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Abstract

As the climate is changing, the global economy is adapting. We provide a novel method of

estimating how much adaptation has taken place historically, how much it has cost, and how

much it has reduced the impacts of climate change. The method is based on a structurally

estimated, globally aggregated model of long-run growth, which identifies how household

consumption and fertility preferences, innovation, and land use allow the economy to adapt

to climate change. We identify the key role of agriculture, because it is especially vulnerable

to climate change and food cannot be perfectly substituted. To compensate for declining

crop yields, the world economy has shifted resources into agriculture and this has slowed

down structural change. We also use the model to estimate optimal future carbon taxation.

Adaptation is costly, so radically reducing future greenhouse gas emissions could improve

welfare substantially. Uncertainty about climate damages remains substantial, particularly

in agriculture, and this strongly affects optimal policy.
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1 Introduction

Emissions of greenhouse gases since the industrial revolution have already warmed the planet

by an estimated 1.1◦C and, as the Intergovernmental Panel on Climate Change (IPCC) writes,

“[t]he scale of recent changes across the climate system as a whole – and the present state of

many aspects of the climate system – are unprecedented over many centuries to many thousands

of years” (IPCC, 2021, Summary for Policymakers, p8).

Therefore, it is intuitive that climate change has already left an imprint on the world econ-

omy. Indeed, an emerging body of empirical research convincingly shows how mostly short-run

fluctuations in climate affect a wide range of economic and social outcomes, including crop

yields, GDP, mortality, and civil conflict (Dell et al., 2014; Carleton and Hsiang, 2016). The

effects can be negative or positive. However, how climate change has shaped the long-run de-

velopment of the world economy is much less well understood. The fundamental challenge is to

estimate a counterfactual world without climate change and compare that world to the one we

have. The aforementioned empirical literature provides ways of doing this, but a key concern is

that short-run economic responses to climate variation are not the same as long-run responses

to secular trends, because the capacity of households, firms and governments to adapt is limited

over short timescales. While economists are increasingly studying local and micro adaptations

to climate change (e.g. Barreca et al., 2016; Graff Zivin and Neidell, 2014), there remains a

disconnect in scale with the global picture.

In this paper, we propose a new approach to estimating how climate change has affected

the long-run development of the world economy, which is capable of identifying the role of

adaptation mechanisms such as structural change, directed technical change, land-use change,

and demographic change. The method revolves around building a structural model of the world

economy, which has just enough structure to explicitly track the aforementioned adaptation

mechanisms. While our approach could be extended and generalized to many model structures

analysing different adaptation channels, our particular model structure has the following key

features:

• Two sectors producing final goods, a climate-vulnerable sector (agriculture) and a less

vulnerable sector (the rest of the economy). Consumer preferences over the agricultural

good (i.e., food) and other goods are non-homothetic and imply imperfect substitution.

This enables us to estimate how climate change mediates structural change out of agri-

culture into manufacturing and services, and how the special role of food in households’

consumption bundle affects the welfare cost of climate change.

• An energy sector providing dirty (fossil) and clean inputs to final goods production. With

this we can estimate how secular trends in final goods production and in the energy sector
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affect greenhouse gas (GHG) emissions.

• Endogenous technical change in both final goods sectors and in dirty and clean energy,

driven by R&D labor in a Schumpeterian framework. This enables us to estimate how

climate change induces innovation in different sectors, affects the direction of technical

change, and how future pricing/taxation of carbon would do the same.

• Agriculture requires land as an input, so we can estimate how climate change affects the

total stock of agricultural land.

• Endogenous fertility, whereby households derive utility from fertility and the utility their

children achieve. This enables us to estimate how fertility and in turn demographic change

are affected by climate change.

• A coupled climate system, which is warmed by GHG emissions from dirty energy use,

deforestation from agricultural land expansion, and agricultural production, and which

impacts productivity in the final goods sectors.

By coupling an aggregate model of long-run growth with a simple model of the climate, we

essentially create an Integrated Assessment Model (IAM) of the type pioneered by Bill Nordhaus

(e.g., Nordhaus, 1991; Golosov et al., 2014; Cai and Lontzek, 2019; Barrage, 2020), albeit with

more structural complexity than is typical (e.g., two sectors, endogenous technical change and

fertility, etc.). However, IAMs are traditionally used to simulate alternative futures. Our key

innovation is to take the model to the data and use it to simulate the past, both actual and

counterfactual. This is made possible by structurally estimating the model on time-series of

observed data from 1960 to 2015, using a simulated method of moments. This ensures the

estimated model replicates how key economic and climate variables have actually evolved over

the last half century. We then “turn off” climate change and use the estimated model to simulate

a counterfactual past in which the world economy was not affected by climate change. The

difference between the actual and counterfactual pasts is the long-run impact of climate change.

Through this approach, we quantify how climate change has already left its imprint on the

world economy. The underlying literatures on climate impacts tell us that climate change is

likely to have had a large negative effect on productivity in the climate-vulnerable agriculture

sector, and a small negative effect on productivity in the rest of the economy. However, with

our model we estimate that the global economy has adapted to this downward pressure on pro-

ductivity such that the eventual loss of agricultural output has been much reduced. Conversely,

the eventual loss of output in the rest of the economy has been amplified. This is because re-

sources have been shifted from the rest of the economy to agriculture, including capital, labor,

and R&D. Therefore, while the global economy has been undergoing structural change away

2



from agriculture towards manufacturing and services, our results imply that climate change has

actually slowed down this process, drawing resources into agriculture to provide imperfectly sub-

stitutable food at the expense of the production of other goods. At the same time, climate change

has marginally accelerated the demographic transition, because it has reduced households’ de-

mand for fertility through its implicit effect on children’s prospects. Yet, while adaptation has

significantly reduced climate damages in agriculture, together with residual climate damages

it is likely to have come at a considerable cost – we estimate that the welfare cost of climate

change between 1960 and 2020 is equivalent to a permanent reduction of consumption in 1960

of 6%. All these estimates are subject to large uncertainty, which comes principally from the still

wide disagreement in the agronomic literature about how climate change affects crop yields.

Our estimates range from very large negative effects of climate change on agriculture to very

small positive effects, with a best estimate of a substantial negative effect.

We also use the estimated model to make future projections, a more conventional use of

an IAM. Without a carbon tax, GDP and population keep increasing. The same adaptation

mechanisms that we estimate have been at work in the past are also at work in the future, plus

agricultural land also expands to compensate for increasingly negative yield effects from climate

change. However, this adaptation comes at an increasing cost. Hence, it is optimal to tax global

GHG emissions at a high rate, so that optimal warming is well below 2◦C in 2100.

We conduct a further series of experiments to quantify the importance of different adapta-

tion/adjustment channels in the economy, and we test the robustness of our results to a range of

parametric assumptions. This leads to three main results. First, introducing constraints/frictions

to the reallocation of resources in our model, we show that capital mobility is a key driver of

the cost of the transition out of fossil energy. In our model, preventing the reallocation of fossil

energy capital to other sectors eliminates most of the welfare gains of GHG abatement. Second,

agricultural R&D is a particularly important mechanism in adapting to climate change. Third,

our estimates are robust to variations in exogenous parameters, except for the pre-adaptation

effect of climate change on agricultural productivity. This underscores the centrality of agri-

cultural damages and food supply/demand to the welfare cost of climate change. Varying the

pre-adaptation effect of climate change on the rest of the economy across the range of estimates

has minimal effect on optimal GHG taxes, but varying the corresponding effect on agriculture

across the range of estimates in the agronomic literature has a large effect.

1.1 Related literature

The structure of our growth model builds on a number of fundamental theories. We extend

the model of Barro and Becker (1989), which endogenizes population growth through house-

holds’ inter-temporal preferences over consumption and fertility. Food preferences build on an
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important recent contribution to the literature on structural change (Comin et al., 2021), which

proposes non-homothetic constant-elasticity-of-substitution (CES) preferences as the best rep-

resentation of data on income elasticities across sectors. We build on endogenous growth the-

ory. Productivity growth is driven by R&D in the Schumpeterian tradition (Aghion and Howitt,

1992). In particular, productivity growth depends on the share of labor allocated to R&D, so our

model belongs to the class of endogenous growth models that do not exhibit a population scale

effect (e.g. Dinopoulos and Thompson, 1998; Young, 1998). Since we differentiate between

clean and dirty energy, and technical change is endogenous in both sectors, GHG emissions

abatement is subject to directed technical change (Acemoglu et al., 2012). It also means that

innovation is a mechanism to compensate for climate damages, i.e., to adapt to climate change

(Fried, 2018). This turns out to be important in agriculture.

We also contribute to quantitative research on how climate change and economic growth

interact. As mentioned above, our structural model can be viewed as an IAM and hence owes

a debt to the IAM literature. Our work is largely complementary to reduced-form econometric

studies, which use exogenous variation in past climate and weather as a natural experiment

(Dell et al., 2014; Carleton and Hsiang, 2016). Most of this work uses plausibly exogenous

variation in climate over the short run (mostly year to year) for identification.1 We make some

use of this work to calibrate the pre-adaptation climate impact on productivity in the rest of the

economy, since short-run responses leave little time for adaptation, but then we depart from it

by taking a structural approach to estimating long-run effects.

In taking a structural approach, this paper has an affinity with other recent work on climate

change using structural models, such as Costinot et al. (2016), Desmet and Rossi-Hansberg

(2015), and Nath (2022). These papers major on the geographical dimension. They build on

the heterogeneity of climatic conditions to explore how climate change will affect the location

of economic activities, and how spatial processes such as migration and trade will mediate

climate impacts. While spatial heterogeneity is unquestionably a feature of climate change, our

focus is different. Building on the IAM tradition, we aggregate over space so that we can focus

more fully on long-run economic dynamics at the global level, including capital accumulation,

demographic change, innovation, land-use change, and sectoral reallocation.

The remainder of the paper is set out as follows. Section 2 presents the model and discusses

our structural estimation strategy. Section 3 evaluates how well the model is able to track the

evolution of the economy, population, agriculture, energy and GHG emissions historically. In

Section 4, we construct counterfactual estimates of climate impacts over the 1960-2020 period,

1 A subset of the empirical literature attempts to estimate longer-run effects, for example, Ricardian/cross-sectional
studies (Mendelsohn et al., 1994; Nordhaus, 2006), and panel studies using long differences or using short-run
differences but specifying interactions and lagged effects to capture longer-run impacts (Dell et al., 2012).
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i.e., we ask, what has the impact of climate change already been? In Section 5, we turn to the

future and make projections over the 21st century, both in a laissez faire scenario and when

the GHG externality is optimally internalized. In Section 6, we assess what role adjustment

constraints might play in our analysis. This includes both constraints in the transition to a low-

carbon economy, and constraints in reallocating resources to adapt to climate change. Section

7 reports on our sensitivity analysis. Section 8 provides a discussion and concludes. We provide

several appendices that explore issues such as structural parameter identification and calibration

of exogenous parameters.

