the application

sector:

(a)
dB∗

j
dGPTt

> 0

(b)
dB∗

j
db j

> 0

(c) At the equilibrium for type j:
d2B∗

j
dGPTtdb j

> 0

Result 2 tells us that efforts in absorbing the GPT increase with the accessible stock of the
GPT and with the intrinsic absorptive capacity of the technology. In other words, the potential
for spillovers encourages innovation investments in applying the GPT. We expect the extent of
potential spillovers to vary by technology (due to the intrinsic absorptive capacity), but also
across firms, regions or innovation systems (due to variation in the stock of the GPT across
these social units).

Furthermore, as Result 2c) indicates, there is a positive interaction between intrinsic absorp-
tive capacity and the stock of knowledge in the GPT for the technology chosen in equilibrium.
In the empirical section, we will bring these comparative statics to firm-level data.

Technological Lock-In

In this part, we consider the role of technological maturity in absorbing the GPT. Specifically,
we allow absorptive capacity to decay with the application sector’s productivity A jt . We now
write the absorptive capacity β j as a function of A jt :

β j = b jB jA−δ

jt−1, (13)

where δ ≥ 0 represents an aging factor. The idea is that more mature technologies are less
able to undergo radical changes, or in other words, aging causes lock-in.

Result 3.

(a)
dB∗

j
dA jt−1

< 0 if δ > 1

(b)
dB∗

j
dA jt−1

> 0 if δ < 1

6. The proof is shown in Appendix A.3.
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Result 3 shows that the maturity of the technology in the application sector can impact the
endogenous part of absorptive capacity.7 If the aging factor is large (δ > 1), then when the
technology matures and becomes more productive, fewer investments are made which leads
to lower absorptive capacity. On the contrary, when the impact of aging is minimal (δ < 1),
an increase in the productivity of technology j leads to more investment and higher absorptive
capacity.

4 DATA

Patent Data. Our next steps focus on measuring the extent to which clean and dirty tech-
nologies absorb spillovers from AI and ICT. To do so, we use data on patent applications from
PATSTAT and obtain a full coverage of patents filed around the world up until 2018.8 To avoid
double-counting, we aggregate patent applications at the level of DOCDB families, which are
groups of patents that have been identified as covering the same invention.9 To place patent
families over time, we use the priority year, that is the year when the earliest application in the
family was filed.

Energy Inventions. We use technology codes from the International Patent Classification
(IPC) and from the Cooperative Patent Classification (CPC) to identify inventions related to en-
ergy technologies for electricity and transportation.10 The codes are assigned by patent exam-
iners and are often used to classify patents as either clean, grey or dirty (Acemoglu et al. 2012;
Aghion et al. 2016; Dechezleprêtre et al. 2017; Johnstone et al. 2010; Lanzi et al. 2011; OECD
2016; Popp et al. 2020). Table 1 summarizes how we classify technologies. “Dirty” refers to
conventional, highly polluting technologies, while “clean” includes the least polluting alterna-
tives. The category “grey” captures increased efficiency of dirty technologies. A full list of the
codes used is shown in Online Appendix Table SI1 and SI2.

We keep all energy families with a priority year between 1990 and 2018. For this period,
we find a total of 1,674,751 electricity families (809,327 clean, 257,490 grey, 607,934 dirty)
and 1,300,651 transport patent families (795,408 clean, 298,645 grey, 206,598 dirty). Figure

7. The proof is shown in Appendix A.4.
8. We use the 2021 Spring edition of PATSTAT. Since there is a delay between when applications are filed and

when the data is transferred to the database, the years 2018 onwards are severely truncated.
9. Several patents are typically filed about the same invention because the different applications may cover

slightly different claims (about the same invention) or may contain exactly the same claim but are filed in different
countries. We include patent families of all sizes (i.e., including size 1) and with patent applications filed in any
jurisdictions. This approach allows us to capture global trends in clean and dirty innovation without restrictions
on where the invention happened and how many jurisdictions the assignees deemed interesting to file in. Some
regressions will only use triadic granted families as a way to narrow down the analysis to potentially more valuable
inventions.

10. We use both classifications in order to capture as many relevant families as possible. Using IPC codes is
necessary to capture many families from the Chinese, Japanese and Russian patent offices which do not use the
CPC. A family is assigned to a category if at least one patent within it has been assigned a relevant technology
code.
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TABLE 1
Technology Categories

Electricity Transport

Clean
Renewable Energy (Wind, Solar, Geothermal,

Hydro, Marine), Nuclear Energy, Enabling
technologies (e.g., smart grids)

Electric, Hybrid, or Hydrogen vehicles, Fuel
cells, Batteries, Enabling technologies (e.g.,

charging stations)

Grey Efficiency, Biomass and waste Efficiency of internal combustion engines

Dirty Combustion of traditional fossil fuels (Oil,
Natural Gas and Coal), Hydrofracturing Internal combustion engines

Note: The table shows the technologies we include as clean, grey or dirty electricity and/or transport. We identify
patent families related to those technologies based on codes from the Cooperative Patent Classification (CPC)
and the International Patent Classification (IPC). We use both classifications in order to capture as many relevant
families as possible. Using IPC codes is necessary to capture many families from the Chinese, Japanese and
Russian patent offices which do not use the CPC. A family is assigned to a category if at least one patent within it
has been assigned a relevant technology code.

2a and 2b show that the number of energy families have been going up both for electricity
and transport. In transport, clean vastly outpaces dirty and grey throughout most of the period,
while in electricity clean innovation has exceeded dirty and grey since the early 2000s.

AI and ICT Inventions. To identify patents related to AI, we follow the methodology de-
veloped by World Intellectual Property Organization (2019) that uses technology codes and
keyword searches in abstracts and titles. Keywords include “artificial or computational intel-
ligence”, “neural networks” or “learning model or algorithm”. For ICT, we use a series of
technological codes following Inaba et al. (2017). These codes include inventions classified
as related to the “transmission of digital information”, “self-organising networks, e.g. ad hoc
networks or sensor networks” or “high speed computing”. In the end, this procedure identifies
548,641 AI families and 10,883,849 ICT families. We note that, to this day, the stock of ICT
knowledge is vastly greater than that of AI. Figures 2c and 2d show that the number of AI
families remains relatively small and has only begun rising sharply since 2010. On the other
hand, more than 150,000 ICT families have been filed each year since the early 1990s. We also
find that a majority of AI families also qualify as ICT: this implies that, to some degree, AI can
be thought of as a sub-field of ICT (see Online Appendix Figure SI1).

Backward Patent Citations. We use backward citations to quantify the extent to which en-
ergy inventions rely on AI and ICT. Specifically, as a measure of absorption, we calculate the
percentage of backward citations that each energy family makes to AI or ICT patent families.11

In our sample, the average energy family cites about 3.8 patent families with 0.3% going to AI
and 4.3% to ICT. This hides considerable variation, however, since some families have 100%
of their backward citations going to AI or ICT patents while others cite none. Table 2 provides

11. PATSTAT provides information about citations at the family level, meaning if two patents in the same family
cite the same AI patent, that patent counts only as one citation.
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(a) Electricity (b) Transport

(c) AI (d) ICT
Note: The figure plots the total number of patent families over time filed worldwide for each of the following
categories: a) electricity, b) transport, c) AI and d) ICT. The year used is the priority year of the family. We note
that AI patenting has seen a sharp increase since 2010.

