Integrated Assessment of no-Regret Climate Change Adaptation Options for Reservoir Catchment and Command Areas

The need for credible, salient and legitimate climate change adaptation options in the water sector, which target location specific adaptation requirements, is well recognized. In developing countries, the low-hanging fruit; no-regret options, should be identified with stakeholders and assessed against future changes in water availability and demand, for comparing effectiveness and robustness. Such integrated basin-scale assessments, including reservoir catchment and command areas, can suitably inform adaptation decision-making. In this study, we integrate participatory and modelling approaches for evaluation of reservoir catchment and command area no-regret options addressing water availability and demand in the Kangsabati river basin. Through multi-level stakeholder workshops we identify and prioritize options, followed by evaluation of two reservoir catchment options; check dams and increasing forest cover and three reservoir command options; changing cropping pattern, traditional ponds and waste water reuse, using the Water Evaluation And Planning (WEAP) model. We use four high resolution (~25 km) regional climate model simulations of future climatic factors, along with non-climatic factors affecting water demand, for forcing WEAP. We find that options have varied ability in addressing adaptation requirements. Amongst catchment options, increasing forest cover addresses adaptation requirements more suitably than check dams, while in the command areas we observe mixed abilities of options, leading to the inference that combining complementary options may be a more useful strategy. We conclude by discussing our experiences with this approach in a developing country context, in terms of benefits, limitations, lessons learnt and future research directions.

Bhave, Ajay Gajanan, Mittal, Neha, Mishra, Ashok and Raghuwanshi, Narendra Singh (2015) Integrated assessment of no-regret climate change adaptation options for reservoir catchment and command areas. Water Resources Management . ISSN 0920-4741