2 Model structure and estimation

2.1 Structure

One of our main interests is in how climate change has affected structural change in the global

economy away from agriculture towards manufacturing and services. The minimum structure

we require for this is two final goods sectors, agriculture and the rest of the economy.

Agricultural production

Agricultural output Yt,ag is subject to constant returns to scale and produced by combining land

Xt and non-land inputs with CES:

Yt,ag = At,ag

[
(1− θX)

(
KθK
t,agE

θE
t,agL

1−θK−θE
t,ag

)σX−1

σX + θXX
σX−1

σX
t

] σX
σX−1

· exp(−Ωag
[
St − S

]
) , (1)

where the non-land inputs, capital Kt,ag, labor Lt,ag and energy Et,ag, are Cobb-Douglas. At,ag

is an endogenous, Hicks-neutral gross agricultural TFP index and θi, i ∈ {K,E} are technology

parameters satisfying θi ∈ (0, 1) and Σiθi < 1. In our main specification, we assume the elasticity

of substitution between land and the capital-energy-labor composite σX is below unity, reflecting

long-run empirical evidence (Wilde, 2013).2

Agricultural output is also a function of the climate state variable St, the atmospheric GHG

concentration. This is a reduced-form simplification of the concentration-temperature-damages

relationship that was introduced by Golosov et al. (2014) and made possible by the fact that

temperature responds almost instantaneously to GHG emissions (Dietz and Venmans, 2019).

GHG emissions from energy, agricultural production and land use increase St and this in turn

2 The Cobb-Douglas (σX = 1) formulation is used in applied work (e.g. Mundlak, 2000; Hansen and Prescott,
2002). However, it implies land is asymptotically inessential for agricultural production, which is problematic
for long-run analysis.
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affects TFP in agriculture, most likely negatively, although positive impacts are not ruled out a

priori. The scale of climate damages in agriculture is measured by the parameter Ωag. This is an

estimate of the biophysical impact of climate change on global crop yields and below we discuss

how we calibrate it using results from the literature on crop modeling.

Production in the rest of the economy

Output in the rest of the economy Yt,mn (mn stands for manufacturing, but all sectors minus

agriculture are included here) is produced using capital Kt,mn, labor Lt,mn, and energy Et,mn

with constant returns and scale and Cobb-Douglas substitution:

Yt,mn = At,mnK
ϑK
t,mnE

ϑE
t,mnL

1−ϑK−ϑE
t,mn · exp(−Ωmn

[
St − S

]
) , (2)

where At,mn is the corresponding gross technology index and ϑi ∈ (0, 1), i ∈ {K,E}, are tech-

nology parameters again satisfying Σiϑi < 1.3 Similar to agriculture, climate change affects

aggregate productivity through the parameter Ωmn. We use estimates of the short-run impact

of climate change on aggregate productivity, excluding agriculture, to calibrate this. The use of

short-run responses for calibration should ensure that Ωmn is not biased by implicitly including

the adaptation mechanisms we later model explicitly. We provide further details of the calibra-

tion below.

Clean and dirty energy

The climate footprint of economic development comes mostly but not exclusively from dirty/fossil

energy use. In our model, final energy Et is used in both final goods sectors and the energy

sector produces Et by combining dirty (dt) and clean (cl) energy intermediates. Dirty energy

comprises coal, natural gas and oil. Clean energy comprises, e.g., biofuels, hydroelectric power,

nuclear, solar, wind, and even fossil energy if combined with carbon capture and storage. The

functional relationship is CES,

Et =

[
E

σE−1

σE

t,cl + E
σE−1

σE

t,dt

] σE
σE−1

, (3)

3 This is a plausible representation of substitution patterns in the long run (conditional on Hicks-neutral techno-
logical progress; see Antràs, 2004). For short- and medium-run analyses, it may be more appropriate to use a
CES function, in which the elasticity of substitution between energy and other inputs is less than unity (Fried,
2018; Hassler et al., 2016b). Baqaee and Farhi (2018) show that complementarity between energy and non-
energy inputs in the short run can be used to explain the disproportionate macroeconomic impact of the 1970s
oil shock.
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where σE is the elasticity of substitution, wihch is assumed to be greater than unity (Stern,

2012; Papageorgiou et al., 2017).

The production of clean and dirty energy intermediates is a Cobb-Douglas function of capital

and labor:

Et,cl = At,clK
α
t,clL

1−α
t,cl and Et,dt = At,dtK

α
t,dtL

1−α
t,dt , (4)

where At,cl and At,dt are endogenous technology indices. The dirty intermediate is a Leontief

(fixed proportion) composite of energy and a fossil resource in finite supply Rt, so that Et,dt =

Rt, with the constraint that

R ≥
T∑
0

Rt , (5)

where R is the reserves of fossil resources and T is the time at which resources are exhausted.

See Acemoglu et al. (2019) for a similar formulation.

Land

Land used in agriculture has to be converted from a finite reserve stock of natural land X and

slowly reverts back to its natural state if left unmanaged. Thus, we can simulate the gradual

expansion of global agricultural land and how climate change has affected that. Below, we also

show how agricultural land expansion produces GHG emissions through deforestation.

As in Lanz et al. (2017), the evolution of land available for agricultural production is given

by

Xt+1 = Xt(1− δX) + ψt , X0 given , (6)

where δX > 0 is a (very low) depreciation rate and ψt represents additions to the agricultural

land area (subject to the constraint that Xt ≤ X, ∀t). Land conversion is a function of labor

Lt,X:

ψt = ψ · Lεt,X, (7)

where ψ and ε ∈ (0, 1) are productivity parameters.

Linear depreciation, which allows agricultural land to revert back to its natural state over

time, together with decreasing labor productivity in land conversion as measured by ε, implies

that the marginal cost of land conversion increases with the total agricultural land area, in the

spirit of Ricardo.
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Innovation

Innovation drives the evolution of TFP in both final goods sectors and in clean and dirty energy.

We formulate a simple discrete-time version of the Schumpeterian model of Aghion and Howitt

(1992, 1998), in which the use of labor determines the arrival rate of new innovations. In each

sector j ∈ {ag,mn, cl, dt}, TFP evolves according to

At+1,j = At,j · (1 + λ · ρt,j) , (8)

where ρt,j is the endogenous arrival rate of innovations in the sector and represents the fraction

of maximum growth λ that is achieved over the course of each time period.

This arrival rate of innovations is assumed to be an increasing function of labor employed in

sectoral R&D, Lt,Aj ,

ρt,j =

(
Lt,Aj
Nt

)µj
, (9)

where µj ∈ (0, 1) is a labor productivity parameter that captures the duplication of ideas among

researchers (Jones and Williams, 2000). One important feature of this representation is that

we dispose of the population scale effect by dividing the labor force in R&D by total population

Nt (Chu et al., 2013). In particular, along a balanced growth path on which the share of labor

allocated to each sector is constant, the size of the population does not affect the growth rate of

output.4 As shown by Laincz and Peretto (2006), the R&D employment share can be interpreted

as a proxy for average employment hired to improve the quality of a growing number of product

varieties, a feature that is consistent with micro-founded firm-level models by Dinopoulos and

Thompson (1998), Peretto (1998), and Young (1998), among others.

Population dynamics

The evolution of population is given by

Nt+1 = Nt(1 + nt − δN ) , N0 given , (10)

where nt is the endogenous fertility rate, determined by household preferences (see below), and

δN is the exogenous mortality rate.5 Raising children requires labor, the aggregate cost of which

4 Although economic growth has been positively associated with the level and growth of world population on a
millennial time-scale (Kremer, 1993), it is harder to find evidence of scale effects in more contemporary data
(Jones, 1995) and our question is contemporary in nature.

5 Given that we equate total population with the total workforce, 1/δN can be interpreted as the expected working
lifetime and calibrated to match data on average working lifetimes.
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is given by

ntNt = χt · Lt,N . (11)

Labor productivity in fertility is determined by the coefficient χt, which in turn is given by

χt = χLζ−1
t,N , (12)

where χ and ζ ∈ (0, 1) are labor productivity parameters. In this way, χt is inversely proportional

to the opportunity cost of time spent raising children. This opportunity cost will increase, the

higher are wages elsewhere in the economy. Since technological progress elsewhere in the

economy drives up labor productivity and wages, the cost of fertility increases over time together

with technology (Galor, 2005). Consequently, the model produces a demographic transition as

incomes rise.

Capital dynamics

Agricultural output is just for food consumption in the same period,

Yt,ag = Ct,ag, (13)

however output of the non-agricultural part of the economy can be consumed or invested to

accumulate capital:6

Yt,mn = Ct,mn + It . (14)

The equation of motion for capital is

Kt+1 = Kt(1− δK) + It , K0 given , (15)

where δK is the depreciation rate.

Preferences

The representative household has preferences over (i) own consumption of food and other

goods, (ii) family size, which is increased by the number of children it produces, and (iii) the

total future utility of these children.

6 See Ngai and Pissarides (2007) for a similar treatment of savings and capital accumulation in a multi-sector
model.
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(i) Following Comin et al. (2021), the household has non-homothetic CES preferences over

food and the composite non-agricultural good. This preference structure conforms to Engel’s

law, while also allowing food and other goods to be imperfect substitutes.7 Consumption pref-

erences are characterized by a utility function that is implicitly defined by the constraint

κ
1
σc
ag

(
ct,ag

g(Ut)εag

)σc−1
σc

+ κ
1
σC
mn

(
ct,mn

g(Ut)εmn

)σc−1
σc

= 1, (16)

which simply says that the sum of expenditure shares on food and other goods equals one. The

parameter σc is the elasticity of substitution between food and other goods, the utility elasticities

εi, i ∈ {ag,mn} control the degree of non-homotheticity, and the parameters κi represent tastes.

g(Ut) must be positive-valued, continuously differentiable and monotonically increasing. The

simplest special case is g(Ut) = Ut and we use this. Note that the income elasticity of demand

for good i is given by
∂ log ci
∂ logE

= σc + (1− σc)
εag
ε̄
, (17)

whereE denotes total expenditure and ε̄ is the expenditure-weighted average non-homotheticity

parameter across the two sectors (Comin et al., 2021). This is relevant for calibration.

Intertemporal preferences over own consumption of the two goods are then described by an

isoelastic utility function

v(Ut) =
U1−γ
t − 1

1− γ
, (18)

where γ is the intertemporal elasticity of substitution.