FIGURE 2
Patenting Trends Over Time By Family Type
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TABLE 2
Examples of Energy Innovations Citing AI Patents

Patent Application Title Sector Type Year Citations to AI
# %

Improved Flow Valve Port for a Gas Regulator Electricity Dirty 2007 49 67
Robotic cleaning device Transport Clean 2013 297 41

Virtual sensor system and method Transport Dirty 2007 37 26
Battery agnostic provisioning of power Transport, Electricity Clean 2016 119 13

System and approach for dynamic vehicle speed
optimization Transport Grey 2015 51 10

Dual fuel heater with selector valve Electricity Grey 2011 38 9
Method and apparatus for configuring a

communication interface Electricity Clean 2014 55 2

Note: The table illustrates how AI may be applied to energy technologies by showing examples of energy patent
families with a high number of citations to AI.

examples of energy patents with high reliance on AI. The first patent in the table, for instance,
corresponds to a dirty electricity family filed in 2017 entitled ”Improved Flow Valve Port for a
Gas Regulator”. The patent makes 49 citations to other patents and 67% of those are citations
going to AI families.

Proxies of Patent Quality. We follow prior work by using the number of citations received
(a.k.a. forward citations) as a proxy of patent quality (Jaffe et al. 2017; Jaffe et al. 2000). The
number of times a particular family is cited by other families, however, heavily depends on
the number of years since it was first filed: the older the family, the more opportunities there
have been for other families to cite it. It is therefore inappropriate to compare families filed
in different years since the younger ones would mechanically have fewer citations. To avoid
this problem, our main measure is the number of forward citations received within 3 years. 12

As an additional proxy of patent quality, we also use the number of countries where the patent
family was filed as well as the size of the family (i.e., the total number of applications in the
family).

Firm-Level Data. We use European Patent Office data obtained from the Bureau Van Dijk
Orbis hard-drive to link PATSTAT patent ids to Orbis firm identifiers. We then construct firm-
level innovation indicators: for each firm, we count the yearly number of families of different
types (e.g., clean electricity or dirty transport). We also construct proxies of firm-level knowl-
edge stocks by calculating cumulative discounted sum of families going back to 1980. We
discount stocks by 15% each year following prior work (Hall et al. 2005). Finally, we col-
lect financial and legal data on firms from Orbis. We follow Kalemli-Ozcan et al. (2015) when

12. We also use the number of forward citations received within 5 years as a robustness check where appropriate.
Since we use forward citations here to make statements about families relative to other families within a particular
time window, the particular time window used should not matter (assuming that there is not much variation in
how citations appear over time across families). In any case, we find that citations peak after 4 years, and so, our
robustness checks using citations received within 5 years ensure that our measures cover the majority of citations.
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cleaning the data; in particular, we use multiple vintages to optimize coverage.13 The end result
is a dataset of 1,460,034 observations covering 21,046 firms over 1990 to 2018.

5 AI AND ICT ABSORPTION INTO CLEAN AND DIRTY IN-
VENTIONS

This section examines the extent to which energy families have absorbed knowledge spillovers
from AI and ICT over the last decades. First, on Figure 3, we plot trends over time in the
percentage of backward citations going to AI or ICT for different types of energy families. A
key take-away is that, in the transport sector, clean patents build on AI and ICT more than
dirty and grey, while, in the electricity sector, grey slightly leads clean. On Figure 3a, we see
that, overall, the average percentage of backward citations going to AI is low, typically well
below 1%, even though it has been increasing since 2010 which coincides with the rise of AI
patenting seen on Figure 2c. We also note that AI absorption is higher in clean than in grey or
dirty (especially since 2010) and that it is higher in transport than in electricity.

Figure 3b shows that, similar to the case of AI, the percentage of backward citations going
to ICT is higher in clean than in grey or in dirty. The magnitude of ICT absorption in clean
electricity is particularly high: the average percentage of citations going to ICT reached nearly
20% in the late 2000s, while other technology groups have remained below 10% throughout.
We also note that the share of ICT in backward citations is overall much higher than that of
AI, but this should not be surprising since ICT is more mature and constitutes a larger pool of
potential patent families to be cited.

Next, we run a series of regressions to investigate how the absorption of AI and ICT for
clean relative to dirty technologies varies when we include firm fixed effects and quality con-
trols. The main specification is as follows:

Absorptioni jt = β0 +βcCleani +βgGreyi +bXi +δt +δ j + εi jt (14)

Absorptioni jt is the percentage of backward citations going to AI or ICT for patent family
i filed by firm j in year t. Cleani and Greyi are binary variables that equal 1 if family i is
classified as clean or grey, respectively (either in transport or in electricity). β0 is the intercept.
Xi is a series of variable proxying the quality of family i which includes the number of forward
citations received by family i in three first years of its filing, the size of family i and the number
of countries where family i was filed. δt and δ j are year and firm fixed effects, respectively.
Table 3 presents the regression results. Column 1 to 4 focus on AI, Column 5 to 8 on ICT.
Column 1 and 5 show specifications with year fixed effects but without firm fixed effects;
this allows us to document the size of the effect in the whole sample of families without any

13. We use the following vintages: 201709, 201812, 201912, 202012, and 202106. Please refer to the Online
Appendix A.3 for more details on our data cleaning process.
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(a) Citations to AI

(b) Citations to ICT
Note: The figure shows the percentage of citations going to AI (a) and ICT (b) for the average electricity (left) and
transport (right) family over time. The year used is the priority year of the family. Since 2010, AI clearly makes
up a greater share of backward citations in clean transport families than in grey and dirty families. For electricity
the picture is less clear. The share of ICT in backward citations is higher for clean families throughout the period
in both electricity and transport.

FIGURE 3
Percentage of Citations to AI and ICT Over Time
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controls. As we move from Column 1 to Column 4, we add more restrictions on the sample and
on the specifications such as firm fixed effects and quality controls. Whether the coefficients on
“Clean” and “Grey” change at all from Column 1 and Column 4 is instructive in understanding
what may or not be driving the effect. In particular, showing the difference between results
with and without firm fixed effects illustrates that the magnitude of the overall trends can be
driven, to a large extent, by differences between firms (rather than within).

Consistent with Figure 3, the coefficients on “Clean” are positive and statistically signifi-
cant, indicating that clean families rely more on AI and ICT than their dirty counterparts. To
allow for an easier interpretation of the main effect captured by βc, the line “Ratio Clean/Dirty”
in Table 3 expresses the magnitude of the effect in percentage term relative to dirty and can be
interpreted as the relative absorptive capacity of clean vs dirty. Formally, it corresponds to
100×βc
meand

, where meand is the average percentage of backward citations going to AI (or ICT) in
the average dirty family. For example, Column 1 indicates that the absorptive capacity for AI
is 304% higher in clean than in dirty. It is 502% higher for ICT (see Column 5).

The relative absorptive capacity may be high for reasons intrinsic to the technologies (e.g.,
many clean technologies may simply be technologically closer to ICT or AI) or due to general
equilibrium effects (e.g., because R&D is being redirected towards clean technologies across
the economy). Another reason, however, could be that clean inventions are developed by firms
that are better able to leverage AI and ICT technologies into their energy inventions. The
high relative absorptive capacity may therefore be driven by firm-level characteristics rather
than intrinsic technological differences. To investigate whether firm-level characteristics play
a significant role, Column 2 and 6 include firm fixed effects. We find that the ratio changes
little for AI but decreases for ICT, highlighting that firms may play a larger role for ICT than
AI. The ratio remains high showing that, even within the same firm, clean inventions cite more
than 300% as much AI than dirty ones. Section 6 explores the role of firm-level characteristics
in more depth.

In Column 3, 4, 7 and 8, we examine whether clean inventions maintain their lead when
restricting the analysis to high-quality inventions. To do so, Columns 3 and 7 run the same
regressions as Columns 2 and 6 while limiting the sample to triadic patent families that have
been granted.14 Columns 4 and 8 further control for a series of variables proxying for quality
(forward citations, family size and number of countries). We find that AI and ICT absorption in
clean remain much higher than for dirty in those specifications too.15 When running regressions
separately for transport and electricity families, we find that the AI absorption gap between
clean and dirty is stronger in transport than in electricity. The reverse is true for ICT: clean

14. A family is said to be triadic if it was filed at the three main patent authorities: the USPTO, the EPO and the
JPO.

15. All coefficients excluded from the main tables are shown in the long version of the same table in Supple-
mentary Online Table SI3. The number of patents in the family and the number of countries in the family are not
significant. The number of citations received (within 3 years) is positive and significant at the 10% level for AI
and at the 5% level for ICT. They do seem to add some explanatory power to the model since the R squared goes
from 0.058 to 0.060 for AI and from 0.441 to 0.445 for ICT.
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TABLE 3
Estimating the Absorptive Capacity of Clean, Grey and Dirty Technologies

(1) (2) (3) (4) (5) (6) (7) (8)
AI AI AI AI ICT ICT ICT ICT

Clean Family 0.437∗∗∗ 0.530∗∗ 0.463∗∗ 0.420∗∗ 8.243∗∗∗ 7.071∗∗ 10.329∗∗∗ 9.951∗∗∗

(0.024) (0.069) (0.077) (0.070) (0.263) (0.943) (0.951) (0.947)
Grey Family 0.264∗∗∗ 0.040 -0.124 -0.151 0.894∗∗ 0.432 0.443 0.196

(0.001) (0.105) (0.098) (0.103) (0.142) (0.255) (0.211) (0.208)
Nbr Citations Made (1000s) 8.134∗∗∗ 3.081∗∗ 0.177 -0.434 103.298∗∗∗ 47.204∗∗ 3.524∗ -3.953

(0.497) (0.610) (0.302) (0.235) (9.297) (7.022) (1.124) (1.487)
Constant 0.121∗∗∗ 0.245∗∗ 0.575∗∗∗ 0.624∗∗∗ 1.402∗∗∗ 4.591∗∗∗ 7.691∗∗∗ 9.157∗∗

(0.010) (0.042) (0.033) (0.030) (0.107) (0.461) (0.443) (1.172)

Ratio Clean/Dirty 304.35∗∗∗ 212.71∗∗ 94.15∗∗ 85.39∗∗ 501.72∗∗∗ 239.56∗∗ 229.29∗∗∗ 220.91∗∗∗

(16.63) (27.86) (15.77) (14.24) (16.00) (31.96) (21.11) (21.02)
Sample Gr. Triadic Gr. Triadic Gr. Triadic Gr. Triadic
Year FEs X X X X X X X X
Firm FEs X X X X X X
Quality Proxies X X
Adjusted R2 0.006 0.043 0.058 0.060 0.067 0.312 0.441 0.445
Observations 2,550,428 1,495,048 131,564 131,564 2,550,428 1,495,048 131,564 131,564

Linear Regression.
Standard Errors in Parentheses. Clustered at the type and firm level.
Dependent Variable: Percentage of backward citations going to AI or ICT

Note: To allow for an easier interpretation of the main effect captured by βc, the line “Ratio Clean/Dirty” expresses
the magnitude of the effect in percentage term relative to dirty and can be interpreted as the relative absorptive
capacity of clean vs dirty. Formally, it corresponds to 100×βc

meand
, where meand is the average percentage of backward

citations going to AI (or ICT) in the average dirty family. Quality proxies include the number of citations received
within three years, the size of the family and the number of countries where the family was filed. Column 1 and
5 use observations at the family level while the other columns use observations at the family-firm level. Some
families are associated with several firms, implying that those families appear multiple times in the data. For this
reason, the number of observations in Columns 2 (and 6) could in theory be larger than Columns 1 (and 5). All
coefficients excluded from the main tables are shown in the long version of the same table in Online Appendix
Table SI3.
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electricity is much more ahead in absorbing ICT than dirty.16

Next, we examine how the relative absorptive capacity of clean vs dirty has changed over
time by running a similar regressions as Column 1 and 2 for AI (and Column 4 and 5 for
ICT) but for each year separately. We then plot the yearly estimated “Ratio Clean/Dirty” either
with or without firm fixed effects on Figure 4. The dotted lines represent a measure of relative
absorption arising from intrinsic characteristics and general equilibrium effects alone, whereas
the solid lines should be interpreted as a measure of relative absorption that also includes firm
composition effects (e.g., changes in the number of firms with high capacity to use the GPT).

We see that the relative absorptive capacity for AI has increased over the years: it is fairly
noisy up until around 2002, then becomes positive, and reaches close to 600% in 2018. For
most years, it is very similar whether or not firm fixed effects are used in the estimation. Since
2008, however, the within-firm absorptive capacity is consistently higher. This means that AI
did not diffuse through all firms at the same pace.17 We further explore heterogeneity along
firm characteristics in the next section.

For ICT, the story differs slightly. The relative absorption is positive and significantly higher
for ICT than for AI for most years. AI has recently caught up and, by the end of our sample,
we see that clean inventions have a similar lead in both. The difference between the relative
absorptive capacity estimated with and without firm fixed effects is larger for ICT than for AI.
But, this time, the line without firm fixed effects is on top. This means that firms specialising
in clean patenting have an easier time absorbing ICT, compared to other firms.

Finally, in Table 4, we explore whether inventions relying on AI or ICT generate greater
value. For this purpose, we proxy “value” by the number of citations received within 3 years of
the priority year.18 First, in Column 1, we see clean families receive about 66% more citations
then dirty.19 This is consistent with prior work by Dechezleprêtre et al. (2017) and implies that
clean inventions are more valuable than dirty. Second, Column 2 shows that families citing AI
receive about 27% more citations.20 The effect of citing AI declines somewhat when firm fixed
effects are included, but the magnitude remains relatively high at around 14%. The interaction
between being clean and citing AI is positive and significant implying that the effect of citing

16. Those regressions are shown on Online Appendix Tables SI6 and SI7. For AI, the coefficients on Clean
are lower in Electricity compared to Transport. When controlling for quality proxies, the coefficients become
insignificant. This indicates that among high-quality electricity families, there is no difference between the ability
of clean and dirty technologies to absorb AI. The same coefficient for ICT remains strongly significant however.

17. The specifications using firm fixed effects mechanically drop the families filed by firms that do not have
both clean and dirty families. As a result, those specifications capture only the relative absorptive capacity in the
context of firms that do both clean and dirty patenting. Intuitively, we can expect those to be large diversified
firms. Conversely, the specifications without firm fixed effects contain families associated to any kind of firms:
either firms filing both clean and dirty, firms specializing in dirty patenting only, or firms specialising in clean
patenting.