(ii) Preferences over family size are represented by

b(ñt) = ñ−ηt , (19)

where ñt = (1 − δN ) + nt, and η ∈ (0, 1) determines how fast marginal utility declines as

n increases. For the special case of δN = 0, where individuals survive for just one period,

these preferences are identical to Barro and Becker (1989). Thus, like Jones and Schoonbroodt

(2010), we generalise Barro-Becker fertility preferences to preferences over family size, but

since mortality is fixed and exogenous in our model, the only way to express a preference for

increasing family size is indeed by increasing fertility.

(iii) All children k are assumed identical, so that the future overall utility of a household’s

children
∑

kWk,t+1 = ntWt+1. We also assume parents care equally about their own future

7 Comin et al. (2021) find a stable relationship between income and relative expenditure shares on agriculture,
manufacturing and services in panel data from OECD countries, and that the slopes of relative Engel curves do
not level off rapidly as income grows. They show these patterns are better captured by their non-homothetic CES
preferences than generalized Stone-Geary preferences.
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utility (conditional on survival probability 1 − δN) and the future utility of their children. The

overall utility function in period t is then

Wt = v(Ut) + βñ1−η
t Wt+1 , (20)

where β ∈ (0, 1) is the discount factor, and recursively we derive the intertemporal welfare

function of a dynastic household head:8

W0 =

∞∑
t=0

βtN1−η
t

U1−γ
t − 1

1− γ
. (21)

Allocation of capital, labor and energy

Within each period, capital is allocated between agriculture, the rest of the economy, clean and

dirty energy,

Kt = Kt,ag +Kt,mn +Kt,cl +Kt,dt . (22)

Energy is allocated between the two final goods sectors,

Et = Et,ag + Et,mn . (23)

Labor is allocated between the two final goods sectors, the two energy sectors, the four corre-

sponding R&D sectors, land conversion, and fertility:

Nt = Lt,ag + Lt,mn + Lt,cl + Lt,dt +
∑
j

Lt,Aj + Lt,X + Lt,N . (24)

The allocation of capital, labor and energy across activities is driven by relative marginal pro-

ductivities and constrained by feasibility conditions. For all three inputs, we take a long-run

perspective and assume they can be moved from one sector to another at no cost. However, in

Section 6 we explore various scenarios in which constraints are introduced to resource realloca-

tion.

8 This is obtained though sequential substitution in W0 = v(U0) + βñ1−η
0 W1, yielding W0 =∑∞

t=0 β
tv(Ut)Π

t
τ=0ñ

1−η
τ . Further, noting that Equation (10) can be rewritten as Nt+1 = Ntñt, we have

Πt
τ=0ñ

1−η
τ ñτ = (Nt/N0)(1−η).
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GHG emissions and climate

Most IAMs focus on CO2 emissions from energy, but studying the changing role of agriculture

as an emissions source requires more, since land-use change is a major source of CO2, and

agricultural production (per unit area) mainly results in methane and nitrous oxide emissions,

rather than CO2. Thus, we include three GHGs – CO2, CH4 and N2O – which have four sources:

1. CO2 emissions from burning fossil fuels;

2. CH4/N2O emissions associated with burning fossil fuels (primarily CH4 emissions as a

waste product of fossil-fuel extraction and distribution);

3. CO2 emissions from expanding agricultural land (principally deforestation);

4. CH4/N2O emissions from agricultural production.

Total GHG emissions at time t are given by

GHGt = (πE,CO2 + πE,NCO2)Et,dt + πX (Xt −Xt−1) + πag

(
KθK
t,agE

θE
t,agL

1−θK−θE
t,ag

)
, (25)

where πE,CO2 is CO2 emissions per unit of dirty energy, πE,NCO2 is non-CO2 emissions per unit of

dirty energy (i.e., CH4/N2O), πX is CO2 emissions per unit of agricultural land expansion, and

πag is CH4/N2O emissions per unit input of the capital-labor-energy composite in agriculture.9

πE,NCO2 and πag are expressed in units of CO2-equivalent.

The state variable St represents the atmospheric GHG concentration. The evolution of St is

based on the carbon-cycle model of Joos et al. (2013) used extensively by IPCC. This model was

built to replicate the behavior of more complex carbon-cycle models. In the model, atmospheric

CO2 is divided into four reservoirs, indexed by r, with St = ΣrSt,r, each of which decays at a

different rate:

St =

3∑
i=0

St,i (26)

St,0 = a0 [πE,CO2Et,dt + πX (Xt −Xt−1)] + (1− δS,0)St−1,0 (27)

St,i = ai [πE,CO2Et,dt + πX (Xt −Xt−1)]

+
ai∑3
i=1 ai

[
πE,NCO2Et,dt + πag

(
KθK
t,agE

θE
t,agL

1−θK−θE
t,ag

)]
+(1− δS,i)St−1,i, i = 1, 2, 3, (28)

where
∑3

i=0 ai = 1. The decay rate of the first reservoir S0 is almost zero and this represents

9 We assume net radiative forcing from other GHGs and aerosols is zero, which has been approximately true in
recent years (IPCC, 2013).
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geological re-absorption of CO2. Carbon in the second reservoir S1 decays somewhat faster,

but still takes centuries to exit the atmosphere. This represents uptake by the deep oceans.

The remaining two, faster-decaying reservoirs represent, respectively, slower (S2) and faster

(S3) uptake of carbon by the biosphere and surface oceans. Since CH4 and N2O emissions are

converted into CO2-equivalent using their 100-year Global Warming Potential, we exclude them

from the first reservoir. Doing so ensures these two gases are approximately completely removed

from the atmosphere 100 years after their emission.10

Optimization and solution concept

The model is a discrete-time planning problem. The intertemporal welfare function (21) is

maximized by selecting aggregate consumption, as well as the allocation of capital (22), energy

(23), and labor (24), subject to the various constraints. Given the parameter restrictions, the

problem is convex. Appendix A contains a formal statement of the primal optimization problem

and discusses some further computational issues. When we estimate the model and use it to

quantify past climate impacts, we assume the climate externality was not internalized.11 When

we use the model to make future projections, we study both the optimal path that internalizes

the climate externality and the laissez faire path that does not.

Besides being a natural way of simulating optimal paths, a planning framework helps make

our problem computationally tractable. For structural estimation, we need to solve a model with

a large number of stock variables using many vectors of candidate estimates. A planner formu-

lation affords a number of simplifications, including reducing the number of state variables to

be computed.12 Yet, while it is natural to quantify optimal allocations using a planning frame-

work, this is not so for sub-optimal allocations. The use of a planning framework to simulate

sub-optimal climate policies was pioneered by Nordhaus (1993). In his DICE model, a laissez

faire future is simulated using a social planner who does not control CO2 emissions. Although it

is straightforward to show that a planning solution corresponds to a decentralized equilibrium

in an economy with complete and perfect markets, the existence of myriad market imperfections

in reality means that the planning solution is an approximation. Consequently, our structural

10 A more complete model would have fully independent climate dynamics for CH4 and N2O, but this would add
excessive complexity. We also omit carbon-cycle feedbacks (Dietz et al., 2021) for simplicity. This will have little
effect on our historical analysis but may have an effect on our long-run projections, such that the atmospheric
GHG concentration may not respond enough to emissions in the model in the long run.

11 Towards the end of the historical period, prototypical climate policies such as the Kyoto Protocol and the Eu-
ropean Union Emissions Trading System were introduced. However, these attempts had a trivial effect on total
global GHG emissions pre-2020.

12 We use a primal formulation, so that we only compute quantities, and prices are implicitly given by Lagrange
multipliers and can be retrieved at the solution point. This formulation allows us to exploit efficient solvers for
non-linear mathematical programs.
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parameter estimates come to embody market imperfections present in the observations, as these

are the free parameters that permit the model to closely reproduce the past in multiple dimen-

sions. This has two implications. First, our structural parameter estimates will be different to

those of a representative household or firm operating in an economy with complete and perfect

markets. Second, we need to make the following assumption: society’s (in)ability to correct

non-climate market imperfections is scenario-invariant, so we can use the same set of structural

parameter estimates retrieved from fitting the model on the observed past to simulate a counter-

factual past without climate change, as well as different futures. For example, we must assume

the absence of climate change in the counterfactual world would not have made the world ma-

terially better or worse at internalizing positive innovation externalities. We cannot directly

test this assumption, but in Appendix E we provide encouraging evidence that our endogenous,

structural parameter estimates are consistent across many variations in exogenous parameters

and to changing the period over which the structural estimation is done.

2.2 Estimation

Our approach to model estimation proceeds in two steps.

Step 1. Exogenous parameters

The first step is to impose a subset of exogenous model parameters (Table 1). Most of these

are parameters whose values are fairly standard in the literature and/or well pinned down by

external sources. Appendix C provides further details, discusses how we calibrate initial values

of the eleven state variables, and reports the parametrization of the emissions/climate module.

Here we focus on the crucial exogenous parameters Ωag and Ωmn, which give the pre-

adaptation effect of climate change on productivity in agriculture and the rest of the economy,

respectively. We calibrate Ωag on the latest synthesis of the crop modeling literature provided

by IPCC in its Sixth Assessment Report (IPCC, 2022, chapter 5). We obtained the underlying

IPCC database of results from the crop modeling literature, containing 8,703 separate estimates

of crop responses to increasing atmospheric carbon dioxide and temperature from 202 studies

published between 1984 and 2020 (Hasegawa et al., 2022). We use near-term estimates (i.e.,

roughly the response today to climate change since pre-industrial) to maximize the precision

of our historical calibration and, after filtering out studies using old climate scenarios, studies

ignoring the carbon dioxide fertilization effect on crops, and studies including adaptation by

farmers, we are left with 571 estimates for one of the four main crop types, i.e., maize, wheat,

rice, and soybean. Collectively, these four crops contribute c. 90% of today’s global caloric pro-

duction of all cereals and soybean (FAO, 2022). We estimate Ωag for each crop type separately

and then construct a weighted average using the average share of each crop type in the total
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production of all four crop types over the period 1960-2018. Our central parameter estimate

implies that the 1.1◦C warming since pre-industrial has reduced global aggregate crop yields by

approximately 10% relative to a world without climate change, with an upper bound of a 28%

reduction and a lower bound of a 2% increase. Thus, the uncertainty is large and our analysis

carries that through.

We calibrate Ωmn on empirical estimates of the short-run impact of annual temperature fluc-

tuations on global industrial value added reported in Dell et al. (2012). Although various es-

timates are now available of the impact of annual temperature fluctuations on aggregate GDP

(e.g. Burke et al., 2015), the key benefit of the estimates in Dell et al. (2012) is that they exclude

agriculture. Therefore, agricultural impacts are not double-counted. We use the 95% confidence

interval reported in Dell et al. (2012) to estimate lower and upper bounds.