18. We run a similar analysis using citations received within 5 years in Online Appendix Table SI10 and find
similar results.

19. The specification is log-linear, hence we convert the coefficients in the following way: 100∗ (e0.508 −1) =
66.2%.

20. Similarly: 100∗ (e0.240 −1) = 27.1%.
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Note: The figure examines how the relative absorptive capacity of clean vs dirty has changed over time. To do so,
we run similar regressions as Column 1 and 2 for AI (and Column 4 and 5 for ICT) but for each year separately.
We then plot the yearly estimated “Ratio Clean/Dirty” either with or without firm fixed effects. The dotted lines
represent a measure of relative absorption arising from intrinsic characteristics and general equilibrium effects
alone, whereas the solid lines should be interpreted as a measure of relative absorption that also includes firm
composition effects (e.g., changes in the number of firms with high capacity to use the GPT). While the relative
absorptive capacity of clean technologies is higher for ICT through most of the period, relative absorptive capacity
for AI seems to be catching up in the most recent years. The differences between the solid and dotted lines indicate
that firm-level characteristics are playing a significant role, which we further investigate in Section 6.

FIGURE 4
Relative Absorptive Capacity of Clean vs. Dirty Over Time

AI on forward citations is stronger for clean than dirty inventions. This interaction effect is
much greater when firm fixed effects are included.

6 FIRM-LEVEL MECHANISMS

In this section, we examine cross-firm variation in the capacity to absorb AI and ICT spillovers
into energy inventions. In the previous section, family-level analyses highlighted the role of
firms’ characteristics in determining relative absorptive capacity. In addition, recall that our
theoretical results show that spillovers from a GPT knowledge stock should be an important
determinant of the level of absorption (see Result 2). Arguably, some firms may have access
to larger GPT stocks, especially as a large number of firms in our sample patent both in energy
and AI or ICT (see Online Appendix Figure SI2).

To estimate the role of GPT spillovers within firms, we construct a dataset at the firm-year-
portfolio level where a “portfolio” is a group of patents of a particular type. Firms’ portfolio
can be either clean electricity, clean transport, grey electricity, grey transport, dirty electricity or
dirty transport. For each firm-year-portfolio observation, we count the number (and percentage)
of families in the portfolio that cite at least one AI family. We construct similar measures
relative to ICT.

Table 5 provides some examples of top patenting firms, together with the average annual
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TABLE 4
Do Families Citing AI or ICT Receive More Forward Citations?

(1) (2) (3) (4) (5) (6) (7) (8)
AI AI AI AI ICT ICT ICT ICT

Clean Family 0.508∗∗∗ 0.497∗∗∗ 0.413∗∗∗ 0.394∗∗∗ 0.508∗∗∗ 0.480∗∗∗ 0.413∗∗∗ 0.377∗∗∗

(0.024) (0.022) (0.042) (0.041) (0.024) (0.040) (0.042) (0.042)
Grey Family 0.324∗∗∗ 0.322∗∗∗ 0.265∗∗∗ 0.262∗∗∗ 0.324∗∗∗ 0.342∗∗∗ 0.265∗∗∗ 0.262∗∗∗

(0.019) (0.017) (0.032) (0.030) (0.019) (0.022) (0.032) (0.027)
AI Citing 0.240∗∗∗ 0.130∗∗∗

(0.046) (0.026)
Clean X Citing AI 0.061∗∗∗ 0.119∗∗∗

(0.014) (0.022)
Grey X Citing AI 0.008 0.042

(0.017) (0.028)
ICT Citing 0.335∗∗∗ 0.156∗∗∗

(0.047) (0.039)
Clean X Citing ICT -0.111∗∗∗ 0.007

(0.005) (0.020)
Grey X Citing ICT -0.126∗∗∗ -0.022

(0.016) (0.027)
Constant -1.407∗∗∗ -1.385∗∗∗ -0.960∗∗∗ -0.945∗∗∗ -1.407∗∗∗ -1.401∗∗∗ -0.960∗∗∗ -0.957∗∗∗

(0.088) (0.093) (0.090) (0.095) (0.088) (0.090) (0.090) (0.091)

Sample
Year FEs X X X X X X X X
Firm FEs X X X X
Quality Proxies X X X X X X X X
Pseudo R2 0.282 0.284 0.338 0.339 0.282 0.285 0.338 0.340
Observations 2.55e+06 2.55e+06 1.47e+06 1.47e+06 2.55e+06 2.55e+06 1.47e+06 1.47e+06

Poisson Pseudo-Likelihood Regression.
Standard Errors in Parentheses. Clustered at the type and firm level.
Dependent Variable: Citations Received Within 3 Years of Priority.

Note: Quality proxies include the size of the family, the number of countries where the family was filed, the logged
number of citations made by the family, whether it is granted, and whether it is triadic. All coefficients excluded
from the main tables are shown in the long version of the same table in Online Appendix Table SI9.



22

TABLE 5
Examples of Top Energy Patenting Firms

Firm Type Name Count Energy % Clean % Dirty % Clean Families Citing AI % Dirty Families Citing AI

Electricity Sharp Corporation 256 87 8 1 0
Electricity GE 115 8 45 14 5
Electricity Kobe Steel,Ltd. 92 22 56 2 0
Transport Toyota 3259 54 11 5 1
Transport Bosch 1215 33 9 11 3
Transport Denso 1108 30 27 9 1

Both Panasonic 1096 85 10 2 0
Both Sanyo Electric Co.,Ltd. 651 97 2 0 0
Both Toshiba 615 80 8 2 1

Note: The table shows the number of energy patent families, the percentage of families which are clean or dirty,
and the percentage of each which cite AI, for some of the top patenting firms. The values correspond to averages
over the period 1990-2018. To classify firms, we calculate the following ratio: CountTransport−CountElectricity

CountTransport+CountElectricity , where
Count refers to the number of family in the category. We define firms as “Transport” if this ratio is greater than
0.5; “Electricity” if it is smaller than -0.5; and “Both” if it ranges from -0.5 to 0.5.

number of clean and dirty families and the percentage citing AI. For clarity, we group firms
into three types: those that mostly patent electricity-related inventions, those that patent mostly
transport-related inventions and those that do both.21 We note that the percentage of families
citing AI is always higher in clean portfolios than in dirty but the percentage can go from 3%
(e.g., Panasonic) to 11% (e.g., Vestas, a leading wind energy firm).

Figure 5 provides more evidence of firm-level variation in absorption capacity. First, on
Figure 5a, we see that, the average firm’s clean portfolio always relies more on AI and ICT than
dirty.22 For AI, we also note that the gap between clean and dirty has somewhat been widening
over time, and especially since 2010. These trends are consistent with what we observed at the
family level on Figure 4. We note, however, that ICT absorption has been going down since
2010. This is almost coincidental with the temporary slowdown in clean patenting observed on
Figure 2a and 2b.

Figures 5b, 5c and 5d illustrate the variation across firms. On these graphs, each bubble rep-
resents a firm-year-portfolio observation where the bubble’s size is proportional to the number
of families in the portfolio in that year. The values are calculated for the years 2005 to 2015.
First, Figure 5b shows the variation across firms in the percentage of families in clean and dirty
portfolios that cite AI or ICT. Unsurprisingly, portfolios rely on ICT in larger proportions than
for AI (the y-axis’ scale is larger than that of the x-axis). The solid lines further show that, for
a given level of ICT absorption, AI absorption is typically higher in clean portfolios compared
to dirty. Again, this is consistent with what we saw in the previous section.