Table 1: Parameters imposed for estimation

Parameter value Definition Source

Preferences and population

β = {0.99, 0.97} Discount factor Giglio et al. (2015)
γ = 2 Intertemporal elasticity of substitution Guvenen (2006)
εag = 0.42 Elasticity of utility wrt. food Calibrated
δN = {0.022, 0.0166} Mortality rate Calibrated

Rest of the economy and capital accumulation

ϑK = 0.3 Capital share Various
ϑE = 0.04 Energy share Golosov et al. (2014)
δK = 0.1 Capital depreciation Various
Ωmn = {1.23E-05, 9.11E-07, 2.37E-05} Rest-of-economy damage intensity Dell et al. (2012)

Agricultural sector

σX = {0.6, 0.2} Substitutability of land in agriculture Wilde (2013)
θK = 0.25 Capital share Various
θX = 0.3 Land share Lanz et al. (2017)
θE = 0.04 Energy share Golosov et al. (2014)
δX = 0.02 Land depreciation Calibrated
X = 3 Land reserves (billion ha) Alexandratos and Bruinsma (2012)
Ωag = {2.35E-04,−4.15E-05, 7.04E-04} Agricultural damage intensity IPCC (2022, chapter 5)

Energy sector and R&D activities

σE = 1.5 Substitutability of energy intermediates Stern (2012)
α = 0.6 Capital share Barrage (2020)
R = {5000,∞} Dirty energy (Gt oil eq) Rogner (1997)
λ = 0.05 Innovation size in R&D Fuglie (2012)

Notes: this table reports model parameters imposed prior to structural estimation of the model. For parameters considered in
the sensitivity analysis, we report multiple values, starting with our baseline assumption. See Appendix C for a discussion of
parameter selection.

Step 2. Simulated method of moments

Given imposed parameter values and initial conditions, we then use an SMM procedure to

identify the vector of remaining parameters: Θ = {ψ, ε, µmn, µag, µcl, µdt, χ, ζ, σc, κag, η}. This
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method selects values for the elements of the vector that jointly minimize the distance between

(log-transformed) targeted, observed variables over the estimation period and their simulated

counterparts. More specifically, for a given candidate vector of parameter estimates Θv, we solve

the model to obtain simulated trajectories for k targeted quantities Zmodel ; Θv
τ,k , where τ indexes

years over which the estimation is performed. Denoting the observations of each targeted quan-

tity by Zdata
τ,k , we then measure the error eΘv

k associated with Θv as the relative squared deviation

summed over the estimation period:

eΘv
k =

∑
τ

[
log(Zmodel ; Θv

τ,k )− log(Zdata
τ,k )

]2
, (29)

The vector of estimated parameters Θ̂ is chosen to minimize weighted model error:

min
Θ̂

∑
k

ωk e
Θ
k , (30)

with weights ωk inversely proportional to the volatility of the observations of k.13 In order

to find a solution to Equation (30), we use an iterative procedure. We start with a vector

Θ1 of parameters that coarsely approximates the observed trajectories, and solve the model

for 10,000 vectors randomly drawn from a uniform distribution around Θ1. This allows us to

identify a subset of parameter values that improves the objective function, and we repeat the

sampling process for a vector of estimates Θ2, leading us to gradually update the distribution

of parameters considered until we converge to the set of estimates reported in Table 2. The

following observed variables are targeted: (i) world population (United Nations, 2019); (ii)

agricultural output and (iii) output in the rest of the economy (World Bank, 2020); TFP in

(iv) agriculture and (v) the rest of the economy (Martin and Mitra, 2001; Fuglie, 2012); (vi)

cropland area (FAO, 2022); (vii) fossil and (viii) clean energy use (BP, 2017).

The uniqueness of the solution to Equation (30) cannot be formally proved, a well-known

issue with the estimation of non-linear models (see Gourieroux and Monfort, 1996). We note,

however, that our estimation procedure targets multiple moments jointly identifying the param-

eters of interest, which makes the convergence criterion highly demanding. Moreover, using a

primal formulation allows us to solve the model for a very large number of parameter combina-

tions, which gives confidence that alternative combinations cannot further improve the objective

function. Appendix D reports the elasticity of total model error with respect to each structural

parameter, as well as the elasticity of the error for each target variable, thus providing evidence

about identification of each individual parameter.

13 Volatility is measured as the sum of the residuals around the time trend for each observed series. This weighting
prevents the fitting criterion being unduly influenced by series that are simply more volatile.
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Table 2: Parameters estimated with SMM

Parameter estimates Definition

µmn = 0.905 Elasticity of labor productivity in rest-of-economy R&D
µag = 0.763 Elasticity of labor productivity in agricultural R&D
µcl = 0.204 Elasticity of labor productivity in clean energy R&D
µdt = 0.454 Elasticity of labor productivity in dirty energy R&D
ψ = 0.052 Labor productivity in agricultural land conversion
ε = 0.139 Elasticity of labor productivity in agricultural land conversion
η = 0.157 Elasticity of intergenerational altruism
χ = 0.187 Labor productivity in fertility and education
ζ = 0.303 Elasticity of labor productivity in fertility and education
σc = 0.126 Elasticity of substitution between food and other goods
κag = 0.231 Food taste parameter

Notes: this table reports parameters estimated for the baseline model.

Importantly, we follow the same empirical strategy when we investigate alternative assump-

tions about the exogenous/imposed parameters as part of a sensitivity analysis (see Section 7).

For example, we know from previous research that changing the discount factor will affect opti-

mal carbon taxation in the future. However, an alternative assumption about the discount factor

will affect the ability of the model to fit 1960-2015 data. Our approach to this problem is to

find the set of structural parameters Θ̂ that minimizes total model error under alternative values

of the discount rate, so that the model fits past data under all the alternative parameter values

considered in the sensitivity analysis.14

3 Goodness of fit, and the joint evolution of the world economy and

climate

This section documents how well the model fits the data. In the process, it sets the scene for our

main results by illustrating many of the key trends in the joint evolution of the world economy

and climate over the past half century.

Figure 1 plots model trajectories of six economic variables that we target in our structural

estimation and compares them with observed trajectories over the period 1960 to 2015: (a)

14 Because we need to re-estimate the model each time an exogenous parameter value is changed, we can only
change one exogenous parameter at a time, keeping all the other exogenous parameters at their standard values.
Adopting a structural estimation approach means that global sensitivity analysis methods (see e.g. Harenberg et
al., 2019) are infeasible.
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Figure 1: Estimation results for population, output, productivity and land

(a) World population
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(c) Rest of the economy output
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(d) TFP in agriculture including climate
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(e) TFP in rest of economy including climate
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(f) Arable land and permanent crops
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population; (b) agricultural output; (c) output in the rest of the economy; (d) agricultural TFP

net of climate damages (i.e. At,ag · exp(−Ωag
[
St − S

]
)); (e) TFP in the rest of the economy

net of climate damages; and (f) cropland area. The comparison shows that the model fits the

data closely, particularly the long-run trends it is intended to simulate. The plots also illustrate

well-known trends. World population and GDP have expanded hugely. Population has grown

slightly more than arithmetically, while GDP has grown exponentially, driven by output in the

rest of the economy. Agricultural output has also grown (more than fourfold, indeed), but still

its share of GDP has fallen. TFP has grown at a declining rate in both sectors, with the decline

greater in agriculture, while cropland has slowly expanded as part of the growth of world food

supply.

Figure 2 compares model estimates of six key energy/emissions/climate variables with their

corresponding observations: (a) fossil energy use; (b) non-fossil energy use; (c) agricultural

GHG emissions; (d) GHG emissions from fossil-fuel burning; (e) total GHG emissions; and (f)

the atmospheric GHG stock. Fossil and non-fossil energy use are targeted by our structural esti-

mation, thus the comparison is another test of goodness of fit. The remaining emissions/climate

variables are not directly targeted by the estimation procedure, however. Thus, the comparison

serves as a limited test of prediction out of sample. Again, the model closely tracks the observa-

tions. The huge expansion of world GDP has led to a similarly huge expansion in global energy

use. Fossil energy use was much greater than non-fossil energy use throughout the period, al-

though non-fossil energy use grew more quickly. Total GHG emissions roughly doubled between

1970 and 2010, agricultural GHG emissions grew by about one third over the same period, the

share of GHG emissions from burning fossil fuels rose slightly, and the rising atmospheric GHG

stock is tracked particularly closely.

In Appendix B, we report further tests of the robustness of our estimation procedure. In

particular, we split the estimation period into 1960-1990 and 1990-2015, and we compare the

resulting model projections with each other, with the model estimated on the full period 1960-

2015, and with the observations. Overall, the different model estimates are highly consistent.

Comparing the model estimated on 1960-1990 with observations post-1990 provides a proper

out-of-sample prediction test, even if ultimately there is no good reason to ignore post-1990

data for our purposes. This model closely predicts observed population, land, and dirty energy

use, but it overestimates GDP and clean energy use, intuitively due to the slowdown observed

in GDP and clean energy growth post-1990.
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Figure 2: Estimation results for energy, emissions and climate variables

(a) Global fossil energy use
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(b) Global non-fossil energy use
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(c) Agricultural GHG emissions

 0

 1

 2

 3

 4

 5

1960 1970 1980 1990 2000 2010 2020

G
tC

 e
q
.

Years

Estimated model

Observed

(d) Fossil GHG emissions
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(e) Total GHG emissions
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4 Counterfactual analysis: global climate impacts and adaptation

over recent decades

In this section, we use our structural model to provide novel evidence on how much climate

change has affected world agriculture and the rest of the economy in the past half century,

and we quantify the role of adaptation channels such as structural change, agricultural land

expansion, innovation and fertility in reducing climate damages. To do so, we leverage the fact

that our SMM approach allows us to simulate a counterfactual economy in the absence of climate

change. The counterfactual equilibrium is computed by solving the model with climate damages

‘turned off’, i.e., setting Ωag = Ωmn = 0, without re-estimating the structural parameters.

In Figure 3, we quantify overall climate damages and how much they have been reduced

by adaptation. The top two panels plot the pre-adaptation productivity effect on agriculture

and the rest of the economy, respectively. These are obtained simply by taking the atmospheric

GHG stock estimated by the model and plugging it into the sectoral damage multipliers, i.e.,

exp(−Ωag
[
St − S

]
) and exp(−Ωmn

[
St − S

]
), respectively.

Thus, the top two panels represent the distribution of productivity effects estimated in the

underlying literatures we use for calibration. Absent any adaptation, climate damages would

already have reduced agricultural output/productivity by 3.5% in 1970, relative to a counter-

factual world without climate change.15 This is within a sensitivity range from a 0.6% increase

in agricultural output to a 10.1% decrease, estimated by running the model with the damage

coefficient Ωag set to its lower/upper bounds. By 2020, rising temperatures would have caused

agricultural damages to rise to 9.7% of output, within a range from a 1.8% increase to a 26%

decrease. Thus, these results reflect the large uncertainty in crop yield effects from climate

change that exists in the crop modeling literature (IPCC, 2022), and a null effect is not ruled

out. However, the best estimate is a significant decrease in output. In the rest of the economy,

climate damages would have been lower, reducing output by 0.2% in 1970 if no adaptation

had taken place, within a sensitivity range of 0.0% to 0.4% (also obtained by setting Ωmn to its

lower/upper bounds). By 2020, damages in the rest of the economy would have risen to 0.5%

(range 0.0-1.0%).