Next, we examine whether firm-level stock of AI knowledge is an important predictor of
absorptive capacity. In other words, do firms that filed more AI patent families in the past rely

21. To classify firms, we calculate the following ratio: CountTransport−CountElectricity
CountTransport+CountElectricity , where Count refers to the

number of family in the category. This ratio spans values from −1 to +1, where −1 corresponds to firms do-
ing 100% electricity and +1 100% transport. We define firms as “Electricity” if the ratio is smaller than -0.5;
“Transport” if it is greater than 0.5; and “Both” if it ranges from -0.5 to 0.5.

22. To be exact, Figure 5a plots the weighted mean share of families that cite AI or ICT in a given portfolio. The
mean is weighted by the size of the portfolio so that firms with larger portfolios weigh more in the calculation.
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(a) Variation Over Time (b) Variation Across Firms

(c) Correlation with AI Stock (d) Correlation with AI to Energy Stock
Note: Figure 5a plots the weighted mean share of families that cite AI or ICT in a given portfolio. The mean is
weighted by the size of the portfolio so that firms with larger portfolios weight in more in the calculation. On the
other figures, each bubble represents a firm-year-portfolio observation and the bubble’s size is proportional to the
number of families in the portfolio in that year. The values are calculated for the years 2005 to 2015.

FIGURE 5
Variation Over Time and Across Firms in the Percentage of Families Citing AI and ICT
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more on AI in their clean portfolios? According to Figure 5c, the answer is a tentative yes. The
solid lines highlight that firms patenting in both sectors (purple) or mostly in transport (red)
have a higher level of absorption on average. The correlation seems also stronger for those
firms relative to those patenting mostly in electricity.

Finally, we explore whether energy incumbents may be at a disadvantage relative to new
entrants. To do so, we calculate firms’ energy stock as the sum of clean, grey and dirty elec-
tricity/transportation patent stocks. Figure 5d shows there is a positive relationship between
firm-level AI absorption and the ratio of the firm’s AI stock to Energy stock. This suggests that
firms with a very high energy stock relative to their AI stock are less able to apply AI to energy
technologies, which would be consistent with new or smaller energy firms being better able to
absorb AI and ICT into their inventions.

We probe those relationships further using linear regressions. First, we check whether
clean portfolios absorb more AI and ICT than dirty ones. The first specification is, therefore,
as follows:

FamilyCountCitingGPTjtk = β0 +β1FamilyCount jtk +βcCleank +βgGreyk

+bX jt +δt +δ j + ε jtk
(15)

FamilyCountCitingGPTjtk is the count of families in portfolio k filed in year t by firm j

that cite some AI or ICT patents. FamilyCount jtk is the total number of families in portfolio
k (filed in year t by firm j). Cleank and Greyk are binary variables equal to 1 if the portfolio
is clean or grey. We run separate regressions for the transport and electricity portfolios. Xi is
a series of firm-level controls that include total assets, number of employees and years since
incorporation. δt and δ j are year and firm fixed effects.

To examine more closely how absorption varies by type of firms, we also include two
other control variables interacted with Clean and Grey. The first, “Firm Sectoral Focus”, is a
variable with values between −1 and 1 that captures the degree of sectoral specialization. It
equals to −1 when the firm’s energy families are all in electricity, and to 1 when they are all
in transport. Specifically, it is equal to CountTransport−CountElectricity

CountTransport+CountElectricity , where Count refers to the
number of families in the category (for firm j in year t). Second, we include variables that
capture specialization within the clean-grey-dirty space. In particular, “Firm Clean Focus” is
the percentage of clean families out of all energy families (in year t) and allows us to explore
whether the propensity to absorb AI and ICT is higher or lower in firms that specialize in clean
energy inventions.

Next, we examine 1) whether higher stocks of AI or ICT facilitate AI and ICT absorption,
and 2) whether there is a negative incumbent effect such that a higher stock of energy patents
correlates with lower levels of absorption. To do so, we study a regression similar to the one
above, but adding terms for the AI, ICT and energy stocks:



25

FamilyCountCitingGPTjtk = β0 +β1FamilyCount jtk +βcCleank +βgGreyk

+β2StockGPTjt−1 +β3StockEnergy jt−1

+bX jt +δt +δ j + ε jtk

(16)

StockGPTjt−1 is the discounted cumulative count of AI or ICT families firm j filed up to
time t − 1. StockEnergy jt−1 is the discounted cumulative count of energy families (of any
type) firm j filed up to time t −1. We also include interactions between the stock variables and
Cleank and Greyk. Table 6 and 7 present the regression results. In both tables, Column 1 to
4 focus on AI, Column 5 to 8 on ICT. Columns 1-2 and 5-6 examine “Transport” portfolios,
while Columns 3-4 and 7-8 examine “Electricity” portfolios.

First, Columns 1, 3, 5 and 7 in Table 6 show that clean portfolios typically absorb more
AI or ICT than dirty: in all columns, the coefficient on Clean is positive and significant at the
1% level, except for AI in electricity.23 This is indicative that clean technologies have a greater
intrinsic capacity to use AI in transport, and ICT in both transport and electricity. On the
other hand, it seems unlikely that clean technologies in electricity have a much higher intrinsic
absorptive capacity for AI than dirty.

Results shown in Columns 2, 4, 6, and 8, however, highlight that the lead of clean over
dirty is significantly different for firms with different specializations. For transport portfolios,
the lead of clean over dirty in absorbing AI and ICT is mostly present when firms’ patenting
concentrates on clean transport.

In electricity, the story is different. First, clean portfolios do not appear to absorb signifi-
cantly more AI, and, in fact, dirty may lead slightly when firms concentrate on dirty electricity.
Indeed, in Column 4, the coefficient on “Clean Portfolio” is negative and significant at the 10%
level.

ICT absorption in electricity also presents a mixed picture. Although Column 7 shows
that clean indeed leads over dirty, the effect mostly disappears (but remains positive) when
controlling for firms’ sectoral and clean specializations. The coefficients are not significant for
those variables, but qualitatively, their signs indicate that that the gap between clean and dirty
is stronger when firms specialize in electricity.

Next, on Table 7, we find that firms with higher AI (resp. ICT) stocks cite more AI (resp.
ICT) patents in their inventions (Columns 1, 3, 5 and 7). This is consistent with the earlier
theoretical result 2a) which stated that GPT absorption will increase with the existing accessible
GPT stock.

When adding firm fixed effects, however, the coefficients on AI stock is no longer signif-
icant (Columns 2). In other words, the variation over time within firms in the size of the AI
stock explains little of the variation in absorptive capacity. The coefficient on the interaction,
however, remains significant at the 10% level.

23. This is consistent with our family-level results presented in Section 5.
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TABLE 6
Do Firms’ Clean Portfolios Rely more on AI and ICT than Dirty Portfolios?

(1) (2) (3) (4) (5) (6) (7) (8)
AI AI AI AI ICT ICT ICT ICT

Family Count (log) 0.944∗∗∗ 0.974∗∗∗ 0.979∗∗∗ 0.997∗∗∗ 0.888∗∗∗ 0.921∗∗∗ 0.979∗∗∗ 0.970∗∗∗

(0.049) (0.050) (0.040) (0.055) (0.038) (0.042) (0.026) (0.030)
Clean Portfolio 1.471∗∗∗ -0.020 0.156 -0.599∗ 0.904∗∗∗ 0.176 0.495∗∗∗ 0.188

(0.098) (0.297) (0.123) (0.363) (0.062) (0.182) (0.057) (0.154)
Firm Sectoral Focus -0.028 -0.101 -0.046 -0.091

(0.194) (0.167) (0.117) (0.099)
Firm Clean Focus -0.004 -0.005 -0.001 -0.003∗

(0.004) (0.003) (0.002) (0.002)
Clean X Firm Sectoral Focus 0.523∗∗∗ 0.179 0.201∗ -0.142

(0.195) (0.162) (0.115) (0.111)
Clean X Firm Clean Focus 0.012∗∗∗ 0.012∗∗ 0.006∗∗ 0.003

(0.005) (0.005) (0.003) (0.002)
Portfolio Type Transport Transport Electricity Electricity Transport Transport Electricity Electricity
Portfolio FEs X X X X X X X X
Year FEs X X X X X X X X
Firm FEs X X X X X X X X
Firm level controls X X X X X X X X
Observations 10,733 10,733 10,082 10,082 17,310 17,310 22,476 22,476
R2 0.738 0.740 0.450 0.455 0.835 0.836 0.732 0.733

Poisson pseudo-maximum likelihood regression. Standard errors in parentheses, Clustered at firm level.
Dependent variable: Count of Families citing AI or ICT.
Firm level controls include total assets (log), number of employees (log), and years since incorporation (log).
The label (log) refers to the natural logarithm of 1 + the variable in question.

Note: Firm Sectoral Focus is a variable from −1 to 1 that captures the degree of specialization (in year t). It equals
to −1 when the firm’s energy families are all in electricity; it equals to 1 when they are all in transport. Specifically,
it is equal to CountTransport−CountElectricity

CountTransport+CountElectricity , where Count refers to the number of families in the category. Firm Clean
Focus is the percentage of clean families out of all energy families (in year t). “Grey” and interactions with “Grey”
are included in the regressions but left out of the table for clarity. All coefficients shown in the longer version of
the same table in Online Appendix Table SI11.
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The interaction between the AI stock and Clean is also positive and significant for transport
(at the 10% level). It indicates that a higher AI stock facilitates AI absorption more so for
clean than dirty portfolios. This is consistent with our theoretical result 2c), which predicted
a positive interaction between the intrinsic absorption capacity of a technology and the GPT
stock (for the technology which is chosen as the direction of technological change).

The story of AI absorption in “Electricity” portfolios is similar but weaker. Column 3
indicates that firms with a higher AI stock cite more AI in both their clean and dirty portfolios.
Coefficients lose significance once adding firm fixed effects (Column 4) highlighting that the
correlations in Column 3 were driven by variation across firms.

ICT absorption also seems to increase when firms have a higher stock of ICT patents. How-
ever, now the coefficient on the interaction between Clean and ICT Stock is negative and sig-
nificant, highlighting that the facilitating effect of the ICT stock is stronger for dirty than clean
portfolios. Interestingly, those results hold also when including firm fixed effects, thus using
only variation over time within firms. This indicates that, as firms grow their stock of ICT, they
also increase the proportion of their energy patents absorbing ICT.

Last but not least, we explore whether experience in energy patenting accelerates or slows
down absorption in the GPT. Here, the coefficients on “Stock Energy” are negative and almost
always strongly significant. This indicates that firms with many energy patents (e.g., incum-
bents) tend to absorb the GPT less. The coefficients on the interaction “Clean X Stock Energy”
are generally not significant, highlighting that this effect is similar for both clean and dirty
portfolios. Importantly, this negative incumbent effect is consistent with our theoretical result
3 assuming an aging parameter δ greater than 1; in other words, mature application sectors are
less able to absorb the GPT.
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TABLE 7
Does Experience in AI, ICT and/or Energy Patenting Facilitate AI/ICT Absorption?

(1) (2) (3) (4) (5) (6) (7) (8)
AI AI AI AI ICT ICT ICT ICT

Family Count (log) 0.982∗∗∗ 0.922∗∗∗ 1.064∗∗∗ 1.017∗∗∗ 0.939∗∗∗ 0.887∗∗∗ 1.032∗∗∗ 1.016∗∗∗

(0.044) (0.045) (0.126) (0.042) (0.030) (0.044) (0.036) (0.026)
Clean Portfolio 0.750∗∗∗ 1.014∗∗∗ 0.350∗∗∗ 0.006 0.680∗∗∗ 0.697∗∗∗ 0.903∗∗∗ 0.476∗∗∗

(0.147) (0.273) (0.112) (0.184) (0.075) (0.126) (0.064) (0.102)
Stock AI (log, t-1) 0.273∗∗∗ 0.020 0.333∗∗∗ -0.067

(0.066) (0.096) (0.082) (0.087)
Clean X Stock AI (log, t-1) 0.138∗ 0.137∗ -0.030 -0.014

(0.073) (0.074) (0.101) (0.047)
Stock Energy (log, t-1) -0.199∗∗∗ -0.186∗∗ -0.136∗∗∗ -0.048 -0.169∗∗∗ -0.244∗∗∗ -0.250∗∗∗ -0.183∗∗∗

(0.045) (0.083) (0.051) (0.063) (0.026) (0.049) (0.023) (0.045)
Clean X Energy Stock (log, t-1) -0.029 -0.007 -0.112∗ 0.033 0.109∗∗∗ 0.093∗∗∗ 0.017 0.101∗∗∗

(0.046) (0.065) (0.068) (0.042) (0.025) (0.026) (0.033) (0.032)
Stock ICT (log, t-1) 0.231∗∗∗ 0.197∗∗∗ 0.305∗∗∗ 0.083∗

(0.022) (0.060) (0.019) (0.049)
Clean X Stock ICT (log, t-1) -0.121∗∗∗ -0.072∗∗∗ -0.099∗∗∗ -0.084∗∗∗

(0.027) (0.024) (0.023) (0.023)
Portfolio Type Transport Transport Electricity Electricity Transport Transport Electricity Electricity
Portfolio FEs X X X X X X X X
Year FEs X X X X X X X X
Firm FEs X X X X
Firm level controls X X X X
Observations 26,810 9,610 41,591 9,097 26,810 15,604 41,591 20,266
R2 0.660 0.742 0.335 0.449 0.769 0.836 0.639 0.726

Poisson pseudo-maximum likelihood regression. Standard errors in parentheses, Clustered at firm level.
Dependent variable: Count of Families citing AI or ICT.
Firm level controls include total assets (log), number of employees (log), and years since incorporation (log).
The label (log) refers to the natural logarithm of 1 + the variable in question.

Note: Stock Energy corresponds to the firm’s total stock of energy patents (i.e., the sum of clean, grey and dirty
electricity/transportation patent stocks). We add interactions between the portfolio type and the GPT stock but
only show the interaction for “Clean”. “Grey” is included in the regressions but left out of the table for clarity.
All coefficients excluded from the main tables are shown in longer versions of the same table in Online Appendix
Table SI18 and SI19.
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7 DISCUSSION AND CONCLUSION

This paper explores theoretically and empirically whether AI has the potential to accelerate
clean energy innovation. We first examine how a GPT can affect the race between clean and
dirty in a model of directed technological change. We find that, depending on the relative
absorptive capacity of clean and dirty, the GPT can break path dependency and help clean
technologies compete with dirty. We then use patent data to develop empirical proxies of
absorptive capacity and examine how clean and dirty technologies compared over the last two
decades. We find evidence, both at the patent family and firm levels, that clean inventions
consistently absorb more AI and ICT spillovers than dirty ones. Moreover, this trend has been
particularly clear since 2010 for AI.