In comparison, the bottom two panels of Figure 3 plot lost output in agriculture and the rest

of the economy after macroeconomic adjustments, i.e. post-adaptation. To do this, we solve the

estimated model with climate damages, solve it again for a counterfactual world without climate

damages, and calculate the relative difference in sectoral output between the two solutions.

15 Although the model is structurally estimated on data from 1960, our comparison here focuses on the period from
1970 onwards, because we want the effect of initial conditions on variables such as land, output and population
to be eliminated.
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Figure 3: Estimated climate change impacts since 1970, before and after adaptation

(a) Agriculture (pre-adaptation)
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(b) Rest of the economy (pre-adaptation)
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(c) Agricultural output (post-adaptation)
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(d) Rest of economy output (post-adaptation)
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Output will be different in this situation, because the economy adjusts to the raw productivity

losses from climate change by changing factor inputs, innovating to increase the productivity

index, etc.

The results show that adaptation has substantially reduced climate damages in agriculture.

In 1970, post-adaptation agricultural output was 2.2% lower than the counterfactual world

without climate change, within a range from 0.4% higher to 6.3% lower. In 2020, we estimate

post-adaptation agricultural output was 4.1% lower, within a range from 0.7% higher to 11.4%

lower. By contrast, in the rest of the economy we estimate that the loss of output due to climate

change was higher post-adaptation than pre-adaptation. Output in the rest of the economy was

2.7% lower than the counterfactual in 1970, within a range from 0.4% higher to 7% lower. In

2020, we estimate that post-adaptation output in the rest of the economy was 5.8% lower than

the counterfactual, within a range from 1.0% higher to 15.1% lower. As we now show, this

reversal is the result of diverting resources from the rest of the economy towards agriculture in

a bid to produce enough food to meet demand.
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Table 3: Historical adaptation to climate change

1970 1980 1990 2000 2010 2020

Ag. innovation rate (% diff) +7.7 +8.5 +9.8 +11.3 +13.3 +15.6
Population (% diff) -1.0 -1.5 -1.9 -2.1 -2.2 -2.3
Cropland (% diff) 0.0 0.0 -0.1 -0.1 -0.2 -0.2

Shares of capital (ppts.)
Agriculture +0.53 +0.42 +0.34 +0.29 +0.28 +0.29
Rest of economy -0.53 -0.42 -0.34 -0.29 -0.28 -0.29

Shares of labor (ppts.)
Agriculture +0.18 +0.11 +0.07 +0.06 +0.06 +0.08
Rest of economy -0.25 -0.23 -0.20 -0.17 -0.14 -0.11
Agriculture R&D +2.06 +2.10 +2.18 +2.31 +2.45 +2.59
Rest of economy R&D -0.82 -0.59 -0.44 -0.34 -0.27 -0.21
Fertility -1.17 -1.39 -1.62 -1.86 -2.11 -2.36

Notes: this table reports estimates of adaptation through alternative channels (best damage coefficient es-
timates). For each quantity in the table, we report the difference between our estimated model with cli-
mate change and a counterfactual simulation in which productivity impacts of climate change are turned off
(Ωag = Ωmn = 0).

In Table 3, we document several adaptation mechanisms that the world economy has used to

reduce the damaging effects of climate change. The mechanisms identified by our model include

agricultural innovation, population change, cropland area, and reallocation of capital and labor.

For each quantity, we report the difference between the estimated model with climate impacts

and the counterfactual simulation without climate change. For brevity, we only report results

for the central damage coefficients (baseline) here.

Our results suggest that climate change has induced an increase in agricultural innovation,

as measured by the growth rate of the gross technology index At,ag. We estimate that by 2020

the agricultural TFP growth rate was 16 percent higher than in the absence of climate change.

The consistently higher agricultural innovation rate up to 2020 resulted in a level of agricultural

technology that was 7.9% higher than the counterfactual in 2020. We further estimate that

world population is slightly lower as a result of climate change. By 2020, world population

was 2.3% lower than in the counterfactual world without climate change. By reducing output,

especially in agriculture, climate change reduces the utility of a household’s children. Since

households value their children’s utility, they prefer marginally lower fertility. Underpinning

– and in addition to – these changes are adjustments in the allocation of capital and labor.

Capital has been shifted from the rest of the economy to agriculture, while more labor has been

allocated to agricultural R&D and agricultural production, and less less labor has been allocated
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to fertility.16 We estimate that in 2020 the share of the world labor force in agricultural R&D

was 2.6 percentage points higher than in the counterfactual without climate change. We do not

find a significant response of cropland area to climate change, rather the world economy has

adjusted on other margins. In summary, we find that by diverting capital and labor back into

agriculture, climate change has been a countervailing force to the wider macroeconomic forces

driving structural change out of agriculture.

What has the welfare cost of climate change been so far? To calculate this, we first convert

consumption of the two goods into a non-homothetic CES index of real consumption (Comin et

al., 2021), using the composite good as the base good.17 This gives the level of consumption

of the composite good that would give the same utility as consumption of the two goods sep-

arately under non-homothetic CES preferences. We then compute the change in the stationary

equivalent of the index (Weitzman, 1976), i.e., the initial consumption index value that, if held

constant, gives the same welfare as the actual stream of the index.18 This welfare measure has

the advantage of working for non-marginal changes. We estimate that the welfare cost of cli-

mate change between 1960 and 2020 is equivalent to a loss of stationary consumption of the

composite good of 6.2% in 1960, relative to the counterfactual world without climate change.

This is within a sensitivity range of -0.9% (low damages in both sectors) to 20% (high damages

in both sectors). Therefore, while adaptation has significantly reduced climate damages in agri-

culture, the cost of adaptation, together with residual damages from climate change, is likely to

have produced a non-trivial deadweight loss globally. Again, however, the uncertainty is large,

driven by uncertainty about climate effects on global crop yields.

5 Optimal future policy

As an IAM, our model can naturally also be used to make future projections, not only under

a continued, laissez faire emissions scenario, but also under a welfare-maximizing policy that

internalizes climate damages through a Pigouvian carbon price/tax. We simulate the introduc-

tion of a GHG tax19 in 2016, the year following the United Nations Paris Agreement on Climate

16 We see negligible effects on the capital and labor shares in clean and fossil energy production, and on the labor
shares in clean and fossil energy R&D.

17 The non-homothetic CES index of real consumption logCt = εmn logUt + 1
1−σc log κmn, where the base good is

the composite non-agricultural good. See Comin et al. (2021), p321, Eq. (12).
18 In our setting, with endogenous population, we need to ensure population is the same on both paths being

compared. Thus, for these calculations we set population to the baseline path and solve for the 1960 consumption
index value that, if held constant, gives the same welfare as the actual consumption/population path being
evaluated.

19 This tax is implicitly levied not only on CO2, but also on CH4 and N2O in proportion to their CO2-equivalence.
Formally, it is derived as the marginal rate of substitution between GHG emissions and consumption of the
composite good.
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Change.

Figure 4 projects the Pigouvian GHG tax (panel a) and the resulting optimal paths of total

energy use (b), agricultural GHG emissions (c), fossil GHG emissions (d), the atmospheric GHG

stock (e), and temperature (f). Despite finding in the previous section that the world economy

adapts to climate change on several margins, we estimate a high Pigouvian GHG tax. The tax

rate is $151/tCO2eq in 2020 (in 2010 US dollars). This increases in real terms to $283/t in 2050

and $557/t in 2100. The GHG tax significantly reduces total energy use and GHG emissions,

particularly fossil GHG emissions which are 81% lower in 2050. Agricultural GHG emissions are

9% lower in 2050, illustrating that emissions in agriculture are more costly to abate given the

food preferences of a growing world population. The large reduction in GHG emissions slows

growth in the atmospheric stock of GHGs and, in turn, the global mean temperature. The opti-

mal policy reduces the atmospheric stock of GHGs by 21% in 2050 and 41% in 2100. Although

temperature plays no explicit role in our model, here we use the IPCC’s two-box temperature

model (Geoffroy et al., 2013) to estimate what temperature increase these GHG stocks would

lead to.20 The optimal policy reduces warming from 3.2◦C in 2100 to 1.7◦C. This means optimal

warming in 2100 according to our model is in agreement with the goal of the UN Paris Agree-

ment on climate change to hold “the increase in the global average temperature to well below

2◦C above pre-industrial levels”.

In Table 4, we compare the laissez faire and optimal scenarios on pre-adaptation climate

damages, post-adaptation output, as well as several adaptation channels investigated in the

previous section. Since optimal GHG emissions are much below the laissez faire level, pre-

adaptation climate damages to agriculture are also much lower, particularly by the end of the

century, when damages on the laissez faire scenario are projected to be 26% relative to the

counterfactual without climate change, compared to 11% on the optimal path. The laissez faire

economy continues to adapt to climate change. The post-adaptation loss in agricultural output,

relative to the counterfactual without climate change, is much lower than its pre-adaptation

counterpart. For example, it is just 6% in 2100. Post-adaptation damages are lower still on the

optimal path, at only 3% in 2100. GHG abatement is prevention while adaptation is the cure.

Thus, on the optimal path agricultural innovation is lower, population is higher, and cropland is

lower. While we estimate that cropland expansion was not a significant adaptation mechanism

at the global level in the past, our future projections imply that it could become significant in

the second half of the century. By 2100, 500 million hectares more cropland is in use in the

20 As we feed not only CO2 emissions into the model of Geoffroy et al. (2013), but also CH4 and N2O (in tCO2eq),
we make a bias correction of -0.372◦C to the level of temperature in all years, which corresponds to the difference
between the model projection of warming in 2005 relative to the 1850/1900 average, and observations obtained
from IPCC (2013). The 2005 temperature in the model is obtained by feeding historical emissions of CO2, CH4

and N2O through our carbon cycle and the temperature model of Geoffroy et al. (2013), starting in 1765.
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Figure 4: laissez faire (baseline) and optimal GHG taxation, energy, emissions and climate
outcomes over the 21st century
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Table 4: Laissez faire and optimal climate damages and adaptation

2025 2050 2075 2100

Pre-adaptation climate damages to agriculture (% change in output/productivity)
Baseline -10.51 -15.09 -20.27 -25.59
Optimal -8.88 -9.66 -10.45 -11.16

Post-adaptation agricultural output (% diff. with counterfactual)
Baseline -4.25 -4.70 -5.15 -5.58
Optimal -4.38 -4.14 -3.40 -3.09

Post-adaptation output in the rest of the economy (% diff. with counterfactual)
Baseline -5.93 -6.45 -6.74 -6.85
Optimal -8.77 -8.33 -6.78 -6.07

Agricultural innovation (gross TFP index in agriculture)
Baseline 1.17 1.52 1.91 2.33
Optimal 1.16 1.48 1.80 2.11

Population (billions)
Baseline 8.13 10.11 11.91 13.45
Optimal 8.15 10.18 12.02 13.61

Cropland (billion hectares)
Baseline 1.62 1.70 1.76 1.81
Optimal 1.61 1.67 1.72 1.76

Notes: this table compares model simulations under the baseline scenario (laissez faire) with those under optimal GHG taxation, focusing on climate
damages, post-adaptation output, and various adaptation mechanisms. All results are for the central damage specification.

laissez faire scenario compared to the optimal scenario. Post-adaptation output also includes

the cost of emissions abatement. That is why optimal post-adaptation output is initially lower

in both sectors compared to laissez faire, but by the end of the century it is higher. This reflects

the well-known intergenerational trade-off that climate policy presents.