These results provide grounds for cautious optimism regarding the potential for AI to ac-
celerate the transition to clean energy. Indeed, our theory highlights that a GPT can make new
technologies more attractive for R&D investments, especially if they more effectively absorb
the GPT than incumbent technologies. The theory also shows that this can generate a virtuous
feedback. If inventors start preferring clean, they will put more effort into applying the GPT
to it, which in turn increases the technology’s productivity, further encouraging innovators to
focus on it.

Our firm-level empirical results provide supporting evidence for this process. First, clean
technologies’ advantage over dirty ones not only holds, but increases within firms, suggesting
that clean tech has a higher intrinsic absorptive capacity and is now the preferred direction of
technological change.24 If this is the case, our theory predicts that a higher stock of the GPT
leads innovators to put more effort into applying the GPT, especially to the clean sector. We
find evidence of this in the data. We further find that a firm’s prior focus on energy hinders
absorption, in line with the idea that the GPT helps break path dependence and open new
opportunities.

Our optimism, however, is cautious. Indeed, the rate of AI absorption is still low. On
average, only about 0.3% of backward citations that energy patents make go to AI inventions.
Similarly, only about 9% of firms’ patents cite any AI invention. These figures are much
lower than the trends for ICT between 1990 and 2010. Figure 6 also puts these statistics into
a broader context by plotting them along with other technological application sectors. We
see that sectors more closely related to AI, such as “Control” or “Digital Communication,”
absorb AI faster. But more distant technological applications, such as “Medical Technologies”,
“Telecommunications”, or “Transport overall” (i.e. non-road transport and other aspects of
transport innovation, such as automated driving), also absorb it faster than our two focal energy
sectors.

Our analysis is a first step in understanding the impact of AI on the transition, and further

24. The within-firm result rules out the alternative explanation that differences in firm capabilities or location
are correlated both with working on clean technologies and having more access to knowledge on the GPT.
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Note: The figure illustrates variation in the propensity to absorb AI across sectors in the economy. The x-axis
shows the total number of families in sector j; the y-axis shows the percentage of families in sector j that cite AI.
We identify sector-specific families using the technical field classification in PATSTAT’s Table 230. We also add
on the graph dots representing the electricity and transport sectors as defined in this paper, that is, based on the sets
of CPC and IPC codes detailed in Online Appendix Table SI1 and SI2. These are different because the PATSTAT
technical field are typically broader. For transport, for example, it includes any family related to non-road transport
and other aspects of transport innovation, such as automated driving. For readability, we have excluded computer
technology from the graph because it is a strong outlier in both the x and y-axes. The sample used consists of
families filed between 1980 and 2018, in any country. For the y-axis we only consider citations made within three
years of an AI family being filed to control for potentially differing levels of maturity across sectors.

FIGURE 6
AI Absorption Across the Economy
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research is needed to address some limitations. First, our analysis focused on comparing broad
categories such as clean and dirty, but further work could develop more granular measures to
examine the absorptive capacity of specific energy technologies (e.g., solar or wind). Analyzing
the heterogeneous impact on different technologies is important to better understand the extent
to which the trends are driven by intrinsic technological factors or endogenous processes that
are more amenable to policy intervention. Furthermore, we treat all AI patents the same. How-
ever, some AI patents probably have a greater potential to be applied broadly (to be a GPT),
while others are likely more narrow. Furthermore, AI algorithms are often not patented. Addi-
tional work could include citations to scientific publications and distinguish between broad and
narrow AI patents.

Finally, our analysis only looks at knowledge spillovers through citations and does not ex-
amine the extent to which these spillovers impact the rate of progress of clean technologies, or
indeed if and how fast new technologies drawing on AI actually make it to market. Does the in-
tegration of AI make technologies more productive and does it accelerate the rate of subsequent
innovation? Are there barriers to deployment which mean that many of these technologies are
not actually being used? To answer these questions, future research could look at the impact
of AI-based energy innovation on firm productivity, sales and subsequent rate of innovation, as
well as the degree to which such innovation leads to technology adoption in markets in which
it could be most useful.

Despite its limitations, this paper provides the first empirical analysis of innovation spillovers
from AI and ICT to clean and dirty technologies on a global scale. Although policymakers often
recognize the potential importance of AI and ICT for clean energy, there has been little research
on the topic. Our results, therefore, can help inform energy innovation policy. First, our empir-
ical analysis shows that firms are an essential locus for knowledge spillovers between the GPT
and energy applications. This suggests that it is worthwhile to increase the joint development
of firm-level capabilities in digital and low-carbon technologies.

Our results also suggest that there is a case to support innovations that specifically draw
on AI to advance clean technologies. Indeed, those can help spur a positive feedback loop
between more AI absorption in clean and more clean innovations in general. Further research,
however, is needed to understand the mechanisms better, particularly the role of different actors
in catalyzing spillovers (universities, startups, large firms, regional clusters).

SUPPLEMENTARY MATERIAL

The Online Appendix can be found here: www.lse.ac.uk/granthaminstitute/publication/directed-
technological-change-and-general-purpose-technologies.
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A THEORETICAL DERIVATIONS

A.1 Model derivation

The equilibrium must satisfy the following equations:

1. Competitive equilibrium for the two inputs used in producing the final good. Since the
final good is produced competitively, the inputs’ relative price must satisfy:

pct

pdt
=

(
Yct

Ydt

)−1/ε

(17)

In addition, we normalize the final good’s price to 1:

(
p1−ε

ct + p1−ε

dt

) 1
1−ε

= 1 (18)

2. Profit maximization for input j. This determines labor demand L jt and the inverse de-
mand curve of machine x jit . Specifically, labor demand in each sector must satisfy:

(1−α)p jtL−α

jt

∫ 1

0
A1−α

jit xα
jitdi = wt (19)

And the inverse demand for x jit must satisfy:

x jit =
α p jt

p jit

1
1−α

A jitL jt (20)

3. Profit maximization for the machine producer. The machine producer is a monopolist
maximizing π jit = (p jit −ψ)x jit where x jit is given by Equation 20. This gives p jit =

ψ/α . We follow the original model in normalizing ψ = α2, which yields the following
relations:

p jit = α (21)

x jit = p
1

1−α

jt L jtA jit (22)

π jit = α(1−α)p1/(1−α)
jt L jtA jit (23)

4. Profit maximization for research scientists who decide which sector to work in.



33

Using Equation 22, we obtain the following equilibrium production level of input j:

Yjt = L1−α

jt

∫ 1

0
A1−α

jit (p
1

1−α

jt L jtA jit)
αdi

= (p jt)
α

1−α L jtA jt (24)

Using Equations 22 and 19, we derive an expression for the relative price of clean and dirty
inputs as a function of the relative productivities of the two sectors:

pct

pdt
=

(
Act

Adt

)−(1−α)

(25)

Using Equations 24, 17 and 25, we obtain an equation for relative employment in each
sector:

Lct

Ldt
=

(
Act

Adt

)−φ

(26)

where φ ≡ (1−α)(1− ε).
The expected profit Π jt for a scientist doing research in sector j is the expected profit from

becoming a monopolist producer of a machine with productivity A jit = (1+ γ)A ji,t−1, which is
(see Eq 23):

Π jt = η j(1+ γ +β jGPTt)α(1−α)p1/(1−α)
jt L jtA jt−1 (27)

Using Equation 27 with Equation 25 and 26, we get the ratio of expected profit from doing
research in the clean versus dirty sector given by Equation 9.

Next, we obtain a system of equation to solve to obtain the equilibrium by combining Equa-
tions 25, 18 and 26 with market clearing Lct +Ldt = 1, and the expressions for the advancement
of the technology frontier in each sector.

A.2 Proof of Result 1

We defined Āct−1 as the value of Act−1 for which f (1,0) = 1. We want to show that dĀct−1
dGPTt

< 0

and dĀdt−1
dGPTt

< 0.

f (1,0) =
ηc

ηd

1+ γ +βcGPTt

1+ γ +βdGPTt

(
1+(γ +βcGPTt)ηc

)−φ−1( Āct−1

Adt−1

)−φ

= 1

⇒ Āct−1 = Adt−1

(
ηc

ηd

1+ γ +βcGPTt

1+ γ +βdGPTt

)1/φ(
1+(γ +βcGPTt)ηc

)− φ+1
φ

dĀct−1

dGPTt
=

1
φ

Āct−1

(
ηc

ηd

(βc −βd)(1+ γ)

(1+ γ +βcGPTt)(1+ γ +βdGPTt)︸ ︷︷ ︸
∼0

−(φ +1)
ηcβc

1+(γ +βcGPTt)ηc︸ ︷︷ ︸
<0

)
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The first term goes as GPT−2
t whereas the second one goes as GPT−1

t . Thus, the sign of the
derivative is dominated by the second term, which is negative if and only if φ < 1. The converse
derivation works for Ādt−1.

We now want to show that dĀct−1
dβc

< 0 and dĀdt−1
dβc

> 0.

dĀct−1

dβc
=−Āct−1GPTt

ηc(1+φ(1+ γ +βcGPTt))−1
φ(1+ γ +βcGPTt)(1+ηc(γ +βcGPTT ))︸ ︷︷ ︸

>0

< 0

The term in bracket is positive because under the assumption that φ < 1, both the numerator
and denominator are negative. Finally:

f (0,1) =
ηc

ηd

1+ γ +βcGPTt

1+ γ +βdGPTt

(
1+(γ +βdGPTt)ηd

)φ+1( Ādt−1

Act−1

)φ

= 1

⇒ Ādt−1 = Act−1

(
ηd

ηc

1+ γ +βdGPTt

1+ γ +βcGPTt

)1/φ(
1+(γ +βdGPTt)ηd

)− φ+1
φ

dĀdt−1

dβc
=− Ādt−1GPTt

φ(1+ γ +βcGPTt)
> 0

A.3 Proof of Result 2

We start with studying the behavior of B∗
j with respect to GPTt and b j.

B∗
j = η jb jGPTt

α(1−α)

2ψ
p1/(1−α)

jt L jtA jt−1

GPTt and b j occupy symmetric positions in the equation, so the proof is the same for both
variables. We thus proceed studying the behavior with respect to GPTt .

dB∗
j

dGPTt
= (η jb j

α(1−α)

2ψ
p1/(1−α)

jt L jtA jt−1)

(
1+

1
1−α

GPTt

p jt

d p jt

dGPTt
+

GPTt

L jt

dL jt

dGPTt

)
(28)

WLOG, we describe what happens in the clean equilibrium sc = 1 (the dirty equilibrium can
then be analyzed symmetrically). Using Equation 25 together with A jt =(1+(γ+b jB∗

jGPTt)η js j)A jt−1,
we see that:

pct

pdt
≡ rp =

(
Act

Adt−1

)−(1−α)

This tells us that in the clean equilibrium, d p jt
dGPTt

=
d p jt
dAct

dAct
dGPTt

. In the clean equilibrium, we
already know that dAct

dGPTt
≥ 0. Since Adt−1 is fixed and −(1−α)< 0, the relative price ratio rp →
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0 as Act increases. To understand how this affects d p jt
dAct

, take Equation 18 (the normalization of
the price of the final good) and rewrite it as:

(p1−ε

d (r1−ε
p +1))(

1
1− ε

) = 1

pd =
1

(r1−ε
p +1)1/(1−ε)

lim
r→0

pd =
1
r
→ ∞

lim
r→0

pc = rpd = 1

These limits imply that d pc
dGPTt

is negative but goes to 0 (since pc asymptotes to 1), and
d pd

dGPTt
> 0.

We follow a similar reasoning to examine the behavior of equilibrium labor allocations.
From Equation 26, we have:

Lct

Ldt
≡ rL =

(
Act

Adt−1

)−φ

This tells us that in the clean equilibrium, dL jt
dGPTt

=
dL jt
dAct

dAct
dGPTt

. With Adt−1 fixed and −φ >

0, the relative labor ratio rL increases as Act increases. Given the market clearing condition
Lct + Ldt = 1, this implies that Lct → 1 and Ldt → 0 as GPTt , and therefore, Act increases.
Hence, dL jt

dGPTt
→ 0.

Thus, Equation 28 now gives us:

dB∗
c

dGPTt
→ ηcbc

α(1−α)

2ψ
Act−1

Hence, in the clean equilibrium, investments in absorptive capacity by the clean sector increase
with the GPT stock, and this is even more so if bc (the intrinsic absorptive capacity) and Act−1

(the prior stock) are higher.
For the dirty sector, i.e., the sector which is not favored by the equilibrium, investments in

absorptive capacity also have a positive relationship to the GPT . This is because d pdt
dGPTt

> 0 and
does not asymptote, unlike dLdt

dGPTt
. However, the derivative remains small because Ldt → 0.

A.4 Proof of Result 3

We now consider the role of the energy stock in investments towards absorptive capacity, al-
lowing for an aging factor that reduces the intrinsic absorptive capacity of more mature tech-
nologies.
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B∗
j = η j

b j

Aδ
jt−1

GPTt
α(1−α)

2ψ
p1/(1−α)

jt L jtA jt−1

with δ > 0, the aging paramter.

dB∗
j

dA jt−1
= (η jb jGPTt(1−δ )

α(1−α)

2ψ
p1/(1−α)

jt L jtA−δ

jt−1)

(
1+

1
1−α

A jt−1

p jt

d p jt

dA jt−1
+

A jt−1

L jt

dL jt

dA jt−1

)
(29)

The reasoning we developed in proof A.3 regarding the derivatives of prices and labor with
respect to GPTt and their limiting behavior carries over to the behavior of these derivatives and
limits with respect to A jt−1. Hence, in the clean equilibrium, we have:

dB∗
c

dAct−1
→ (ηcbcGPTt(1−δ )

α(1−α)

2ψ
A−δ

jt−1)

Clearly, if δ = 0, this derivative is positive. However, if δ > 1, then the aging effect -
impeding absorption of the new GPT - is larger than the “building upon the shoulders of giants”
effect (innovation opportunities arising from having a larger stock of past knowledge). In this
case, the derivative is negative, indicating that effort in absorbing the GPT will decrease with
the maturity of the technology.
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