Overall, our analysis shows that – despite anticipating further, widespread adaptation to cli-

mate change – it is optimal to significantly curb GHG emissions. Following a laissez faire strategy

would come with a larger welfare cost, as resources are diverted from their most productive uses

to manage the impacts of climate change, and despite the costs of GHG abatement themselves.

We estimate that the welfare gain from optimal emissions abatement is 8.7% (i.e., the change

in stationary consumption in 2015), relative to the laissez faire path.
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6 Decomposition analysis: adjustment constraints

In this section, we provide evidence on the importance of different adjustment channels in the

presence of GHG taxes and climate change. We compare the optimal policy solution discussed

in the previous section with constrained optimal paths, where a set of key adjustment margins

are fixed to their respective laissez faire trajectories. The comparison serves two purposes. First,

it provides further insight into which adjustment margins are most important, for example in

relation to climate adaptation is it land expansion, innovation or fertility/population? Second,

since our model simplifies by assuming that capital, labor and energy are shifted between sectors

without adjustment costs, it provides insight into how the presence of frictions might change our

results. By fixing certain variables at their laissez faire levels, we implement an extreme form of

adjustment constraint and thereby ‘stress-test’ our findings from above. Results are reported in

Table 5, focusing on welfare, GHG tax rates, cropland, agricultural innovation and population.

The first three rows of the table focus on different frictions in the low-carbon transition,

i.e., the shift from a fossil-fuel economy to one based on clean energy. We start by fixing fossil

energy capital at its laissez faire trajectory. In this scenario, GHG abatement costs increase

significantly, which results in higher optimal GHG taxes but lower total emissions abatement, so

the world economy has to undertake more adaptation to climate change, here apparent in the

form of more agricultural land expansion than the unconstrained optimum, more agricultural

innovation (higher values of the gross agricultural TFP index), and lower population. The results

for agricultural R&D are particularly striking, with the gross agricultural TFP index 12% higher

than the unconstrained optimum by the end of the century. This constraint imposes the largest

welfare cost, unsurprisingly so given the desirability of reducing the dirty capital stock in the

future. However, fixed fossil energy capital is a particularly extreme assumption, as it requires

continued investment in fossil energy even in the presence of high GHG taxes. Therefore, the

second scenario explores a milder form of this constraint, in which the stock of fossil energy

capital is allowed to depreciate after 2015 (we use δk = 0.1), but no conversion of fossil energy

capital into clean energy capital is allowed. With this constraint, the welfare loss relative to

the unconstrained optimum is much smaller. We also observe that the GHG tax path is flatter,

starting higher than the unconstrained optimum but ending lower. This is consistent with the

trajectory of fossil energy capital itself, which starts higher than the unconstrained optimum,

due to the inability to convert it to clean capital, but ends up lower to compensate. Changes in

cropland, agricultural R&D and population are similar to the unconstrained optimum. Lastly, we

consider scenarios where energy R&D is fixed to its laissez faire trajectory, first clean and dirty

energy R&D together, then clean energy R&D alone. Imposing these constraints does not have a

significant impact on model outcomes, implying that in the energy sector capital investment is

more important as an adjustment margin than R&D. This is consistent with the energy systems
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modeling literature, which invariably finds that ambitious climate goals can be met through

deployment of existing technologies (IPCC, 2018), but a caveat is that our use of long-run

historical trends in energy use to identify labor productivity in energy R&D may underestimate

the future potential of clean energy R&D.

In the bottom four rows, we consider frictions in adapting to climate change by fixing crop-

land, agricultural R&D, population and agricultural capital to their respective laissez faire trajec-

tories and solving for the optimal GHG tax given these constraints. Two main findings emerge.

First, the differences between the unconstrained optimum and these constrained optima are

generally small. This suggests that our conclusions above are robust to the inclusion of these in-

dividual adaptation frictions. Second, the constraint with the largest effect and by inference the

most important adaptation mechanism is agricultural innovation. Fixing agricultural innovation

to its laissez faire trajectory implies allocating too much labor to agricultural R&D, resulting in a

sub-optimally high gross agricultural TFP index. As a consequence, GHG taxes are significantly

lower. Put another way, the economy is ‘over-built’ to withstand climate change in this scenario,

so it is optimal to allow higher GHG emissions. With sub-optimally high agricultural innovation,

cropland area is sub-optimally low, as is population.

7 Sensitivity analysis

In this section, we document the robustness/sensitivity of our optimal policy results to varying

a number of exogenous parameters. We pay particular attention to the damage intensity pa-

rameters Ωag and Ωmn, in light of the results above. Given the model is structurally estimated,

changing exogenous parameters is not a trivial step, as it may result in the model no longer

fitting observations over the estimation period. Therefore, the model must be re-estimated

whenever a parameter is varied, keeping the distance between the model estimates and our

targeted variables to a minimum. In Appendix E, we report the structural parameter estimates

accompanying the sensitivity analysis.21 Table 6 summarizes the results, reporting the sensitiv-

ity of five variables: the welfare gain from the laissez faire equilibrium, the GHG tax, total GHG

emissions, and, as two examples of adaptation to climate change, we include the differences in

cropland and population from the laissez faire equilibrium.

We analyze three pairs of variations of the damage intensity parameters. In the first pair of

variations, we set both Ωag and Ωmn to their lower- and upper-bound estimates, respectively. In

the second pair, we vary only Ωag, leaving Ωmn at its best estimate (‘low damages ag’ and ‘high

21 Changing the carbon cycle parameters has no significant impact on trajectories over the estimation period, so the
structural parameters remain at their baseline level. However, alternative parametrizations of the carbon cycle
do affect the ability of the model to match observed atmospheric GHG concentrations. The base parametrization
matches them best.
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damages ag’). In the third pair, we do the opposite, varying only Ωmn, leaving Ωag at its best

estimate (‘low damages mn’ and ‘high damages mn’). Two key messages emerge from the anal-

ysis. The first is that, overall, the results are highly sensitive to the intensity of damages. Higher

damages imply a larger welfare gain from controlling the climate externality, much higher GHG

taxes, much lower GHG emissions, and more adaptation as exemplified by bigger differences in

cropland and population relative to the laissez faire equilibrium. The opposite holds for lower

damages. The second key result is that this sensitivity comes almost entirely from damages to

agriculture. Compare, for example, the set of results for ‘high damages’ with those for ‘high

damages ag’. They are almost the same, whereas ‘high damages mn’, which has high damages

to the rest of the economy but fixes agricultural damages to their best estimate, looks little

different to our main specification. Therefore, this analysis underscores the centrality of agri-

cultural damages and food supply/demand to the welfare cost of climate change. Under high

agricultural damages, optimal GHG taxation would increase welfare by around 50% relative to

a laissez faire future. Under low agricultural damages, the welfare gain is minimal and it would

be optimal at this extreme of the parameter range to slightly subsidize GHG emissions, even if

climate change reduces productivity in the rest of the economy.

Results are less sensitive to variations in the other parameters. We analyze sensitivity to

the efficacy of the carbon cycle, specifically the speed of removal of CO2 from the atmosphere

via the parameters ai and δS,i. Slower CO2 removal results in greater accumulation of CO2 in

the atmosphere for given emissions, so in this run of the model we see higher GHG taxes and

lower emissions. The opposite is true of faster CO2 removal. With less weight placed on future

utility, a higher utility discount rate (β = 0.97) yields a somewhat smaller welfare gain from

GHG taxation, lower optimal GHG taxes, higher optimal GHG emissions, and some differences

in cropland and population. Results are insensitive to lowering the elasticity of substitution

between land and the capital-labor-energy composite in agriculture, and removing the fossil-

fuel resource constraint.

8 Discussion and conclusion

In this paper, we have formulated a structural model of the world economy as an empirical

framework to study the relationship between economic growth, population growth, agriculture,

and climate change, both in the past and in the future. Our approach integrates a number of

seminal contributions to economic thought, including on fertility choice (Barro and Becker,

1989), consumer preferences/structural change (Comin et al., 2021), and technical change

(Aghion and Howitt, 1992; Acemoglu et al., 2012). The model structure, combined with our es-

timation approach using more than half a century of data on key aggregates, constitutes a novel

way of estimating the long-run impacts of secular climate change. First, our structural estima-
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tion approach allows us to construct a counterfactual past, in which temperatures did not rise.

This allows us to study how the global economy has already been affected by long-run changes

in climate. Second, our approach allows us to quantify adaptation to climate change through

channels including factor reallocation between sectors, agricultural land expansion, and R&D

investments. Our work complements recent empirical literature on the short-run productivity

effects of climate change (e.g. Dell et al., 2012; Carleton and Hsiang, 2016). The intensity of

damages in our model is captured by exogenous parameters that we calibrate in part on this

literature. On the other hand, because our model emphasizes the long-run effects of climate

change, it provides an alternative means of estimating this to the ‘long differences’ approach in

the empirical literature (see Hsiang, 2016, for a discussion of how short- and long-run effects

are handled in the empirical literature).

We estimate substantial impacts of climate change, both in the past and in the future. Agro-

nomic evidence suggests that climate change has already depressed agricultural yields and

would do so much more in a laissez faire future (IPCC, 2022). However, we estimate that this

does not lead to equivalently large reductions in agricultural output due to general-equilibrium

adjustments, moving resources out of the rest of the economy into agriculture to compensate for

falling yields. Thus, market mechanisms allow the economy to adapt to climate change. This

is not to say, however, that from the point of view of maximizing social welfare GHG emissions

should be left uncontrolled. On the contrary, we estimate a relatively high optimal GHG tax,

as the welfare cost of a laissez faire emissions path is high. It might be possible to allocate

resources such that climate damages are apparently muted, but the opportunity cost of doing so

is significant. Our estimates naturally rest to an extent on uncertain parameters. Qualitatively

our results appear robust. Quantitatively they are also robust to many exogenous parameter

variations, but they are especially sensitive to the intensity of pre-adaptation climate damages

on agriculture, emphasizing the importance of further empirical work in that area.

As a sense-check, we can compare our model projections with others in the relevant liter-

atures. Our population projections are higher than those of the United Nations (2019). Low

population projections typically depend on assuming relatively rapid convergence to replace-

ment fertility levels, which the data do not unambiguously support (Strulik and Vollmer, 2015).

In our model, population growth slows down, but not as much. The primary mechanism driving

falling fertility in our model is technological progress, which raises the opportunity cost of child-

rearing. We project that technological progress will itself slow down, such that fertility holds

up. This economic approach to projecting population is fundamentally different to standard

demographic projections, which make direct assumptions about fertility and mortality rates. We

project GDP growth of 2.1% between now and 2060, which is close to the projection of 2.4% by

OECD (2018). Our projection of global cropland in 2050 is almost identical to that of the FAO

(Alexandratos and Bruinsma, 2012). Our laissez faire GHG emissions scenario closely tracks the
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IPCC’s RCP8.5 scenario, as does our estimated atmospheric GHG concentration. Our optimal

GHG prices/taxes are high but representative of a trend in climate economics towards higher

prices (Hänsel et al., 2020; Rennert et al., 2022), which has multiple sources including fast

climate dynamics (which our model has) and higher damages.

A recent literature highlights that the impacts of climate change will be heterogeneous

across space, and emphasizes the role of spatial reallocation of agriculture and economic ac-

tivity (Costinot et al., 2016; Desmet and Rossi-Hansberg, 2015; Nath, 2022). In particular,

growing conditions for crops may worsen in already hot climates, and improve in currently cold

climates. Our model structure aggregates over space and we calibrate pre-adaptation agricul-

tural damages by aggregating yield effects from the literature over space, so that our agricultural

damage coefficient Ωag can be thought of as an average treatment effect. Spatial reallocation

could reduce negative yield effects on average by directing more resources to production in cold

climates at the expense of hot climates, thus constituting a potentially important adaptation

mechanism, but only if trade is free enough to meet food demand everywhere. Nath (2022)

provides important evidence to suggest that although the potential gains to spatial reallocation

have been large, trade barriers have largely prevented them from being realised. This gives us

some confidence in our historical estimates not conflating the effect of spatial reallocation on

productivity with the effect of innovation. If trade barriers continue to prove difficult to over-

come, then the adaptive response we attribute to innovation is likely to remain of first order

importance.

There are several ways in which this work could be extended. One is into the area of popu-

lation ethics and the social valuation of population, which has been identified as an important

consideration for climate policy (Méjean et al., 2017; Scovronick et al., 2017). Our household’s

objective function (21) can be given a normative interpretation as an example of a number-

dampened critical-level utilitarian social welfare function (Asheim and Zuber, 2014), which

nests multiple important positions on population ethics and could be used to explore how they

affect optimal GHG taxation/abatement. Because our goals in this paper have been empiri-

cal/quantitative, we chose to structurally estimate the parameter η that governs the social value

of population. Further exploration of population ethics could be based on an alternative ap-

proach, where η is exogenous and the flexibility of the SWF is exploited. In the limit as η → 1,

the special case of discounted average utilitarianism is obtained, whereby social welfare depends

only on average utility in the population. Conversely in the limit as η → 0, the special case of

discounted classical/total utilitarianism is obtained, whereby social welfare is the sum of the

utilities of each member of the population and is increasing in population size.

Another extension is further study of the optimal carbon price trajectory. Previous work

has examined the growth rate of the optimal carbon price. In a well-known result, Golosov

et al. (2014) found the optimal carbon price grows at the same rate as GDP under certain
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assumptions, while other more recent work has suggested the optimal carbon price should grow

faster than GDP (Rezai and van der Ploeg, 2016; Dietz and Venmans, 2019). Our results suggest

the optimal carbon price grows slightly slower than GDP, of the order of 0.1 percentage points

slower throughout the century. Further analysis of what factors drive this difference would be

useful. These previous studies are based on one-sector models with exogenous population.

The structure of the model could be extended to take in a number of additional issues. We

have assumed an exogenous, constant mortality rate and used fertility choice as the mechanism

by which climate change affects population. Further work could link climate change with mor-

tality. Although agricultural land expansion causes CO2 emissions, the emissions intensity of

land expansion is calibrated on past data and does not take into account any runaway effects

of deforestation on carbon sequestration, nor does it take into account the effects of lost bio-

diversity. Doing so would constitute an interesting extension. It faces some extreme empirical

challenges, but would be valuable as a form of stress test. Most of all, it seems important to

begin attempting to combine/unify the globally aggregated, dynamic modeling approach exem-

plified by this paper with spatially disaggregated but less dynamic approaches such as Costinot

et al. (2016); Desmet and Rossi-Hansberg (2015); Nath (2022).

To conclude, we suggest that structural estimation is a useful approach that could be adopted

more widely in the literature building climate-economy models. Not only can it address concerns

about the ability of such models to reproduce past trends (as highlighted by Millner and McDer-

mott, 2016), it allows the construction of historical counterfactuals and opens up an alternative

way of studying past impacts.
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Appendix A Optimization problem

Collecting terms, the optimization problem can be stated formally as:

max
Ct,Kt,·,Et,·,Lt,·

W0 =
∑∞

t=0 β
tN1−η

t
U1−γ
t −1
1−γ

s.t. Xt = Xt−1(1− δX) + ψLεt−1,X , Xt ≤ X

At,j = At−1,j

[
1 + λj

(
Lt−1,Aj

Nt−1

)]µj
, j ∈ {mn, ag, cl, dt}

Nt = Nt−1(1− δN ) + χLζt−1,N

Kt = Kt−1(1− δK) + It−1

St =
∑3

i=0 St,i

St,0 = a0 [πE,CO2Et,dt + πX (Xt −Xt−1)] + (1− δS,0)St−1,0

St,i = ai [πE,CO2Et,dt + πX (Xt −Xt−1)]

+ ai∑3
i=1 ai

[
πE,NCO2Et,dt + πag

(
KθK
t,agE

θE
t,agL

1−θK−θE
t,ag

)]
+(1− δS,i)St−1,i, i = 1, 2, 3

κ
1
σc
ag

(
ct,ag
U
εag
t

)σc−1
σc + κ

1
σC
mn

(
ct,mn
Uεmnt

)σc−1
σc = 1

Yt,mn = Ct + It

Yt,ag = Ct,ag

Et = Et,mn + Et,ag ,
∑T

0 Et,dt ≤ R

Nt = Lt,mn + Lt,ag + Lt,cl + Lt,dt +
∑

j Lt,Aj + Lt,X + Lt,N

Kt = Kt,ag +Kt,mn +Kt,cl +Kt,dt

K0, N0, X0, S0,i, A0,j ∀i ∀j given

This is an infinite-horizon, non-linear optimal control problem, which we solve using efficient

mathematical programming methods. Such methods cannot explicitly accommodate an infinite

horizon, because the problem would include both an infinite number of terms in the objective

function and an infinite number of constraints.22 We approximate the solution to the infinite-

horizon problem using a finite horizon of T years, relying on the presence of a discount factor

β < 1, which implies that only a finite number of terms matters for the numerical solution. We

select a value for T that is large enough to avoid terminal-period effects influencing the solution

22 A leading alternative formulation is dynamic programming, which uses a recursive formulation to accommo-
date infinite horizon problems (see e.g. Judd, 1998). This approach, however, also involves approximations to
determine optimal transition rules, and computational requirements quickly increase with the number of state
variables considered. In our case, we consider a problem with a large number of continuous state variables,
and we need to solve the problem many times as part of our structural estimation procedure, which makes
mathematical programming more attractive.
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over the period of interest to us (i.e., up to 2100). We select T = 300 based on evidence that an

increase in T does not affect relevant outcomes in 2100 by more than 0.1 percent.

To estimate the model and study past climate impacts, we initialize it to match observations

in 1960, and solve it up to the year 2260. To compute the optimal future climate policy, the

model estimated on 1960- data is re-initialized in 2015 and solved up to the year 2315. Once

appropriately scaled, the nonlinear program solves in a matter of seconds, which is particularly

important for the simulation-based estimation.

In order to make laissez faire projections, we set the stock of GHGs as exogenous. This

exogenous stock affects the economy via the sectoral damage functions in Equations (1) and (2).

However, this creates a potential inconsistency, as damages can change the level of emissions

produced by the economy, in turn affecting the GHG stock. We resolve this following the iterative

procedure of Böhringer et al. (2007). That is, we sequentially update the exogenous GHG stock

using the GHG stock resulting from the laissez faire economy’s emissions.23 Our experience

with the model suggests that, after one or two iterations, the exogenous GHG stock entering the

climate damage functions converges to the GHG stock resulting from emissions with an accuracy

of 0.1 percent.

We solve the numerical problem with the KNITRO package in GAMS (Byrd et al., 2006).

This allows us to rely on analytical expressions for the Jacobian and Hessian matrices associated

with the optimization problem, and use these in a solver that flexibly alternates between an

interior point-type algorithm, looking for an optimum of the objective function in the feasible

region defined by the constraints, and an active-set algorithm, which stays at the boundary of

the feasible region.

23 Note that this approach requires a first guess as to the trajectory of the exogenous GHG stock entering the damage
function. For this purpose, we simply solve the model under an assumption of zero damages.
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Appendix B Estimating the model on different time periods

This appendix provides further evidence on identification and the model’s ability to fit the data,

using data for alternative observation periods. Specifically, our main results are obtained by

structurally estimating the model on data from the period 1960 to 2015. Here, we re-estimate

the model on two subsets of these data: 1960-1990 and 1990-2015. In Table B1, we compare

these three sets of estimates with each other and with the observed data that we target. As

we compare the estimates obtained from 1960-1990 with observations post-1990, the analysis

contains an out-of-sample prediction test.

Table B1: Comparison of model estimates and observations for models estimated on different
time periods

Year
Estimation 1970 1980 1990 2000 2010

Period

Population (billion) 1960-1990 3.74 4.52 5.33 6.15 6.97
1990-2015 5.33 6.11 6.90
1960-2015 3.70 4.46 5.27 6.11 6.96
Observed 3.70 4.46 5.33 6.15 6.96

GDP (trillion 2010 USD) 1960-1990 18.43 27.40 39.24 54.16 72.29
1990-2015 36.70 49.15 64.88
1960-2015 17.27 25.20 35.80 49.26 65.77
Observed 19.01 27.81 37.86 49.94 65.91

Cropland (trillion ha) 1960-1990 1.43 1.48 1.53 1.58 1.62
1990-2015 1.53 1.56 1.59
1960-2015 1.42 1.45 1.49 1.53 1.57
Observed 1.44 1.45 1.53 1.54 1.55

Clean energy (Gt oil eq.) 1960-1990 0.44 0.76 1.27 2.05 3.27
1990-2015 0.90 1.23 1.58
1960-2015 0.38 0.57 0.81 1.15 1.59
Observed 0.29 0.55 0.97 1.24 1.58

Fossil energy (Gt oil eq.) 1960-1990 4.42 5.72 7.11 8.62 10.22
1990-2015 6.92 8.73 10.42
1960-2015 4.45 5.74 7.14 8.71 10.43
Observed 4.62 6.09 7.17 8.15 10.60

Notes: This table provides the value of variables targeted in the estimation. We report predicted values
for models estimated on data from 1960-1990, 1990-2015, and 1960-2015, as well as the corresponding
observations.

44



Overall, the models estimated on the three different estimation periods are relatively close

to each other and relatively close to the observations. This is most especially so for popula-

tion, cropland, and fossil energy. Estimating the model on data from 1960-1990 does lead to

overestimating GDP and clean energy in 2000 and 2010. In the case of GDP, there has been a

well-documented slowdown in GDP growth, which the pre-1990 sample does not fully capture.

Similarly, there was a less well-documented slowdown in clean energy expansion between 1990

and 2010, relative to the period from 1970-1990.

Table B2 compares the optimal future paths of the models estimated on different historical

time periods. The paths show strong similarities. Using the period 1960-1990 for estimation re-

sults in slightly lower GHG taxes but also lower emissions, due to the projected faster expansion

of clean energy in the absence of GHG taxation. Lower GHG emissions mean less adaptation is

necessary, here in the form of cropland expansion and curtailed fertility. The opposite is true

when the model is estimated on 1990-2015 data.
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Appendix C Selection of exogenous parameter values and initial

conditions

This section provides a discussion of how we select the values of exogenous parameters in the

model, all of which are reported in Table 1.

Starting with household preferences, the elasticity of utility with respect to the composite

good, εmn, is normalized to one, as is the taste parameter κmn. The elasticity of utility with

respect to food εag is calibrated so that, given the structural estimate of σc, the income elasticity

of demand for food as defined in Eq. (17) is 0.5 (Comin et al., 2021). This results in εag = 0.42.

We set the discount factor β = 0.99, which corresponds to a utility discount rate of 1%. This

is consistent with empirical evidence on very long-run investments by Giglio et al. (2015), and

with a recent survey of economists by Drupp et al. (2018). As an alternative, we also consider

β = 0.97 in sensitivity analysis. The inverse of the elasticity of intertemporal substitution γ = 2

is consistent with the macroeconomic estimates reported in Guvenen (2006).

For the population dynamics, the mortality rate δN = 0.022 is calibrated so that the expected

working lifetime of agents in the model is 45 years (United Nations, 2013).

In the rest of the economy, the value of the capital share parameter is ϑK = 0.3 and the

depreciation rate of capital is δK = 0.1, both standard values in the literature (see e.g. Hassler

et al., 2016a). The share of energy is ϑE = 0.04, which is taken from Golosov et al. (2014).

In agriculture, we take the elasticity of substitution between land and the capital-labor-

energy composite from long-run econometric evidence reported in Wilde (2013), which suggests

σX = 0.6. Because there is uncertainty about this parameter, and because land use is potentially

an important adaptation channel in our model, we consider σX = 0.2 in sensitivity analysis.

Share parameters for capital and land are respectively θK = 0.3 and θX = 0.25, consistent with

the work of Ashraf et al. (2008), and we set θE = 0.04 to be in line with Golosov et al. (2014).

Taken together, this implies that our agricultural technology is broadly in line with factor shares

reported in the aggregate database of Hertel et al. (2012). The reconversion rate for agricultural

land δX = 0.02 is set so that agricultural land reverts back to natural land over a period of 50

years (Lanz et al., 2017), and the stock of natural land that can be converted is X = 3 billion

hectares (as discussed in Alexandratos and Bruinsma, 2012).

In the energy sector, we set the elasticity of substitution between clean and fossil intermedi-

ates σE = 1.5, drawing on evidence from inter-fuel substitution by Stern (2012). This assump-

tion is also consistent with empirical evidence for non-electric energy reported in Papageorgiou

et al. (2017). The capital share α = 0.6 is taken from Barrage (2020), and total reserves of

fossil fuels are set to R = 5, 000 Gt of oil equivalent, in line with Rogner (1997). This takes into

account all fossil fuels, as well as technological progress and new discoveries (this estimate is

also used in Golosov et al., 2014; Acemoglu et al., 2016). In the sensitivity analysis, we consider

a version of the model in which the total quantity of fossil fuels is unconstrained.

In the R&D sector, we set λ = 0.05, which can be interpreted as the maximum feasible rate
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of yearly TFP growth.

In Table C1, we report initial values for the stock variables and we also provide parameter

values for the climate module of Joos et al. (2013). Initial values of the unobserved carbon stocks

S0,i are obtained by feeding estimated CO2 emissions from 1750 to 1960 (Boden et al., 2017;

FAO, 2022; Janssens-Maenhout et al., 2017; Le Quéré et al., 2018; Meinshausen et al., 2011)

into the carbon-cycle model under a pre-industrial parametrization (Millar et al., 2017). From

1960 onwards, the model is re-parametrized to match the contemporary response of carbon

sinks to CO2 accumulating in the atmosphere (again see Millar et al., 2017).
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Appendix D Parameter identification and model error

In Table D1, we report the elasticity of total model error with respect to each structural pa-

rameter, and we also report the elasticity of the error in predicting each target variable. To

obtain these elasticities, we increase each parameter value by one percent, simulate the model

and compute the percentage change in the estimation error/fit. This provides evidence on the

sensitivity of the model to different parameters, as well as evidence on which target variables

contribute to identification of which parameters.

Table D1: Elasticity of total model error and of fit to each target variable with respect to each
structural parameter

Parameter Total model Population Agri. Rest of econ. Agri. Rest of econ. Crop- Dirty Clean
error output output TFP TFP land energy energy

µmn 11.94 39.98 4.66 8.46 11.14 28.28 0.99 0.61 0.64
µag 5.50 41.76 4.87 6.20 6.41 12.05 0.01 0.54 0.29
µcl 0.03 0.81 0.11 0.16 0.48 0.43 0.03 0.23 1.47
µdt 0.17 0.49 0.08 0.08 0.15 0.45 0.01 1.03 0.08
ψ 2.76 10.30 1.72 2.13 12.92 4.72 10.84 0.36 0.16
ε 1.46 3.84 0.66 0.86 7.22 2.06 12.04 0.13 0.06
η 0.70 5.17 0.42 1.07 1.47 1.78 0.17 0.06 0.13
χ 4.12 17.81 10.55 5.80 70.17 0.64 1.99 2.06 1.22
ζ 2.22 3.82 4.37 8.81 18.74 8.43 1.94 0.36 0.37
σc 5.70 6.66 3.35 4.15 9.43 9.33 0.57 0.44 0.25
κag 26.69 84.31 12.15 13.66 189.87 32.84 1.91 1.07 1.25

Notes: This table reports the percentage change in total model error, as well as the percentage change in estimation error associated with individual target
variables, for a 1% deviation in each parameter value.

Our estimation strategy is based on joint identification of the parameters, so total model

error, as well as the error in predicting each target variable, responds significantly to several

structural parameters. Nonetheless, the patterns in Table D1 are intuitive. They imply labor

productivity in rest-of-economy R&D (µmn) and agricultural R&D (µag) are most strongly iden-

tified by variation in population, sectoral output, and sectoral TFP. By contrast, labor produc-

tivity in clean energy R&D (µcl) and fossil energy R&D (µdt) are most strongly identified by

clean and fossil energy use, respectively. Labor productivity in agricultural land conversion –

the pair of parameters ψ and ε – is most strongly identified by agricultural TFP and cropland.

The elasticity of intergenerational altruism (η) is most strongly identified by population, while

labor productivity in fertility/education (χ) is most strongly identified by agricultural output,

TFP and population. The same is true of the food consumption parameters σc and κag.
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Appendix E Structural parameter estimates accompanying sensitiv-

ity analysis

In Table E1, we report structural parameter estimates to accompany our sensitivity analysis

of exogenous parameters discussed in Section 7, as well as the estimation of the model on

different time periods presented in Appendix B. Reading each column from top to bottom, it is

apparent that the estimated parameters are highly consistent across the different specifications

in each row. A much higher discount rate (β = 0.97) can only be reconciled with the data if

the labor productivity of R&D in the rest of the economy is lower, and with altered fertility cost

parameters.

Table E1: Structural parameter estimates for different scenarios corresponding to variations in
exogenous parameters and different estimation periods

µmn µag µcl µdt ψ ε η χ ζ σc κag

Main spec. 0.91 0.76 0.20 0.45 0.05 0.14 0.16 0.19 0.30 0.13 0.23
Low damages 0.92 0.77 0.20 0.44 0.05 0.14 0.14 0.18 0.30 0.11 0.22
High damages 0.90 0.72 0.20 0.46 0.05 0.14 0.16 0.19 0.31 0.14 0.23
Low damages ag 0.92 0.77 0.20 0.44 0.05 0.14 0.14 0.18 0.30 0.11 0.22
High damages ag 0.89 0.72 0.20 0.46 0.05 0.14 0.16 0.19 0.31 0.14 0.23
Low damages mn 0.91 0.76 0.20 0.45 0.05 0.14 0.16 0.19 0.30 0.13 0.23
High damages mn 0.91 0.76 0.20 0.45 0.05 0.14 0.16 0.19 0.30 0.13 0.23
Slow CO2 removal 0.91 0.76 0.20 0.45 0.05 0.14 0.16 0.19 0.30 0.13 0.23
Fast CO2 removal 0.91 0.76 0.20 0.45 0.05 0.14 0.16 0.19 0.30 0.13 0.23
β = 0.97 0.52 0.71 0.19 0.45 0.05 0.15 0.16 0.23 0.20 0.12 0.24
sigmaX = 0.2 0.94 0.71 0.18 0.37 0.05 0.13 0.16 0.18 0.28 0.13 0.21
R =∞ 0.91 0.76 0.20 0.47 0.05 0.14 0.16 0.19 0.30 0.13 0.23

1960-1990 0.94 0.64 0.11 0.45 0.06 0.15 0.16 0.18 0.30 0.13 0.21
1990-2015 0.89 0.79 0.28 0.45 0.05 0.14 0.16 0.19 0.30 0.13 0.23

Notes: This table reports parameters estimated for the main specification of the model and for the instances of the model considered
in the sensitivity analysis and in Appendix B.
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